Pacific Journal of Mathematics

Paragroupe d'Adrian Ocneanu et algèbre de Kac.

Marie-Claude David

Article information

Source
Pacific J. Math., Volume 172, Number 2 (1996), 331-363.

Dates
First available in Project Euclid: 6 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1102366014

Mathematical Reviews number (MathSciNet)
MR1386622

Zentralblatt MATH identifier
0852.46054

Subjects
Primary: 46L37: Subfactors and their classification
Secondary: 46L10: General theory of von Neumann algebras

Citation

David, Marie-Claude. Paragroupe d'Adrian Ocneanu et algèbre de Kac. Pacific J. Math. 172 (1996), no. 2, 331--363. https://projecteuclid.org/euclid.pjm/1102366014


Export citation

References

  • [El] M. Emock, Produit croise d'une algebrede von Neumann par une algebrede Kac, Journal of Functional Analysis, 26(1) (1977).
  • [EN] M. Enock et R. Nest, en preparation.
  • [ESI] M. Enock et Jean-Marie Schwartz, Kac algebras and duality of locally compact groups,a paratre chez Springer.
  • [ES2] M. Enock et Jean-Marie Schwartz, Produit croise d'une algebrede von Neumann par une algebre de Kac, II, P.R.I.M.S.K.U., 16(1) (1980).
  • [GHJ] F.M. Goodman, P. de la Harpe et V.F.R. Jones, Coxeter Graphs and Towers of algebras, MSRI Publications, 14.
  • [II] N. Izumi, Application of Fusion Rules to Classificationof subfactors,Publ. RIMS, Kyoto Univ., 27 (1991), 953-994.
  • [12] N. Izumi, On subalgebras of non AF-algebras with finite Wakatani index. I. Cuntz algebras, preprint.
  • [LI] R. Longo, Index of subfactors and statistics of quantum fields I, Comm. Math. Phys., 126 (1989), 217-247.
  • [L2] R. Longo, A dualityfor Hopf algebras and subfactors I, preprint 1992.
  • [O] Quantum Symmetry, differentialgeometry of finite graphs and classificationof sub- factors, Lectures given at University of Tokyo by Adrian Ocneanu, notes recorded by Yasuyuki Kawahigashi.
  • [iPol] M. Pimsner et S. Popa, Entropy and index for subfactors, Ann. Scient. ENS, 19 (1986), 57-106.
  • [iPo2] M. Pimsner et S. Popa, Iterating the basic construction, Trans. A.M.S., 310(1) (1988), 127-134.
  • [opal] S. Popa, Classificationof subfactors: reductionto commuting squares, Invent. Math., 101 (1990), 19-43.
  • [opa2] S. Popa, Sur la classificationdes sous-facteurs d'indice fini dufacteur hyperfim.
  • [S] W. Szymanski, Finite index subfactors andHopf algebra crossed products,a paratre dans "Proceedings of theAMS".
  • [VJ1] V. Jones, Index for subfactors,Invent. Math., 72 (1983), 1-25.
  • [se VJ] V. Jones, Actions of finite groups on the hyperfinite type Hi factor, Memoirs of AMS, 237.