The Michigan Mathematical Journal

On Weyl sums over primes and almost primes

Angel V Kumchev

Full-text: Open access

Article information

Source
Michigan Math. J. Volume 54, Issue 2 (2006), 243-268.

Dates
First available: 23 August 2006

Permanent link to this document
http://projecteuclid.org/euclid.mmj/1156345592

Digital Object Identifier
doi:10.1307/mmj/1156345592

Mathematical Reviews number (MathSciNet)
MR2252758

Zentralblatt MATH identifier
1137.11054

Subjects
Primary: 11L15: Weyl sums 11L20: Sums over primes
Secondary: 11N36: Applications of sieve methods 11P55: Applications of the Hardy-Littlewood method [See also 11D85]

Citation

Kumchev, Angel V. On Weyl sums over primes and almost primes. The Michigan Mathematical Journal 54 (2006), no. 2, 243--268. doi:10.1307/mmj/1156345592. http://projecteuclid.org/euclid.mmj/1156345592.


Export citation

References

  • R. C. Baker and G. Harman, On the distribution of $\alpha p^k$ modulo one, Mathematika 38 (1991), 170--184.
  • R. C. Baker, G. Harman, and J. Pintz, The exceptional set for Goldbach's problem in short intervals, Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), London Math. Soc. Lecture Note Ser., 237, pp. 1--54, Cambridge Univ. Press, 1997.
  • G. Harman, Trigonometric sums over primes. I, Mathematika 28 (1981), 249--254.
  • ------, Trigonometric sums over primes. II, Glasgow Math. J. 24 (1983), 23--37.
  • ------, On averages of exponential sums over primes, Analytic number theory and Diophantine problems (Stillwater, 1984), Progr. Math., 70, pp. 237--246, Birkhäuser, Boston, 1987.
  • ------, On the distribution of $\alpha p$ modulo one. II, Proc. London Math. Soc. (3) 72 (1996), 241--260.
  • ------, Trigonometric sums over primes. III, J. Théor. Nombres Bordeaux 15 (2003), 727--740.
  • G. Harman and A. V. Kumchev, On sums of squares of primes, Math. Proc. Cambridge Philos. Soc. 140 (2006), 1--13.
  • D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 1365--1377.
  • L. K. Hua, Additive theory of prime numbers, Transl. Math. Monogr., 13, Amer. Math. Soc., Providence, RI, 1965.
  • K. Kawada and T. D. Wooley, On the Waring--Goldbach problem for fourth and fifth powers, Proc. London Math. Soc. (3) 83 (2001), 1--50.
  • A. V. Kumchev, The difference between consecutive primes in an arithmetic progression, Quart. J. Math. Oxford Ser. (2) 53 (2002), 479--501.
  • ------, On the Waring--Goldbach problem: Exceptional sets for sums of cubes and higher powers, Canad. J. Math. 57 (2005), 298--327.
  • ------, On the Waring--Goldbach problem for seventh powers, Proc. Amer. Math. Soc. 133 (2005), 2927--2937.
  • Yu. V. Linnik, On the possibility of a unique method in certain problems of ``additive'' and ``distributive'' prime number theory, Dokl. Akad. Nauk SSSR 49 (1945), 3--7.
  • J. Y. Liu and M. C. Liu, The exceptional set in the four prime squares problem, Illinois J. Math. 44 (2000), 272--293.
  • J. Y. Liu and T. Zhan, Distribution of integers that are sums of three squares of primes, Acta Arith. 98 (2001), 207--228.
  • ------, The exceptional set in Hua's theorem for three squares of primes, Acta Math. Sinica (N.S.) 21 (2005), 335--350.
  • H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin, 1971.
  • H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353--370.
  • X. M. Ren, The Waring--Goldbach problem for cubes, Acta Arith. 94 (2000), 287--301.
  • R. C. Vaughan, On Goldbach's problem, Acta Arith. 22 (1972), 21--48.
  • ------, Mean value theorems in prime number theory, J. London Math. Soc. (2) 10 (1975), 153--162.
  • ------, The Hardy--Littlewood method, 2nd ed., Cambridge Tracts in Math., 125, Cambridge Univ. Press, 1997.
  • I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk SSSR 15 (1937), 291--294 (Russian).
  • ------, An introduction to the theory of numbers, 6th ed., Pergamon Press, London, 1955.
  • ------, Special variants of the method of trigonometric sums, Nauka, Moscow, 1976 (Russian).
  • ------, The method of trigonometric sums in number theory, 2nd ed., Nauka, Moscow, 1980 (Russian).
  • T. D. Wooley, Slim exceptional sets for sums of cubes, Canad. J. Math. 54 (2002), 417--448.