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Construction of orthogonal multiscaling
functions and multiwavelets with higher
approximation order based on the matrix

extension algorithm∗

By

Shouzhi Yang and Zengjian Lou

Abstract

An algorithm is presented for constructing orthogonal multiscaling
functions and multiwavelets with higher approximation order in terms
of any given orthogonal multiscaling functions. That is, let Φ(x) =
[φ1(x), φ2(x), . . . , φr(x)]T ∈ (L2(R))r be an orthogonal multiscaling
function with multiplicity r and approximation order m. We can const-
ruct a new orthogonal multiscaling function Φnew(x) = [ΦT (x), φr+1(x),
φr+2(x), . . . , φr+s(x)]T with approximation order n(n > m). Namely,
we raise approximation order of a given multiscaling function by increas-
ing its multiplicity. Corresponding to the new orthogonal multiscaling
function Φnew(x), orthogonal multiwavelet Ψnew(x) is constructed. In
particular, the spacial case that r = s is discussed. Finally, we give an
example illustrating how to use our method to construct an orthogo-
nal multiscaling function with higher approximation order and its corre-
sponding multiwavelet.

Acknowledgements. The author wish to thank the referees for their
valuable suggestions and comments.

1. Introduction

Several types of uniwavelets are constructed based on multiresolution anal-
ysis, such as Daubechies’ orthogonal wavelets [1], [2] and semi-orthogonal spline
wavelets by Chui and Wang [3] et al. However, multiwavelets can have some
features that uniwavelets cannot. Thus, multiwavelets provide interesting ap-
plications in signal processing and some other fields (See [4], [5]). In recent
years, multiscaling functions and multiwavelets have been studied extensively
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[6]–[13]. Goodman, Lee and Tang [6] established a characterization of multi-
scaling functions and their corresponding multiwavelets. Chui and Wang [7]
introduced semi-orthogonal spline multiwavelets. Examples of cubic and quin-
tic finite elements and their corresponding multiwavelets were studied by Strang
and Strela [8]. Geronimo, Hardin and Massopust [9] used fractal interpolation
to construct orthogonal multiscaling functions, and their corresponding multi-
wavelets were given in [10]. In [11], Donovan, Geronimo, and Hardin showed
that there exist compactly supported orthogonal polynomial spline multiscaling
functions with arbitrarily high regularity. In applications of multiwavelets, the
properties of multiscaling function and multiwavelet are also desired, such as
orthogonality, symmetry, approximation order and regularity and so on. The
properties of multiscaling functions and multiwavelets are discussed in many pa-
pers. Ashino, Nagase and Vaillancourt [14], Cohen, Daubechies and Plonka [15]
Plonka and Strela [16], Strela [17], Shen [18], Keinert [19], Chui and Lian [20],
Lian [21] and many others, have obtained important results on the existence,
regularity, orthogonality, approximation order and symmetry of multiwavelets.
One of the properties of a multiscaling function which has great practical in-
terest is the approximation order (See [16], [17], [19]–[21]). One known ways to
raise approximation order are through the use of two-scale similarity transforms
(TSTs) (See [16], [17]) and lifting scheme (See [19]).

Similar to the construction of the uniscaling functions, multiscaling func-
tions with multiplicity r also can be constructed based on multiresolution anal-
ysis. But the main difficulties in construction of multiwavelets are verification
the convergence of the infinite product of two-scale matrix symbol (See [22],
[23]). Are there any easier methods to construct orthogonal multiwavelets?
Can multiwavelets be constructed based on uniwavelets? Generally, can mul-
tiwavelets with multiplicity r + s be constructed based on multiwavelets with
multiplicity r? Our main motivation is to raise approximation orders of or-
thogonal multiscaling functions by increasing their multiplicities. To answer
this question, in this paper, we will give a general scheme to construct or-
thogonal multiwavelets with arbitrary approximation order from any given or-
thogonal multiscaling functions. Corresponding orthogonal multiwavelets are
constructed.

Let Φ(x) = [φ1(x), φ2(x), . . . , φr(x)]T ∈ (L2(R))r, satisfying the following
two-scale matrix equation:

(1) Φ(x) =
∑

k

PkΦ(2x− k),

for some r×r matrices sequence {Pk}k∈Z called the two-scale matrix sequence,
Φ(x) is called multiscaling functions and r is called multiplicity.

By taking Fourier transform the both sides of (1), we have

(2) Φ̂(w) = P (e−iw/2)Φ̂
(w

2

)
.

Here P (z) = 1
2

∑
k∈Z

Pkz
k called the two-scale matrix symbol of the two-scale

matrix sequence {Pk}k∈Z of Φ(x).
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By repeated applications of (2), we have

Φ̂(w) =


 ∞∏

j=1

P (e−iw/2j

)


 Φ̂(0).

If the infinite product
∞∏

j=1

P (e−iw/2j

) converges, then the Φ̂(w) is well-defined

and we will say that Φ̂(w) is generated by P (w).
In [24], Cabrelli, et al gave the following criteria to ensure the convergence

of the above infinite product.

The infinite matrix product

(
∞∏

j=1

P (e−iw/2j

)

)
converges uniformly on com-

pact sets to a continuous matrix-valued function if and only if the eigenvalues
λi, i = 1, 2, . . . , r of the matrix P (1) satisfy λ1 = 1, |λi| < 1, i = 2, 3, . . . , r (See
[4], [24]).

Let Ψ(x) = [ψ1(x), ψ2(x), . . . , ψr(x)]T be an orthogonal multiwavelet cor-
responding to Φ(x), satisfying the following equation:

(3) Ψ(x) =
∑
k∈Z

QkΦ(2x− k),

for some r × r matrices sequence {Qk}k∈Z . (3) can be rewritten as Ψ̂(w) =
Q(e−iw/2)Φ̂(w

2 ), where Q(z) = 1
2

∑
k∈Z

Qkz
k.

Let Φ(x) be an orthogonal multiscaling function, and Ψ(x) be an orthog-
onal multiwavelet corresponding to Φ(x), with two scale matrix symbol P (z)
and Q(z), respectively. Then P (z), and Q(z) satisfy the following equations
(See [12], [13]):

(4)




P (z)P (z)∗ + P (−z)P (−z)∗ = Ir×r,
P (z)Q(z)∗ + P (−z)Q(−z)∗ = Or×r,
Q(z)Q(z)∗ +Q(−z)Q(−z)∗ = Ir×r,

where O and Ir denote the zero matrix and unity matrix, respectively. Here
and throughout, the asterisk denotes conjugate transpose of matrix.

2. Construction of orthogonal multiscaling functions

In this section, we will introduce a procedure of constructing orthogonal
multiscaling functions with multiplicity r + s in terms of any given orthogonal
multiscaling functions with multiplicity r.

To construct orthogonal multiscaling functions, we need the following
lemma.

Lemma 1. Let Φ(x) be an orthogonal multiscaling function, and Ψ(x)
be an orthogonal multiwavelet corresponding to Φ(x), with two-scale matrix
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symbol P (z) and Q(z), respectively. Suppose Qk(z), k = 1, 2, . . . , r is the kth
row of Q(z). Then

(5)
{
P (z)Qk(z)∗ + P (−z)Qk(−z)∗ = Or×1, k = 1, 2, . . . , r,
Qj(z)Qk(z)∗ +Qj(−z)Qk(−z)∗ = δj,k, j, k = 1, 2, . . . , r.

Proof. In terms of orthogonality of Φ(x) and Ψ(x), then P (z), and Q(z)
satisfy (4). Substituting Q(z) = [Q1(z)∗, Q2(z)∗, . . . , Qr(z)∗]∗ into (4), we
obtain


P (z)
[
Q1(z)∗, . . . , Qr(z)∗

]
+ P (−z) [Q1(−z)∗, . . . , Qr(−z)∗] = Or×r,[

Q1(z)∗, . . . , Qr(z)∗
]∗ [

Q1(z)∗, . . . , Qr(z)∗
]

+
[
Q1(−z)∗, . . . , Qr(−z)∗]∗ [Q1(−z)∗, . . . , Qr(−z)∗] = Ir×r.

This means that (5) holds.

Let hi,j(z), i = 1, 2, . . . , r; j = 1, 2, . . . , s; |z| = 1 satisfy the following con-
ditions:

(C1): hi,j(z) = hi,j(−z), i = 1, 2, . . . , s; j = 1, 2, . . . , r;

(C2): For any integer i, 1 ≤ i ≤ s,
r∑

j=1

|hi,j(z)|2 = a, where 0 < a < 1;

(C3): For any integer i, k, 1 ≤ i < k ≤ s,
r∑

j=1

hi,j(z)hk,j(z)∗ = 0.

Construct s× r matrix A(z) as follow

(6)

A(z) =



h1,1(z) h1,2(z) · · · h1,r(z)
h2,1(z) h2,2(z) · · · h2,r(z)
· · · · · · · · · · · ·

hs,1(z) hs,2(z) · · · hs,r(z)





Q1(z)
Q2(z)
· · ·

Qr(z)


 =




r∑
j=1

h1,j(z)Qj(z)
r∑

j=1

h2,j(z)Qj(z)

· · ·
r∑

j=1

hs,j(z)Qj(z)



.

Lemma 2. Let A(z) defined in (6) be s× r matrix. Then A(z)A(z)∗ +
A(−z)A(−z)∗ = aIs×s.

Proof. Since A(z)A(z)∗

=




r∑
j=1

h1,j(z)Qj(z)

...
r∑

j=1

hs,j(z)Qj(z)



[

r∑
k=1

h1,k(z)∗Qk(z)∗, . . . ,
r∑

k=1

hs,k(z)∗Qk(z)∗
]

=




r∑
j,k=1

h1,j(z)h1,k(z)∗Qj(z)Qk(z)∗ · · ·
r∑

j,k=1

h1,j(z)hs,k(z)∗Qj(z)Qk(z)∗

· · · · · · · · ·
r∑

j,k=1

hs,j(z)h1,k(z)∗Qj(z)Qk(z)∗ · · ·
r∑

j,k=1

hs,j(z)hs,k(z)∗Qj(z)Qk(z)∗


 .
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Consider (5) and hi,j(z) satisfying the conditions. We have A(z)A(z)∗ +
A(−z)A(−z)∗ =




r∑
j=1

|h1,j(z)|2 0 · · · 0

0
r∑

j=1

|h2,j(z)|2 · · · 0

· · · · · · · · · · · ·
0 0 · · ·

r∑
j=1

|hs,j(z)|2




= aIs×s.

Remark 1. In definition of A(z), hi,j(z), i = 1, 2, . . . , r; j = 1, 2, . . . , s
are required satisfying conditions (C1),(C2),(C3). There exist a lot of functions
satisfying these conditions. For example, hi,i(z) =

√
a, i = min{r, s};hi,j(z) =

0, i �= j.

Lemma 3. Let P (z) and Q(z) be two scale matrix symbols associated
with Φ(x) and Ψ(x), respectively. Suppose that A(z) defined in (6) is the s× r
matrix. Then

P (z)A(z)∗ + P (−z)A(−z)∗ = Or×s,

A(z)Q(z)∗ +A(−z)Q(−z)∗ =



h1,1(z) h1,2(z) · · · h1,r(z)
h2,1(z) h2,2(z) · · · h2,r(z)
· · · · · · · · · · · ·

hs,1(z) hs,2(z) · · · hs,r(z)


 .

Theorem 1. Let P (z) and Q(z) be two-scale matrix symbols associated
with Φ(x) and Ψ(x), respectively, A(z) defined in (6) be s× r matrix, and B(z)
be s × s matrix, satisfying B(z)B(z)∗ + B(−z)B(−z)∗ = (1 − a)Is×s, where
a ∈ (0, 1). Define

(7) Pnew(z) =
[
P (z) O
A(z) B(z)

]
.

Then

(8) Pnew(z)Pnew(z)∗ + Pnew(−z)Pnew(−z)∗ = I(r+s)×(r+s).

Proof. Since P (z) and Q(z) are two scale matrix symbols associated with
Φ(x) and Ψ(x), respectively, then |P (z)|2 + |P (−z)|2 = Ir×r. By Lemma 1 and
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Lemma 2, we have

Pnew(z)Pnew(z)∗ + Pnew(−z)Pnew(−z)∗

=
[
P (z) 0
A(z) B(z)

] [
P (z)∗ A(z)∗

0 B(z)∗

]

+
[
P (−z) 0
A(−z) B(−z)

] [
P (−z)∗ A(−z)∗

0 B(−z)∗
]

=
[
P (z)P (z)∗ + P (−z)P (−z)∗ P (z)A(z)∗ + P (−z)A(−z)∗
A(z)P (z)∗ +A(−z)P (−z)∗ U(z)

]

=
[
Ir×r Or×s

Os×r Is×s

]
= I(r+s)×(r+s).

Here U(z) = A(z)A(z)∗ +A(−z)A(−z)∗ +B(z)B(z)∗ +B(−z)B(−z)∗ = Is×s.

Remark 2. There exist a lot ofB(z) satisfying the condition B(z)B(z)∗

+ B(−z)B(−z)∗ = (1 − a)Is×s. For example, let P(z) be the two scale ma-
trix symbol associated with an orthogonal multiscaling function with mul-
tiplicity s. Then P(z)P(z)∗ + P(−z)P(−z)∗ = Is×s. Take B(z) = (1 −
a)

1
2P(z). It is easy to verify that B(z) satisfies the condition B(z)B(z)∗ +

B(−z)B(−z)∗ = (1−a)Is×s. Additionally, let pi(z), i = 1, 2, . . . , s be two scale
symbols associated with orthogonal uniscaling function φi(x). Take B(z) = (1−
a)

1
2 diag[p1(z), p2(z), . . . , ps(z)]. Then B(z) satisfies the condition B(z)B(z)∗ +

B(−z)B(−z)∗ = (1 − a)Is×s.

Theorem 2. Let Pnew(z) defined in (7) be a lower triangle matrix.
Under the conditions of Theorem 1, if the eigenvalues λi, i = 1, 2, . . . , r of
the matrix P (1) satisfy λ1 = 1, |λi| < 1, i = 2, 3, . . . , r, and the eigenvalues
µi, i = 1, 2, . . . , s of the matrix B(1) satisfy |µi| < 1, i = 1, 2, . . . , s, then 1 must
be a simple eigenvalue of the matrix Pnew(1), and all other eigenvalues λ of
Pnew(1) must satisfy |λ| < 1.

Proof. Since Pnew(1) =
[
P (1) O
A(1) B(1)

]
, then |λEr+s−Pnew(1)| = |λEr−

P (1)||λEs−B(1)|. Obviously, all the eigenvalues of the matrices P (1) and B(1)
must be the eigenvalues of the matrix Pnew(1). This completes the proof of
Theorem 2.

According to [24], the infinite matrix product
∞∏

j=1

Pnew(e−iw/2j

) converges.

Thus an orthogonal multiscaling function Φnew(x) with multiplicity r + s is
well-defined, in terms of Fourier transform, by

Φ̂new(w) = [φ̂1(w), . . . , φ̂r(w), φ̂r+1(w), . . . , φ̂r+s(w)]T

=
[
P (e−iw/2) 0
A(e−iw/2) B(e−iw/2)

] [
φ̂1

(w
2

)
, . . . , φ̂r

(w
2

)
, φ̂r+1

(w
2

)
, . . . , φ̂r+s

(w
2

)]T
.
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We can see easily that φ1(x), φ2(x), . . . , φr(x), the first r components of the
orthogonal multiscaling function Φnew(x), are old functions generated by P (z);
φr+1(x), φr+2(x), . . . , φr+s(x), the final s components of the orthogonal multi-
scaling function Φnew(x), are new functions that we construct. That is

Φ̂(w) =[φ̂1(w), . . . , φ̂r(w)]T = P (e−iw/2)
[
φ̂1

(w
2

)
, . . . , φ̂r

(w
2

)]T

,

[φ̂r+1(w), . . . , φ̂r+s(w)]T = A(e−iw/2)
[
φ̂1

(w
2

)
, . . . , φ̂r

(w
2

)]T

+B(e−iw/2)
[
φ̂r+1

(w
2

)
, . . . , φ̂r+s

(w
2

)]T
.

According to the above discussion, we have the following construction the-
orem.

Theorem 3. Let Φ(x) = [φ1(x), φ2(x), . . . , φr(x)]T be an orthogonal
multiscaling function, and Ψ(x) be an orthogonal multiwavelet corresponding
to Φ(x), with two-scale matrix symbols P (z) and Q(z), respectively. Under the
condition of Theorem 1 and Theorem 2, there are φr+1, φr+2, . . . , φr+s such that
Φnew(x) = [ΦT (x), φr+1, φr+2, . . . , φr+s]T is an orthogonal multiscaling func-
tion with multiplicity r+ s and its two scale matrix symbol Pnew(z) is given by
(7).

3. Explicit formula for constructing orthogonal multiwavelets

In the above section, we give a method of constructing orthogonal mul-
tiscaling functions. In this section, we will discuss the construction of the
corresponding multiwavelets.

Construct the matrices Qnew(z),M(z) by

(9)




Qnew(z) =
[
XQ(z) Y B(z)
O (1 − a)−

1
2 zkB(−z)∗

]
,

M(z) =
[
Pnew(z) Pnew(−z)
Qnew(z) Qnew(−z)

]
,

where X is r × r matrix, Y is r × s matrix, and k is odd number.
Next we will give an explicit construction formula for orthogonal multi-

wavelets corresponding to Φnew(x).

Theorem 4. Let Φ(x) = [φ1(x), φ2(x), . . . , φr(x)]T be an orthogonal
multiscaling function, and Ψ(x) be an orthogonal multiwavelet corresponding
to Φ(x), with two-scale matrix symbols P (z) and Q(z), respectively, and B(z)
be s × s diagonal matrix satisfying B(z)B(z)∗ + B(−z)B(−z)∗ = (1 − a)Is×s,
where 0 < a < 1. If matrices X,Y satisfy the following conditions:

(10)






h1,1 h1,2 · · · h1,r

h2,1 h2,2 · · · h2,r

· · · · · · · · · · · ·
hs,1 hs,2 · · · hs,r


X∗ + (1 − a)Y ∗ = Os×r,

XX∗ + (1 − a)Y Y ∗ = Ir×r,
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then under the condition of Theorem 1 and Theorem 3, M(z) defined in (9) is a
unitary matrix. Further, suppose that Φnew(x) = [ΦT (x), φr+1(x), φr+2(x), . . . ,
φr+s(x)]T is the orthogonal multiscaling function generated by Pnew(z),
Qnew(z) defined in (9) is an upper triangle matrix. Then orthogonal multi-
wavelet corresponding to Φnew(x) is given, in terms of Fourier transform, by

Ψ̂new(w) = Qnew(e−iw/2)Φ̂new
(w

2

)
.

Proof. According to the wavelet construction theorem, we only need prove
M(z) is a unitary matrix. That is, Pnew(z) and Qnew(z) must satisfy the
following equations:

Pnew(z)Pnew(z)∗ + Pnew(−z)Pnew(−z)∗ = I(r+s)×(r+s),(11)
Pnew(z)Qnew(z)∗ + Pnew(−z)Qnew(−z)∗ = O(r+s)×(r+s),(12)
Qnew(z)Qnew(z)∗ +Qnew(−z)Qnew(−z)∗ = I(r+s)×(r+s).(13)

By Theorem 1, (11) holds. Next, we only need to prove (12) and (13) hold. In
fact,

Pnew(z)Qnew(z)∗ =
[
P (z) 0
A(z) B(z)

] [
Q(z)∗X∗ O

B(z)∗Y ∗ (1 − a)−
1
2 zkB(−z)

]

=
[

P (z)Q(z)∗X∗ O

A(z)Q(z)∗X∗ +B(z)B(z)∗Y ∗ (1 − a)−
1
2 zkB(z)B(−z)

]
.

By [13], we have P (z)Q(z)∗ + P (−z)Q(−z)∗ = Or×r. Hence [P (z)Q(z)∗ +
P (−z)Q(−z)∗]X∗ = Or×r. Using the condition B(z)B(z)∗ + B(−z)B(−z)∗ =
(1 − a)Is×s and Lemma 3, we obtain

[A(z)Q(z)∗ +A(−z)Q(−z)∗]X∗ + [B(z)B(z)∗ +B(−z)B(−z)∗]Y ∗

=



h1,1 h1,2 · · · h1,r

h2,1 h2,2 · · · h2,r

· · · · · · · · · · · ·
hs,1 hs,2 · · · hs,r


X∗ + (1 − a)Y ∗ = Os×r.

Therefore (12) holds. Again

Qnew(z)Qnew(z)∗

=
[
XQ(z) Y B(z)
O (1 − a)−

1
2 zkB(−z)∗

] [
Q(z)∗X∗ O

B(z)∗Y ∗ (1 − a)−
1
2 zkB(−z)

]

=
[
XQ(z)Q(z)∗X∗ + Y B(z)B(z)∗Y ∗ (1 − a)−

1
2 zkY B(z)B(−z)

(1 − a)−
1
2 zkB(−z)∗B(z)∗Y ∗ (1 − a)−1zkzkB(−z)∗B(−z)

]
.

By (10), we have Qnew(z)Qnew(z)∗ +Qnew(−z)Qnew(−z)∗

=
[
XX∗ + (1 − a)Y Y ∗ O

O (1 − a)−1[B(z)∗B(z) +B(−z)∗B(−z)]
]

=
[
Ir×r O
O Is×s

]
= I(r+s)×(r+s),
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which implies that M(z) is a unitary matrix. This completes the proof of
Theorem 4.

Next, we will discuss a special setting: r = s. Similar to Theorem 3, we
also have the following corollary.

Corollary 1. Let Φ(x) = [φ1(x), φ2(x), . . . , φr(x)]T be an orthogonal
multiscaling function, and Ψ(x) be an orthogonal multiwavelet corresponding
to Φ(x), with two scale matrix symbols P (z) and Q(z), respectively, and B(z)
be r × r matrix, satisfying B(z)B(z)∗ + B(−z)B(−z)∗ = (1 − a)Ir×r, where
0 < a < 1. Suppose that H is any unitary matrix. Define

(14) P#(z) =
[

P (z) O√
aHQ(z) B(z)

]
.

Then there are φr+1(x), . . . , φ2r(x) such that Φ#(x) = [ΦT (x), φr+1(x),
φr+2(x), . . . , φ2r(x)]T is an orthogonal multiscaling function with multiplicity
2r and its two scale matrix symbol P#(z) is given by (14).

To give an explicit formula of constructing an orthogonal multiwavelet
corresponding to Φ#(x), we suppose that matrix B(z) satisfies B(z)B(−z) =
B(−z)B(z). Extraordinarily, we suppose that B(z) is r × r diagonal matrix.

Corollary 2. Suppose that B(z) is r × r diagonal matrix, satisfying

B(z)B(z)∗ +B(−z)B(−z)∗ = (1 − a)Ir×r, 0 < a < 1.

Let k be an odd number. Define

(15) Q#(z) =



√

1 − aQ(z) −
√

a
1−aH

∗B(z)

O
√

1
1−az

kB(−z)∗


 .

Then under the condition of Corollary 1, the orthogonal multiwavelet Ψ#(x)
corresponding to Φ#(x) is given, in terms of Fourier transform, by

(16) Ψ̂#(w) = Q#(e−iw/2)Φ̂#
(w

2

)
.

Proof. It is easy to verify that
[
P#(z) P#(−z)
Q#(z) Q#(−z)

]
is a unitary matrix.

Hence, according to the wavelet construction theorem, we are able to define
the orthogonal multiwavelet Ψ#(x) by (16).

4. Approximation order

One of the properties of a multiscaling function which has great practical
interest is the approximation order. A multiscaling function Φ(x) has approxi-
mation order m ≥ 1 if all powers of x up tom−1 can be locally written as linear
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combinations of its integer translates. Namely, there exist vectors y(j)
k ∈ Rr

such that for j = 0, 1, . . . ,m− 1

xj =
∑

k

[y(j)
k ]∗Φ(x− k).

Equivalently, a multiscaling functions Φ(x) has approximation order m ≥ 1 if
m is the largest integer for which there is a set of row vectors {u�}m−1

�=0 ⊂ R1×r,
with u0 �= O1×r that satisfy

�∑
k=0

(
�

k

)
(−i)�−k2kukD�−kP

(
e−πhi

)
= δ0,hu�,

for � = 0, 1, . . . ,m − 1 and h = 0, 1. D denotes the differentiation operator.
See [16], [19] and [21] for details. As is known, if a multiscaling function has
approximation order m, this implies that the corresponding multiwavelet has
m vanishing moments.

In this section, we discuss the approximation orders of new orthogonal
multiscaling functions constructed in Section 2.

Let

(17) bu(z) =
∑
j∈Z

buj z
j =

1
2m−1

(
1 + z

2

)nu

hu(z), u = 1, 2, . . . , s,

where z = e−iw, nu are positive integers, hu(z) are trigonometric polynomials
satisfying hu(1) = 1.

Define s× s diagonal matrix B(z) by

(18) B(z) = diag[b1(z), b2(z), . . . , bs(z)].

Then we have the following lemma.

Lemma 4. Let bu(z) be trigonometric polynomials defined in (7) and
buj be the corresponding coefficients. Then

2m
∑
j∈Z

bu2j = 2m
∑
j∈Z

bu2j+1 = 1, u = 1, 2, . . . , s,

∑
j∈Z

(2j)kbu2j =
∑
j∈Z

(2j + 1)kbu2j+1, k = 1, 2, . . . , nu − 1.

Further, suppose that B(z) =
∑
j∈Z

Bjz
j, and L = min{n1, n2, . . . , ns}. Then

∑
j∈Z

(2j)kB2j =
∑
j∈Z

(2j + 1)kB2j+1, k = 1, 2, . . . , L.

Lemma 5. If all bu(z), u = 1, 2, . . . , s satisfy |bu(z)|2 + |bu(−z)|2 =
1

22m−2 , then

(19) B(z)B(z)∗ +B(−z)B(−z)∗ =
[
1 − 22m−2 − 1

22m−2

]
Is×s.
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Theorem 5. Let Φ(x) = [φ1(x), φ2(x), . . . , φr(x)]T be an orthogonal
multiscaling function, Ψ(x) be the corresponding orthogonal multiwavelet, with
two-scale matrix symbols P (z), Q(z) and approximation orders m, respectively.
Suppose that B(z) given by (18) satisfies (19), and A(z) defined in (6) satis-
fies A(z)A(z)∗ + A(−z)A(−z)∗ = 22m−2−1

22m−2 . Then the two scale matrix symbol
Pnew(z) given by (7) can generate a new orthogonal multiscaling functions
Φnew(x) = [ΦT (x), φr+1(x), . . . , φr+s(x)]T with approximation order m+ L.

Proof. By Theorem 3, Pnew(z) can generate a new orthogonal multiscal-
ing function Φnew(x). Next, we will prove that this new orthogonal multiscaling
function has approximation order m+ L.

Since the approximation order of Φ(x) is m, there are a� ∈ Rr, � =
0, 1, . . . ,m− 1, with a0 �= O1×r, such that

a�


∑

j∈Z

P2j − 1
2�
Ir×r


 = −

�−1∑
k=0

(−1)�−k 1
2�−k

(
�

k

)
ak
∑
j∈Z

(2j)�−kP2j ,(20)

a�


∑

j∈Z

P2j+1 − 1
2�
Ir×r


 = −

�−1∑
k=0

(−1)�−k 1
2�−k

(
�

k

)
ak
∑
j∈Z

(2j + 1)�−kP2j+1.

(21)

Next, we will prove the approximation order of Φnew(x) is m + L. That
is, we will find a set of row vectors w� ∈ Rr+s, � = 0, 1, . . . ,m + L − 1, with
w0 �= O1×(r+s) such that

w�





∑
j∈Z

P2j Or×s∑
j∈Z

A2j

∑
j∈Z

B2j


− 1

2�
I(r+s)×(r+s)




= −
�−1∑
k=0

(−1)�−k

2�−k

(
�

k

)
wk



∑
j∈Z

(2j)�−kP2j Or×s∑
j∈Z

(2j)�−kA2j

∑
j∈Z

(2j)�−kB2j


 ,

(22)

w�





∑
j∈Z

P2j+1 Or×s∑
j∈Z

A2j+1

∑
j∈Z

B2j+1


− 1

2�
I(r+s)×(r+s)




= −
�−1∑
k=0

(−1)�−k

2�−k

(
�

k

)
wk



∑
j∈Z

(2j + 1)�−kP2j+1 Or×s∑
j∈Z

(2j + 1)�−kA2j+1

∑
j∈Z

(2j + 1)�−kB2j+1.


 .

(23)

It is clear that w� = [a�, 0, 0, . . . , 0] ∈ Rr+s, � = 0, 1, . . . ,m − 1, satisfy (22)
and (23). Hence we choose w� = [a�, 0, 0, . . . , 0] ∈ Rr+s, � = 0, 1, . . . ,m − 1, is
the first m vectors in (22) and (23). The rest L row vectors are denoted by
wm+� = [am+�, c1m+�, c

2
m+�, . . . , c

s
m+�], � = 0, 1, . . . , L− 1. Obviously, wm must
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satisfy
s∑

j=1

|cjm| �= 0. In fact, if all cjm = 0, then wm = [am, 0, 0, . . . , 0]. This

means that the approximation order of Φ(x) is m + 1. If we use the notation
w� = [a�, c1� , c

2
� , . . . , c

s
� ], then cj� = 0 for j = 1, 2, . . . , s; � = 0, 1, . . . ,m−1. Hence

(22) is equivalent to

a�


∑

j∈Z

P2j − 1
2�
Ir×r


+ [c1� , c

2
� , . . . , c

s
� ]
∑
j∈Z

A2j

= −
�−1∑
k=0

(−1)�−k

2�−k

(
�

k

)ak
∑
j∈Z

(2j)�−kP2j + [c1k, c
2
k, . . . , c

s
k]
∑
j∈Z

(2j)�−kA2j


 ,

(24)

[c1� , c
2
� , . . . , c

s
� ]


∑

j∈Z

B2j − 1
2�
Is×s




= −
�−1∑
k=0

(−1)�−k

2�−k

(
�

k

)
[c1k, c

2
k, . . . , c

s
k]
∑
j∈Z

(2j)�−kB2j .

(25)

Since cj� = 0 for j = 1, 2, . . . , s; � = 0, 1, . . . ,m − 1, then (25) becomes the
following two identities

[c1m, c
2
m, . . . , c

s
m]


∑

j∈Z

B2j − 1
2m

Is×s


 = Os×s,(26)

[c1m+�, c
2
m+�, . . . , c

s
m+�]


∑

j∈Z

B2j − 1
2m+�

Is×s




= −
�−1∑
k=0

(−1)�−k

2�−k

(
m+ �

�− k

)
[c1m+k, c

2
m+k, . . . , c

s
m+k]

∑
j∈Z

(2j)�−kB2j ,

� = 1, 2, . . . , L− 1.

(27)

By Lemma 4,
∑
j∈Z

B2j = 1
2m Is×s. Hence

∑
j∈Z

B2j − 1
2m+� Is×s = 2�−1

2m+� Is×s.

Therefore

[c1m+�, c
2
m+�, . . . , c

s
m+�]

= − 2m

2� − 1

�−1∑
k=0

(−1)�−k2k

(
m+ �

�− k

)
[c1m+k, c

2
m+k, . . . , c

s
m+k]

∑
j∈Z

(2j)�−kB2j ,

� = 1, 2, . . . , L− 1.

(28)
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Similarly, applying (23), we have

[c1m, c
2
m, . . . , c

s
m]


∑

j∈Z

B2j+1 − 1
2m

Is×s


 = Os×s,(29)

[c1m+�, c
2
m+�, . . . , c

s
m+�]


∑

j∈Z

B2j+1 − 1
2m+�

Is×s




= −
�−1∑
k=0

(−1)�−k

2�−k

(
m+ �

�− k

)
[c1m+k, c

2
m+k, . . . , c

s
m+k]

∑
j∈Z

(2j + 1)�−kB2j+1,

� = 1, 2, . . . , L− 1.

(30)

Hence, we have

[c1m+�, c
2
m+�, . . . , c

s
m+�]

= − 2m

2� − 1

�−1∑
k=0

(−1)�−k2k

(
m+ �

�− k

)
[c1m+k, c

2
m+k, . . . , c

s
m+k]

∑
j∈Z

(2j + 1)�−kB2j+1,

� = 1, 2, . . . , L− 1.

(31)

By (28) or (31), taking any [c1m, c
2
m, . . . , c

s
m] �= O1×s, we can obtain [c1m+�,

c2m+�, . . . , c
s
m+�], � = 1, 2, . . . , L − 1. And then applying (24), we can obtain

am+�. This means that the rest L− 1 row vectors wm+� = [am+�, c1m+�, c
2
m+�,

. . . , csm+�], � = 1, 2, . . . , L−1 are obtained. Thereby, we prove that Φnew(x) has
approximation order m+ L. This completes the proof of Theorem 5.

Remark 3. Lemma 4 can guarantee that vectors [c1m+�, c
2
m+�, . . . ,

csm+�], � = 1, 2, . . . , L− 1 obtained by (28) and (31) are the same.

5. Example

We will illustrate by an example how to construct orthogonal multiwaveltet
with higher approximation order in terms of any given orthogonal uniwavelet
or multiwavelet based on our method.

Example. Let Φ(x) = (φ1, φ2)T , suppΦ(x) ⊂ [0, 2], be an orthogonal
multiscaling function, satisfying the following equation [25]:

Φ(x) = P0Φ(2x) + P1Φ(2x− 1) + P2Φ(2x− 2),

where

P0 =

[
0 2+

√
7

4

0 2−√
7

4

]
, P1 =

[
3
4

1
4

1
4

3
4

]
, P2 =

[
2−√

7
4 0

2+
√

7
4 0

]
.
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The corresponding orthogonal multiwavelet Ψ(x) satisfies the following equa-
tion

Ψ(x) = Q0Φ(2x) +Q1Φ(2x− 1) +Q2Φ(2x− 2),

where

Q0 =

[
0 3

4

0 1
4

]
, Q1 =

[
− 2+

√
7

4 −2−√
7

4

−2−√
7

4 −2+
√

7
4

]
, Q2 =

[
1
4 0
3
4 0

]
.

Hence,

P (z) =
1
2

[
3
4z + 2−√

7
4 z2 2+

√
7

4 + 1
4z

1
4z + 2+

√
7

4 z2 2−√
7

4 + 3
4z

]
,

Q(z) =
1
2

[
− 2+

√
7

4 z + 1
4z

2 3
4 − 2−√

7
4 z

−2−√
7

4 z + 3
4z

2 1
4 − 2+

√
7

4 z

]
.

Take B(z) = 1
2

[
1+z
2

]2 (1+
√

3)+(1−√
3)z

2 , A(z) =
√

3
2 Q

2(z) = 1
4 [−2−√

7
4 z+ 3

4z
2, 1

4−
2+

√
7

4 z]. It is easy to verify that A(z)A(z)∗ + A(−z)A(−z)∗ = 3
4 , B(z)B(z)∗ +

B(−z)B(−z)∗ = 1 − 3
4 . Hence, a = 3

4 . By (7), we obtain

(32) Pnew(z) =




3
8z + 2−√

7
8 z2 2+

√
7

8 + 1
8z 0

1
8z + 2+

√
7

8 z2 2−√
7

8 + 3
8z 0

− 2−√
7

16 z + 3
16z

2 1
16 − 2+

√
7

16 z 1
2

[
1+z
2

]2 (1+
√

3)+(1−√
3)z

2


 .

Again applying Theorem 3, we obtain a new orthogonal multiscaling function
Φnew(x) = [φ1(x), φ2(x), φ3(x)]T , with two scale matrix symbol Pnew(z) given
by (32). By Lemm 2.2 from [13], we get suppΦnew(x) ⊂ [0, 3].

Let X =
[
0 1

2
1 0

]
, Y = [−√

3, 0]T . It is easy to verify that matrices X,Y

satisfy (10). Thus, by (9), and taking k = 3, we construct the matrix Qnew(z)
by Qnew(z) =

(33)2
664
− 2

√
3−√

21
16

z + 3
√

3
16

z2
√

3
16

− 2
√

3+
√

21
16

z − 1+
√

3
12

− 3+
√

3
12

z − 3−√
3

12
z2 − 1−√

3
12

z3

− 2+
√

7
8

z + 3
8
z2 1

8
− 2−√

7
8

z 0

0 0 z3
ˆ

1−z
2

˜2 (1+
√

3)−(1−√
3)z

2

3
775 .

Hence, applying Theorem 4, an orthogonal multiwavelet Ψnew(x) = [ψ1(x),
ψ2(x), ψ3(x)]T corresponding to Φnew(x) can be constructed by two scale ma-
trix symbol Qnew(z) defined in (18).

Further, by Theorem 5, the approximation order of the new orthogonal
multiscaling function Φnew(x) which we constructed is 4. That is, we raise the
approximation order of Φ(x) from 2 to 4.
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