Pacific Journal of Mathematics

A combinatorial matrix in $3$-manifold theory.

Ki Hyoung Ko and Lawrence Smolinsky

Article information

Source
Pacific J. Math. Volume 149, Number 2 (1991), 319-336.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102644466

Mathematical Reviews number (MathSciNet)
MR1105701

Zentralblatt MATH identifier
0728.57010

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 57N10: Topology of general 3-manifolds [See also 57Mxx]

Citation

Ko, Ki Hyoung; Smolinsky, Lawrence. A combinatorial matrix in $3$-manifold theory. Pacific J. Math. 149 (1991), no. 2, 319--336.https://projecteuclid.org/euclid.pjm/1102644466


Export citation

References

  • [1] R. A. Brualdi, Introductory Combinatorics,North-Holland,New York,1977.
  • [2] R. C.Kirby andP. Melvin, Evaluations of the 3-manifoldinvariants ofWitten and Reshetikhin-Turaev for sl(2,C),(toappear).
  • [3] W. B. R. Lickorish, 3-manifold invariantsfrom the combinatorics of the Jones polynomial, preprint.
  • [4] N.Yu. Reshetikhin andV. G.Turaev, Invariants of ^-manifolds vialinkpoly- nomials andquantum groups, Invent. Math., (toappear).
  • [5] E. Witten, Quantum field theory andJones' polynomial, Comm. Math. Phys., 121 (1989), 351-399.