Abstract
An algorithm is presented for constructing orthogonal multiscaling functions and multiwavelets with higher approximation order in terms of any given orthogonal multiscaling functions. That is, let $\Phi (x) = [\phi _{1}(x), \phi _{2}(x),\ldots , \phi _{r}(x)]^{T} \in (L^{2}(R))^{r}$ be an orthogonal multiscaling function with multiplicity $r$ and approximation order $m$. We can construct a new orthogonal multiscaling function $\Phi ^{new}(x) = [\Phi ^{T} (x), \phi _{r+1}(x), \phi _{r+2}(x),\ldots ,\phi _{r+s}(x)]^{T}$ with approximation order $n(n > m)$. Namely, we raise approximation order of a given multiscaling function by increasing its multiplicity. Corresponding to the new orthogonal multiscaling function $\Phi ^{new}(x)$, orthogonal multiwavelet $\Psi ^{new}(x)$ is constructed. In particular, the spacial case that $r = s$ is discussed. Finally, we give an example illustrating how to use our method to construct an orthogonal multiscaling function with higher approximation order and its corresponding multiwavelet.
Citation
Shouzhi Yang. Zengjian Lou. "Construction of orthogonal multiscaling functions and multiwavelets with higher approximation order based on the matrix extension algorithm." J. Math. Kyoto Univ. 46 (2) 275 - 290, 2006. https://doi.org/10.1215/kjm/1250281777
Information