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Abstract
We consider a fourth-order nonlinear parabolic type equation on a two-

dimensional bounded domain�. This equation governs the evolution of the height
profile of a thin film in an epitaxial growth process. We show that such equation
endowed with no-flux boundary conditions generates a dissipative dynamical system
under very general assumptions on�� on a phase-space ofL2-type. This system
possesses a global as well as an exponential attractor. In addition, if �� is smooth
enough, we show that every trajectory converges to a single equilibrium by means
of a suitable Łojasiewicz–Simon inequality. An estimate ofthe convergence rate is
also obtained.

1. Introduction

A well-known and relatively simple model to describe the epitaxial growth process
leads to the formulation of the following fourth-order nonlinear equation

(1.1) �tuC12u D ��r � � ru

1C jruj2
�

in � � (0,1),

in a two-dimensional bounded domain�, � being a (positive) constant called surface
roughening coefficient. Hereu denotes the height profile, measured in a co-moving
frame, of a thin film in epitaxial growth. The biharmonic operator accounts for the
surface diffusion (the diffusion coefficient has been set equal to one), while the diver-
gence type term was firstly proposed in [9] to model the behavior of adatoms (i.e.,
adsorbed atoms). We refer the reader to [12] and references therein for further de-
tails on equation (1.1) as well as for an analysis of its qualitative properties (see also
[11, 15]). We also mention that a similar equation where the divergence type term has a
rather general form has been considered in [10] (cf. also references therein). However,
the present nonlinearity does not satisfy the coercivity assumption [10, (H2b)] which
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is needed to prove the existence of a weak solution. Thus the present equation is not
a particular case of the one studied in [10].

More recently, equation (1.1) has been investigate within the theory of dissipative
dynamical systems in a series of papers [5, 6, 7] where further references on (1.1) can
also be found. More precisely, the authors have considered the equation subject to the
initial condition

(1.2) u(0)D u0 in �,

and to the boundary conditions

(1.3) �nu D �n1u D 0 on �� � (0,1),

where�n stands for the (outward) normal derivative to��. In [5] well-posedness and
regularity results for (1.1)–(1.3) have been established (see also [11, Section 3] for the
periodic case). Such results lead to the definition of a suitable dynamical system which
possesses the global attractor. Existence of exponential attractors and the analysis of!-limit sets have been the subject of [6]. Then, in [7], the stability properties of the
null solution with respect to� has been analyzed in order to find a lower bound for
the dimension of the global attractor. All these results have been obtained by assuming�� of classC4 and working with rather smooth solutions. However, from thephysical
viewpoint, �� can be nonsmooth (for instance, a polygon). Thus it seems necessary
to extend the analysis of the longterm behavior to more general spatial domains and to
weaker solutions. This is our first goal, namely, to provide arather general and simple
proof of the existence of a global and an exponential attractor which allows to take
nonsmooth��. In addition, we show that each solution converges to a single station-
ary state, provided that�� is smooth enough. This is done by means of a suitable
version of the Łojasiewicz–Simon inequality. An estimate of the convergence rate is
also obtained.

2. The dynamical system inL2(�)

Let H be the (real) Hilbert spaceL2(�) endowed with the usual scalar producth � , � i and the related normk � k. Then, we consider the Hilbert tripletV D H1(�) ,!
H � H� ,! V� and we consider�1 W W ! H where

(2.1) W D {w 2 V W �nw D 0, 1w 2 H}

endowed with the graph norm (kwk2 C k1wk2)1=2. We recall thatW ,! H3=2��(�)
for all � 2 (0, 1=2), when�� is only Lipschitz (see [14, Theorem 4]). Otherwise, if� is a polygonal domain, then we haveW ,! H3=2(�). Moreover, if �� is of class
C1,1, then W ,! H2(�). Here and by, for the sake of convenience, we replacek � kX2

with the shorter notationk � kX, for any spaceX2 D X � X, X being a Banach space.
Besidesh � , � iX�,X denotes the duality coupling.
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Let u0 2 H . Our definition of weak solution to is the following (cf. also[11,
Definition 3.1])

DEFINITION 2.1. A functionu 2 C([0,1)I H )\ L2
loc((0,C1)IW) is a weak so-

lution to (1.1)–(1.3) if

h�tw, ziW�,W C h1w, 1zi D �h(1C jruj2)�1ru, rzi,
8z 2 W, a.e. in (0,1),

(2.2)

u(0)D u0, a.e. in�.(2.3)

As a consequence, the total mass ofu(t) is conserved, that is,

(2.4) hu(t), 1i D hu0, 1i, 8t � 0.

We first prove the following continuous dependence estimate(compare with [5,
Proposition 4.3])

Theorem 2.2. Let u0, v0 2 H and denote by u andv the corresponding weak
solutions to problem(1.1)–(1.3). Then, for any time T> 0, there exists a positive con-
stant C, also depending on� and �, such that the following continuous dependence
estimate holds

(2.5) k(u � v)(t)k2 C Z t

0
k1(u � v)(� )k2

H d� � CeCTku0 � v0k2,

for any t 2 [0, T ].

Proof. Setw D u � v and observe that (cf. (2.2))

(2.6) h�tw, ziW�,W C h1w, 1zi D �hF (u, v, w), rzi, 8z 2 W, a.e. in (0,1),

where

(2.7) F (u, v, w) D rw � (rw � ru)ru � (rw � rv)ru � jruj2rw
(1C jruj2)(1C jrvj2)

.

Taking w(t) as test function, we get

1

2

d

dt
kwk2 C k1wk2 D �hF (u, v, w), rwi.

It is immediate to realize that

(2.8) kF (u, v, w)k2 � Z�
1C 4jruj4 C 4jrvj4

(1C jruj2)2(1C jrvj2)2
jrwj2 d� � ckrwk2,
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since the function (x, y) 7! (1C 4x4 C 4y4)(1C x2)�2(1C y2)�2 is globally bounded.
Therefore, from (2.6), we deduce

(2.9)
d

dt
kwk2 C k1wk2 � krwk2 � 1

2
k1wk2 C ckwk2,

for some c > 0 depending on� and �. The thesis follows from the standard
Gronwall lemma.

It is now standard to prove the existence of a weak solution. This can be done
through a Galerkin scheme (see, e.g., [11]). From now the useof such an approxima-
tion scheme will be tacitly assumed.

Then we can summarize the consequences of Theorem 2.2 with the following

Theorem 2.3. Problem(1.1)–(1.3) generates a strongly continuous semigroup S(t)
on the phase-space H.

Property (2.4) lead us to define, for all� � 0, the bounded-average (complete met-
ric) spaces

H� D {u 2 H W jhu, 1ij � �}, V� D V \ H�, W� D W \ H�.

Accordingly, from now on we setOu D u � hu, 1i (H0-projection of u 2 H ). On ac-
count of (1.3), we haveu(t) D S(t)u0 2 H� for all times t > 0, if u0 2 H�, i.e., the
metric spaceH� is invariant under the action ofS(t). Moreover, the dynamical system
(H�, S(t)) is dissipative. Indeed, recalling the proof of [5, Corollary 4.1], we have

Theorem 2.4. Let u0 2 H�. Then, for all R > 0 there exists positive constants
C0 and �0, depending on�, j�j and � but independent of R, such that

(2.10) supku0k�R
ku(t)k2 � C0(e��0tku0k2 C 1),

and

(2.11) supku0k�R

Z tC1

t
k1u(� )k2 d� � C0,

for all t � 0.

Therefore the semigroupS(t) can be restricted to adissipativesemigroup on the
phase-spaceH�. In addition, we have
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Theorem 2.5. Let BR0 � H� be a bounded absorbing set for the dynamical sys-
tem (H�, S(t)). Then, there exists t1 D t1(R0) > 1 and C1 D C1(R0) > 0 such that

(2.12) ku(t)kV � C1, 8t � t1.

Therefore, (H�, S(t)) has a global attractorA� bounded in V�. Moreover, there holds

(2.13)
Z tC1

t
kr1u(� )k2 d� � C1,

for all t � t1.

Proof. Take�1u(t) as a test function in the weak formulation of (1.1). This yields,

1

2

d

dt
kruk2 C kr1uk2 D ��� ru

1C jruj2 , r1u

�
.

Therefore, we infer

(2.14)
d

dt
kruk2 C kr1uk2 � ckruk2.

Recalling (2.11), thanks to the uniform Gronwall lemma, we find t1 D t1(R0) andC0 D
C0(R0) such that (2.12) holds. Then we integrate (2.14) fromt to t C 1 for t � t1 and
we deduce (2.13). The existence of the global attractor is a straightforward consequence
of (2.12).

It is also easy to prove the so-called smoothing property (see [3])

Theorem 2.6. For every u0, v0 2 BR0, there exists t2 D t2(R0) > 1 and C2 D
C2(R0) > 0 such that the following estimate holds

(2.15) kS(t)u0 � S(t)v0kV � C2ku0 � v0k,
for any t� t2.

Proof. Take�1w(t) as test function in (2.6). This yields

1

2

d

dt
krwk2 C kr1wk2 D ��hF (u, v, w), r1wi.

By the Young inequality and (2.8), we deduce

(2.16)
d

dt
krwk2 � ckrwk2,
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for somec> 0 depending only on� and�. The assertion is then achieved by invoking
the uniform Gronwall lemma and (2.5).

In order to establish the existence of an exponential attractor, we also need to es-
tablish the Hölder continuity of (t, u0) 7! S(t)u0. This follows from (2.5) and

Lemma 2.7. Let BR0 � H� be a bounded absorbing set for the dynamical system
(H�, S(t)). Then, there exists C2 D C2(R0) > 0 such that

(2.17) kS(t)u0 � S(Qt )u0k � C2jt � Qt j1=4,

for all t , Qt 2 [t1, t1 C 1], t1 being given byTheorem 2.5,

Proof. Observe first that, on account of (2.11) and (2.13), wehave

(2.18)
Z tC1

t
k�tu(� )k2

V� d� � C(R0),

for all t � t1. Therefore, for allt, Qt 2 [t1, t1 C 1] such thatQt � t there holds

ku(Qt ) � u(t)k2 � Cku(Qt ) � u(t)kV ku(Qt ) � u(t)kV�
� C(R0)

Z Qt
t
k�tu(� )kV� d� � C(R0)kQt � tk1=2,

whence the thesis.

Collecting the above results, on account of [3], we deduce

Theorem 2.8. (H�, S(t)) possesses an exponential attractorE� bounded in V�.
As a consequence, A� has finite fractal dimension.

REMARK 2.9. Note that the eigenfunctions used in a Galerkin scheme need only
to belong toW (see (2.1)).

3. The dynamical system inH1(�)

We recall that (see (2.12)–(2.13), cf. also [5, Corollary 4.1])

Theorem 3.1. Let u0 2 V�. Then, for all R > 0 there exists positive constants C3

and �1, depending on�, j�j and � but independent of R, such that

supku0kV��ku(t)k2
V � C3(e��1tku0k2

V C 1),
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and

supku0kV�R

Z tC1

t
kr1u(� )k2 d� � C3,

for all t � 0.

On the other hand, we have

Theorem 3.2. For every u0, v0 2 V there exists a positive constant C, depending
on � and �, such that, denoting by u, v the respective solutions to(1.1)–(1.3), the
following continuous dependence estimate holds

(3.1) k(u � v)(t)k2
V C

Z t

0
k1[(u � v)(� )]k2

V d� � CeCTku0 � v0k2
V ,

for any t 2 [0, T ], T > 0.

Proof. Setw D u � v and take (w �1w)(t) as test function in (2.6). We get

(3.2)
1

2

d

dt
[kwk2 C krwk2] C k1wk2 C kr1wk2 D �hF (u, v, w), rw � r1wi.

By the Young inequality, we infer

�hF (u, v, w), rw � r1wi � �2jF (u, v, w)j2 C krwk2 C 1

2
kr1wk2.

On the other hand (cf. (2.8)),

(3.3) kF (u, v, w)k2 � Z�
1C 4jruj4 C 4jrvj4

(1C jruj2)2(1C jrvj2)2
jrwj2 d� � ckwk2

V .

Therefore, from (3.2) and (3.3) we deduce

d

dt
kwk2

V C k1wk2
V � ckwk2

V ,

and the thesis follows from the standard Gronwall lemma.

As a consequence, the semigroupS(t) restricted to V� is strongly continuous
and dissipative.

The existence of a (compact) absorbing set is given by
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Theorem 3.3. Let BR1 � V� be a bounded absorbing set for(V�, S(t)). Then,
there exists t2 D t2(R1) > 1 and C4 D C4(R1) > 0 such that

(3.4) ku(t)kW � C4.

Moreover, there holds

(3.5)
Z tC1

t
k12u(� )k2 d� � C4,

for all t � t2.

Proof. Let us take12u(t) as a test function in (2.6). Thus, we get

(3.6)
1

2

d

dt
k1uk2 C k12uk2 D ���r � � ru

1C jruj2
�

, 12u

�
.

Observe that

r � � ru

1C jruj2
� D 1u

1C jruj2 � 2
(Hessuru) � ru

(1C jruj2)2
,

where Hessu denotes the hessian matrix ofu. Then, we have

��r � � ru

1C jruj2
�

, 12u

�

� �2

2

Z
�
� j1uj2

(1C jruj2)2
C 2

jHessuj2 jruj4
(1C jruj2)4

�
d�C 1

2
k12uk2

� �2

2
k1uk2 C �2kHessuk2 C 1

2
k12uk2,

since the functionsx 7! (1C x2)�2 and x 7! x4(1C x2)�4 are globally bounded. There-
fore, we infer from (3.6) that

d

dt
k1uk2 C k12uk2 � c(1C kuk2

W).

Recalling (2.10) and exploiting the uniform Gronwall lemma, we obtain (3.4). Bound
(3.5) can be easily deduced by integrating both members of the differential inequality
above on (t, t C 1), for t � t2, and using the uniform bound onkukW.

On account of the above results, we have

Corollary 3.4. The global attractorA� of (H�, S(t)) is bounded in W� and attracts
any bounded set in V� in the V -metric.



LONGTIME BEHAVIOR FOR EPITAXIAL GROWTH 995

REMARK 3.5. For instance, if� is a polygonal domain, thenA� is bounded in
H3=2(�). Instead, if�� is of classC1,1, then A� is bounded inH2(�). Note that,
thanks to Theorem 3.3, we can also construct an exponential attractor E� which is
bounded inW�. Also, we can prove thatE� attracts any bounded set inV� in the
V-metric andA� has finite fractal dimension in theV-metric. In [5] further regularity
results of invariant sets are proven under stronger assumptions on��.

4. Convergence to equilibrium

In this section we shall prove the convergence to equilibrium of single trajectories.
Let us set

Z D {u 2 H3(�) W �nu D 0 a.e. on��},

endowed with its (natural) norm

k � k2
Z D k � k2

W C kr1 � k2.

We also defineZ� D Z \ H�. By using the techniques described above (see also [5])
it is not difficult to prove the following

Proposition 4.1. Let �� be of class C2,1. For every u0 2 H�, we have

[
t�1

{S(t)u0} � Z�.

Consider now the setS� of all steady states of problem (1.1)–(1.3) with average
bounded by�, namely anyu1 2 Z� such that

(4.1) hr1u1 C �(1C jru1j2)�1ru1, rzi D 0, 8z 2 V�.

REMARK 4.2. To the best of our knowledge it is not clear whether the set of the
nonconstant stationary states is a continuum. However, it has been proven that there are
(at least) infinitely many equilibria in the case of periodicboundary conditions (see [12,
Section 4]).

The main result of this section is

Theorem 4.3. Let �� be of class C2,1. For every u0 2 H� there exists u1 2 S�
such that

(4.2) u(t) D S(t)u0 ! u1 in H2(�),
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as t!1. Moreover, there exists t1 > 0 and a positive constantNc such that

(4.3) ku(t) � u1kW � Nc(1C t)�#=(2(1�2#)), 8t � t1,

# 2 (0, 1=2) being the same constant as in the Łojasiewicz–Simon inequality (see
Lemma 4.4).

The key tool to prove this result is to use a suitable Łojasiewicz–Simon inequality
(see, e.g., [8] and references therein). To state it, we consider the functional

E(u) D 1

2
k1uk2 � �

2

Z
� ln(1C jruj2) d�,

defined for allu 2 Z. Clearly E 2 C2(W), with

E0(u) D 12uC �r � � ru

1C jruj2
� W W ! W�,

and

E00(u)v D 12v C �r � � (1C jruj)2rv � 2(ru � rv)ru

1C jruj2
�
, v 2 W.

Here and below prime denotes the Fréchet derivative. The restriction of E to Z satisfies
the following basic property

Lemma 4.4. The functional EW Z ! R is real analytic.

Then, the inequality we need reads

Lemma 4.5. Let u1 2 Z� be a solution to the stationary equation(4.1). Then there
exists� 2 (0, 1=2], C > 0 and� > 0 such that, for all u 2 Z� satisfyingku� u1kZ � � ,
there holds

(4.4) jE(u) � E(u1)j1�� � C





12uC �r � � ru

1C jruj2
�





Z�
0

.

Proofs of Lemmas 4.4 and 4.5 are given in Appendix. Let us recall some basic
facts before proceeding to the proof of Theorem 4.3.

For all u 2 H�, we define the!-limit as

!(u0) D {u1 2 Z� W 9tn !1 as n !1, s.t. S(tn)u0 ! u1 in W}.

First notice that, by multiplying equation (1.1) by�tu in H , we have

(4.5)
d

dt
E(u) D �k�tuk2.
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Note that this can be done whenu0 2 W since equation (1.1) holds almost everywhere
(see Theorem 3.3). Therefore, we deduce the following

Proposition 4.6. The functional E is a Lyapunov functional for(W, S(t)).

Consequently, standard results (cf. [1, Theorems 9.2.3 and9.2.7]) entail that

Lemma 4.7. For any u0 2 H�, the set!(u0) is nonempty, compact, invariant and
connected in W and the following inclusion holds!(u0) � S�. Moreover, E is constant
on !(u0).

Proof of Theorem 4.3. In the course of the proof, the following result (see [4,
Lemma 7.1]) will play a fundamental role

Lemma 4.8. Let 8 2 L2(0,1), with k8kL2(0,1) � b, and suppose that there exist
a 2 (1, 2), c > 0 and an open setP � (0,1) such that�Z 1

t
82(� ) d��a � c82(t), for a.e. t2 P.

Then8 2 L1(P) and there exists a constant CD C(a,b,c), independent ofP, such thatZ
P

8(� ) d� � C.

Integrating equation (4.5) on (t, 1), we deduceZ 1
t
k�tu(� )k2 d� D E(u(t)) � E(u1),

for someu1 2 S�. Setting now

P D {t 2 (0,1) W ku(t) � u1kV < !},

Lemma 4.4 yields

(4.6)

jE(u(t)) � E(u1)j � C





12uC �r � � ru

1C jruj2
�





1=(1�#)

Z�
0

� c





12uC �r � � ru

1C jruj2
�





1=(1�#)

.

Therefore, thanks to equation (1.1), we haveZ 1
t
k�tu(� )k2 d� � ck�tuk2=(2�2#).
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Since 2� 2� 2 (1, 2), we can apply Lemma 4.8 to the function8(t) D k�tu(t)k, and
conclude that Z

P

k�tu(t)k dt <1.

Thus, for anyt1, t2 2 P, with t1 < t2, we have

(4.7) ku(t2) � u(t1)k � Z t2

t1

k�tu(t)k dt < r

4
,

provided thatt1 is large enough and the whole interval (t1, t2) lies in P. Observing that
u1 2 S�, and recalling Proposition 4.1, we can then chooset0 > 0 such that

(4.8) ku(t0) � u1k < r

4

and, consequently, [t0, 1) � P. Set now

T0 D inf{t > t0 W ku(t) � u1k � r }I
clearly we haveT0 > t0. If we assume thatT0 <1, we also infer

ku(T0) � u1k D r .

On the other hand, as a consequence of (4.7) and (4.8),

ku(t) � u1k � ku(t) � u(t0)k C ku(t0) � u1k < r

2
,

for all t 2 [t0, T0), which, by contradiction, impliesT0 D1 and, therefore,

u(t) ! u1 in H,

as t !1. The thesis then follows by Proposition 4.1.
It remains to prove inequality (4.3). Let us establish first the inequality inH . Set

2(t) D E(u(t)) � E(u1), 8t 2 (0,1).

Since the mapt 7! E(u(t)) is monotone nonincreasing,2(t) � 0 for all t 2 [0, 1).
Observe that, by means of the convergence result (4.2), combining (4.5) with (4.6),
we get

d

dt
2(t)C c[2(t)]1�# � 0, 8t � t1,

for somet1 > 0, # 2 (0, 1=2) being as in Theorem 4.4. This yields

(4.9) 2(t) � c(1C t)�1=(2(1�2�)), 8t � t1.
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On the other hand, we observe that

[2(t)]1�# � ck�tu(t)k, 8t � t1,

and
d

dt
[2(t)]# D # [2(t)]�1C# d

dt
2(t) � 0, 8t � t1.

Therefore, for anyt � t1, we get

k�tu(t)k � �c
d

dt
[2(t)]# .

Thus, integrating the above inequality fromt to 1, we obtain

Z 1
t
k�tu(� )k2 d� � c[2(t)]# , 8t � t1,

and, on account of (4.9), we immediately infer

Z 1
t
k�tu(� )k d� � c(1C t)��=(2(1�2�)), 8t � t1.

Hence, the order estimate has been obtained inH using

u(t) � u1 D � Z 1
t

�tu(� ) d� in H .

In order to achieve the result inV (without any loss in the decay rate), we come back
to inequality (2.14), having set

w(t) D u(t) � v(t) D S(t)u0 � u1.

On account of (2.4), we havew(t) 2 V0 for all t � 0. Thus, invoking the usual Poincaré
inequality, it is immediate to deduce

�kwk2
V � k1wk2

V ,

for some suitable constant�. Therefore, by interpolation, it is easy to get

kwk2
V � kwkkwkW D kwk(kwk C k1wk) � 1

2
k1wk2

V C ckwk2,

so that (2.14) yields

d

dt
ku � u1k2

V C �
2
ku � u1k2

V � cku � u1k2.
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Then, the Gronwall lemma yields (4.3) in theV-norm. The last step is obtained by
multiplying equation (1.1) by12u(t). This gives, for somec1, c2 > 0,

(4.10)
d

dt
k1uk2 C c1k12uk2 � c2kruk2,

and we conclude by the Gronwall lemma combined with the obtained rate control in
V-norm.

5. Appendix

Proof of Lemma 4.4. We recall that, ifX and Y are Banach spaces, a functional
H W X ! Y is analytic (see [16, Volume I, Definition 8.8]) if and only iffor each
x0 2 X there exist a ballB centered in 0 and a continuous mappingTn W B C {x0} !6n(X, Y), for n � 0, such that

x 2 BC {x0}, h 2 B ) H(x C h) �H(x) D 1X
nD1

Tn(x)(h, : : : , h)

n!
.

Here6n(X, Y) D {T 2 L(XnI Y) W T is symmetric andn-linear}.
Then, we divide the proof into several steps. First, notice that it is enough to prove

the analyticity ofE0 2 C(ZI Z�). Thus, it suffices to prove the claim for the nonlinear
operatorF 2 C(ZI V�) defined by

F(u) D r � � ru

1C jruj2
�

, u 2 Z.

Indeed, it is immediate to check thatF D F3 Æ F2 Æ F1, where

F1 2 L(ZIW2), F1(u) D ru,

F2 2 C(W2I L1(�)2), F2(v) D v
1C jvj2 ,

F3 2 L(L1(�)2I V�), F3(w) D r � w.

Once again, asF1 and F3 are linear and bounded, we are left to prove the claim for
F2 only. As F2(v) D f (v)v, it is enough to show the analyticity of the map

W2 3 v 7! f (v) D (1C jvj2)�1 2 C( N�).

To this purpose, consider the following statement, which isa suitable extension of [13,
Lemma 1]

Lemma 5.1. Let f W RN ! R be an analytic function and K be a compact subset
of RN . Then the formal series

P�(c�=�!)x� (here� is a multi-index of lengthj�j D n),
with c� D maxx2K j�� f (x)j, has positive convergence radius.
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Proof. Let A be a complex neighborhood ofRN in which f can be extended
to a holomorphic functiong. ChooseR > 0 such thatd(K , CN n A) > R. Define
L D {z 2 AW d(z, K ) � R}, and M D maxz2L jg(z)j. Then, by the Cauchy inequalities,
we deduce the boundc� � n! M=Rn. This proves the claim.

By means of the standard Sobolev inclusionW ,! L1(�), we deduce that the set
K D v(�) (here the over-line bar denotes the closure inR2) is compact. Therefore, if
we set

T0(v) D f (v) and Tn(v)(h1, : : : , hn) D Dn f (v)(h1, : : : , hn), n � 1,

for all (h1, : : : , hn) 2 (W2)n (here Dn denotes the differential off of order n), it fol-
lows that

kTn(v)kL((W2)nIC( N�)) � c�,

being c� as in Lemma 5.1 (in the caseN D 2), and

f (vC h) D 1X
nD0

Tn(v)(h, : : : , h)

n!
,

provided that the series is convergent. This concludes the proof of Lemma 4.4.

Proof of Lemma 4.5. Lemma 4.5 can be proven arguing as in [2, Section 2]. For
the reader’s convenience, we outline the argument therein provided. This approach ap-
plies when the underlying function set is a Hilbert space, which in our present case is
true only when� D 0. Nevertheless, asE(u) D E( Ou), there is no loss of generality
supposing thatu 2 Z0. We recall that in this case a Poincaré inequality holds, namely,

cPk � k2
V � kr � k2, cPk � k2

W � k1 � k2 and cPk � k2
Z � kr1 � k2,

cP being the Poincaré constant. Thus, we introduce the Hilberttriplet

Z0 ,! V0 � V�
0 ,! Z�

0 ,

all the injections being compact, and the bilinear formBu W Z0 � Z0 ! R given by

(5.1) Bu(v, w) D hr1v, r1wi C �� (1C jruj)2

1C jruj2 rv � 2
ru � rv

1C jruj2ru, r1w�.
Note thathE00(u)v, wiV0 D Bu(v, w).
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We have

Proposition 5.2. Bu is symmetric, continuous and(Z0, Z�
0 )-coercive. Then, for

any u2 Z0, E00(u) 2 L(Z0, Z�
0 ) is a Fredholm operator.

Proof. Symmetry is straightforward. Let us prove continuity and coercivity. In
the sequel, we shall use the boundedness (from above) of the function

x 7! [(1C x)2 C 2x2](1C x2)�1.

Concerning the continuity, by means of the injectionZ ,! V , it is easy to see that, for
any v, w 2 Z0, we get

Bu(v, w) � kr1vkkr1wk C � Z�
(1C jruj)2 C 2jruj2

1C jruj2 jrvjjr1wj d�
� kr1vkkr1wk C ckrvkkr1wk � kvkZ kwkZ C ckvkV kwkZ

� ckvkZ kwkZ .

In order to prove coercivity, we recall the interpolation inequality

kvkV � ckvk1=2
Z� kvk1=2

Z , v 2 Z,

for some positive constantc. Thus, for anyv 2 Z0, using also the Poincaré inequality,
we obtain

Bu(v, v) D hr1v, r1vi C �� (1C jruj)2

1C jruj2 rv, r1v� � 2�� ru � rv
1C jruj2ru, r1v�

� kr1vk2 � � Z�
(1C jruj)2 C 2jruj2

1C jruj2 jrvjjr1vj d�
� cPkvj2Z � c

Z
�jrvjjr1vj d� � cPkvk2

Z � ckvkVkvkZ

� 3cP

4
kvk2

Z � ckvk2
V � 3cP

4
kvk2

Z � ckvkZ� kvkZ

D cP

2
kvk2

Z � �kvk2
Z� ,

for some positive�.

Let now P W V0 ! V0 be the orthogonal projection onto ker(E00(u)). As Lu is a
Fredholm operator, ker(E00(u)) is finite dimensional. Therefore, by symmetry, it can be
extended to a bounded projection inZ�

0 . From now on, we shall supposeu1 2 Z0 to
be a solution to stationary equation (4.1) (i.e.,E0(u1) D 0).

The next statement subsumes [2, Lemmas 1 and 2] adapted to thepresent case.
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Lemma 5.3. The set

S D {u 2 Z0 W (I � P)E0(u) D 0}

is locally near u1 an analytic manifold satisfying

dimS D dim ker(E00(u1)).

Lemma 5.4. Assume that the restriction of EjS satisfies the Łojasiewicz–Simon
inequality near u1, i.e., there exists a neighborhood U� Z0 of u1 and constants� 2
(0, 1=2] and C> 0 such that

jE(u) � E(u1)j1�� � CkE0(u)kZ�
0
, 8u 2 U \ S.

Then E satisfies itself the Łojasiewicz–Simon inequality near u, with the same
Łojasiewicz exponent# .

As E is real analytic, its projection onS is real analytic. Therefore, the thesis of
Lemma 4.5 is achieved, as a consequence of Lemmas 5.3 and 5.4.
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