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VOLUMETRIC HARMONIC MAP ∗

YALIN WANG †, XIANFENG GU‡, AND SHING-TUNG YAU§

Abstract. We develop two different techniques to study volume mapping problem in Computer Graphics and

Medical Imaging fields. The first one is to find a harmonic map from a 3 manifold to a 3D solid sphere and the

second is a sphere carving algorithm which calculates the simplicial decomposition of volume adapted to surfaces.

We derive the 3D harmonic energy equation and it can be easily extended to higher dimensions. We use a textrehedral

mesh to represent the volume data. We demonstrate our method on various solid 3D models. We suggest that 3D

harmonic mapping of volume can provide a canonical coordinate system for feature identification and registration

for computer animation and medical imaging.

1. Introduction. With the rapid development of imaging technology, there has been an

explosive growth of three-dimensional (3D) image data collected from all kinds of physical

sensors. The technique to process and analyze these image data becomes important. In this

paper, we develop two different techniques to study volume mapping problem in Computer

Graphics and Medical Imaging fields. One of our techniques is to compute a harmonic map

from a 3 manifold to a 3D solid sphere. To the best of knowledge, it is the first work to practi-

cally compute 3D harmonic map between 3D volumes. The other technique is to calculate the

simplicial decomposition of volume adapted to surfaces. Compared with existed Finite Ele-

ment Method (FEM) mesh generation, our new technique emphasizes geometry and topology

sanity maintenance.

The functional space on a manifold is determined by the manifold geometric character-

istics. The harmonic spectrum can reflect many global geometric information of the mani-

fold. Some applications on computer graphics and medical imaging fields, such as volume

registration, shape analysis, etc. can be carried out by examining the behavior of special dif-

ferential operators on it. In the literature, some researchers used harmonic map for surface

matching [1] and the construction of conformal map for genus zero surfaces [2, 3]. For 3D

brain volume transformation research, Gee [4] studied brain volume matching with a gener-

alized elastic matching method within a probabilistic framework. The approach can resolve

issues that are less naturally addressed in a continuum mechanical setting. Ferrant et al. [5]

presented an algorithm for non-rigid registration of 3D MR intraoperative image sequences

showing brain shift. The 3D anatomic deformation field, in which surfaces are embedded, is

then inferred from the displacements at the boundary surfaces using a biomechanical finite

element model for the constituent objects.

In 2D case, a harmonic map between two convex planar regions is diffeomorphic if and

only if the restriction on the boundary is diffeomorphic. 3D harmonic map is much more
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complicated. In this paper, we construct a harmonic map inR3 with a heat flow method.

First we conformally map the boundary of the 3D volume to a sphere, then minimizes the

volumetric harmonic energy while keeping the surface fixed. We also show how the interior

of the volume changes when we apply a Möbius transformation on the surfaces. To the best

of our knowledge, this is the first work on volumetric harmonic map. This work is also quite

general and can easily be generalized to higher-dimensional cases.

In the last decade, the techniques of 3D cameras, Computed Tomography (CT) and Mag-

netic Resonance Imaging (MRI) developed rapidly. Computer visualization and engineering

calculation require certain kinds of mesh extracted from these scanned volume data. Although

there are many researches on the mesh generation [6, 7], the existed methods usually do not

pay enough attention to geometry and topology checking. Thus the resulting mesh structure

cannot be directly used for geometry analysis computation. We developed a sphere carving

algorithm to calculate the simplicial decomposition of volume adapted to surfaces. From the

volume data, our algorithm can build tetrahedral mesh with desired geometry and topology

characteristics.

The remainder of the paper is organized as follows. In Section 2, we give the defini-

tions of harmonic energy and a detailed description of our algorithm. Section 3 reports our

sphere carving algorithm. Section 4 shows our experiments on various 3D solid models. We

conclude the paper with the discussion of future research directions in Section 5.

2. Volumetric Harmonic Mapping Algorithm.

2.1. Definitions. SupposeK is a simplicial complex, andf : |K| → R3, which embeds

|K| in R3; then(K, f ) is called a mesh. Given a genus zero tetrahedral meshM, our goal is to

compute its harmonic map to a sphere inR3.

DEFINITION 1. All piecewise linear functions defined onK form a linear space, denoted

byCPL(K)
DEFINITION 2. Suppose a set of string constantsk(u,v) are assigned, then the inner

product onCPL is defined as the quadratic form:

(1) < f ,g >=
1
2 ∑
{u,v}∈K

k(u,v)( f (u)− f (v))(g(u)−g(v)).

The energy is defined as the norm onCPL

DEFINITION 3. Supposef ∈CPL, the string energy is defined as:

(2) E( f ) =< f , f >= ∑
{u,v}∈K

k(u,v)|| f (u)− f (v)||2.

By changing the string constantsk(u,v) in the energy formula, we can define different

string energies.

Below is our derivation of harmonic energy in3 dimensional space.
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FIG. 1. Illustrates a tetrahedron.

As shown in Figure 1, we define

~si = Area(Face i)~ni , i = 1,2,3,4,

where~ni is the normal on Facei. Due to(~si) = −∑ j 6=i <~sj ,~ni >, and~ni , i = 1,2,3,4 can

uniquely determine a frame in the space, we have

4

∑
i=1

~si = 0

and

<~si ,~si >=−∑
i 6= j

<~si ,~sj >, i = 1,2,3,4.

For a random point~r inside the tetrahedron, its barycentric coordinate is

~r =
4

∑
i=1

(λi~pi),

λi =
1
3

<~r,~si >

V
,

(3)

whereV is the volume of tetrahedron. For a function defined on the tetrahedron,

f (~r) =
4

∑
i=1

λi f (~pi) =
4

∑
i=1

1
3

<~r,~si >

V
.

Thus we have∇ f = 1
3V ∑4

i=1~si fi . Let I = {1,2,3,4}, the harmonic energy for the tetrahedron
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can be computed as

E( f ) =
V
2

< ∇ f ,∇ f >=
1

18V
<

4

∑
i=1

~si fi ,
4

∑
i=1

~si fi >

=
1

18V
(

4

∑
i=1

<~si ,~si > f 2
i +2∑

i 6= j

<~si ,~sj > fi f j)

=−∑
i 6= j

<~si ,~sj >

18V
( fi − f j)

2

= ∑
i 6= j,p6=q

{p,q}=I\{i, j}

lpq
cot(θpq)

12
( fi − f j)

2.

(4)

The last equation in Equation 4 holds due to

<~si ,~sj >

V
=−|~si |12 lpqhqcos(θpq)

1
3|~si |hqsin(θpq)

=−3
2

lpqcot(θpq),

wherelpq andhq are the edge length and height length in triangleq, as shown in Figure 1.

The proof is general and it can be easily generalized to higher dimensional cases.
DEFINITION 4. Suppose for edge{u,v}, it is shared byn tetrahedra thus it is against to

n dihedral angles,θi , i = 1, . . . ,n. Define the parameters

(5) ku,v =
1
12

n

∑
i=1

l i cot(θi)

wherel i is the length of edge to which edge{u,v} is against in the domain manifoldM. The

string energy obtained is called the harmonic energy.
DEFINITION 5. The piecewise Laplacian is the linear operator∆PL : CPL →CPL on the

space of piecewise linear functions on K, defined by the formula

(6) ∆PL( f ) = ∑
{u,v}∈K

k(u,v)( f (v)− f (u)).

If f minimizes the string energy, thenf satisfies the condition∆PL( f ) = 0. Suppose

M1,M2 are two meshes and the map~f : M1 →M2 is a map fromM1 to R3.
DEFINITION 6. For a map~f : M1 → R3, ~f = ( f0, f1, f2), we define the energy as the

norm of~f :

(7) E(~f ) = ||~f ||2 =
3

∑
i=0
|| fi ||2.

The Laplacian is defined in a similar way.
DEFINITION 7. For a map~f : M1 → R3 , the piecewise Laplacian of~f is

(8) ∆PL
~f = (∆PL f0,∆PL f1,∆PL f2).



VOLUMETRIC HARMONIC MAP 195

A map~f : M1 →M2 is harmonic, if and only if it only has a normal component, and the
tangential component is zero.

∆PL(~f ) = (∆PL
~f )⊥.(9)

2.2. Steepest Descent Method.Suppose we would like to compute a mapping~f : M1→
M2 such that~f minimizes a string energyE(~f ). This can be solved easily by the steepest
descent algorithm:

(10)
d~f (t)

dt
=−∆~f (t)

~f (M1) is constrained to be onM2, so−∆~f is a section ofM2’s tangent bundle.

Based on the above definitions and algorithm, our volumetric harmonic brain mapping

algorithm is given below.

ALGORITHM 1. Volumetric Harmonic Mapping

Input (meshM,step lengthδ t, energy difference thresholdδE),

output(~h : M → D3), where~h is a harmonic map.

1. Compute the surface structure,∂M, of the meshM. Compute its conformal mapping

to the surface of a sphere,~g : ∂M → S2 [2, 3];

2. For each boundary vertex,v,v ∈ ∂M, let~h(v) = ~g(v); for each interior vertex ,

v,v∈M\∂M, let~h(v) = (0,0,0), compute the harmonic energyE0;

3. For each interior vertex,v∈M\∂M, compute its derivativeD~h;

4. Update~h(v) by δ~h(v) =−D~h(t)δ t;

5. Compute the harmonic energyE;

6. If E−E0 < δE, return~h. Otherwise, assignE to E0 and repeat steps 3 through 6.

3. Sphere Carving Algorithm. Methods to tetrahedralize volume data are well studied

for FEM research. However, the methods to tetrahedralize volume with complicated geo-

metric structure such as the brain are somewhat rare in the literature, although they are used

occasionally for surgical simulation, or mapping intraoperative brain change. In our current

experiments, we apply a sphere carving algorithm to volume data tetrahedralization problem.

At the beginning, the algorithm constructs a large sphere that contains all the volume data.

For non-genus case, we cut open the sphere to make it have desired genus number. Then the

algorithm keeps removing the outside tetrahedra while maintaining the surface genus num-

ber. The input image to this algorithm is binary 3D volumetric image. Figure 2(a) shows

a few sections from a binary brain volume. Our goal is to build a tetrahedral volume while

maintaining a surface with desired genus number. In the case of brain volume construction,

we take a sequence of brain MRI images. First it builds a large sphere tetrahedral mesh which

totally encloses the brain 3D volume. Then it keeps removing the tetrahedra outside of the

brain volume while maintaining a genus zero surface. It outputs a brain tetrahedral mesh with

a genus zero boundary.
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(a) (b)

FIG. 2. (a) are some binary brain images, where white pixels are inside brain and black pixels are outside

brain. (b) is a cube consisted of 5 tetrahedra. Our volume tetrhedralization method read in binary images and

output tetrahedral structure in the space.

The algorithm is given below.

ALGORITHM 2. Sphere Carving Algorithm

Input (a sequence of volume images and a desired surface genus number),

Output (a tetrahedral mesh whose surface has the desired genus number).

1. Build a solid sphere tetrahedral mesh consisted of tetrahedra, such that the sphere

totally enclose the 3D data. Let the boundary of the solid sphere beS;

2. Put all the tetrahedra which share faces withS in a queueQ, the elements inQ is

sorted by the sharing face number, the first in the queue is the one which shares the

most number of faces withS;

3. Exit if Q is empty, otherwise pop out the first tetrahedron,t, fromQ;

4. If t is not inside the object and the new surface after removing it still has genus 0,

then remove the tetrahedron from the mesh and go to Step 2; otherwise go to step 3.

4. Experiments. In our experiments, we use tetrahedra to represent the volume data.

We tested our algorithm on both synthetic and brain volume data. Our synthetic data is a

cube consisting of many tetrahedra. Figure 3(a) shows the surface of a solid cube and (b)

shows the cube in wireframe mode. We used the volumetric harmonic mapping algorithm

to map it onto a solid sphere. Figure 3(c) shows the surface of a solid sphere onto which it

harmonically mapped. Figure 3(d) shows the solid sphere in wireframe mode.

We also performed some experiments to study the harmonic map obtained. As shown in

Figure 4, we assign a random color to each vertex of the cube model. We then removed some

tetrahedra from the cube. We also remove these tetrahedra from the sphere. Since the cube

has a convex surface, this shows that the mapping is a smooth bijection, i.e. diffeomorphism.

Figure 5 shows another experiment. We started with a different surface condition (different

conformal map on the surface via Möbius transformation). The harmonic map changes. We
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embedded the bunny in the resulting using its barycentric coordinate. As expected, the bunny

was severely distorted, showing that the adjusted boundary mapping is propagated to the

interior as well.

To reduce memory requirements in the implementation, we use a multi-resolution

method to represent the volume data. An example of surface genus zero volume is a brain

volume. A coarse-scale brain model (which could be further refined) is shown in Figure 6(a)

and (b). The volumetric brain harmonic mapping result is shown in Figure 6(c) and (d). We

show this result at coarse scale to visualize the solution grid, but it can be further refined to

capture greater geometric detail.

Figure 8 illustrates a volumetric harmonic map on a prostate model. A volumetric

prostate model is built from a sequence of MRI images. As shown in Figure 7, the boundary

of prostate in each image is hand-drawn by physicians in yellow line. With our sphere carv-

ing algorithm, we get volumetric prostate model 8(a) and (b). The harmonic map results are

shown in Figure 8 (c) and (d).

(a) (b)

(c) (d)

FIG. 3. (a) and (b) are the volumetric data surface of a cube and its harmornic mapping to a sphere; (c) and

(d) are the volumetric data represented in wireframe mode and its harmonic mapping to a sphere.

5. Conclusion and Future Work. This paper introduces a volumetric harmonic map

method. First we map the volumetric boundary conformally onto a sphere. Then with this

boundary condition, we compute its harmonic map in the object interior with a heat flow

method. Our work is general enough to be easily generalized to higher dimensional cases, or

to other organ systems than brain, e.g. for representing cardiac motion. To apply this algo-

rithm on brain mapping problem, we developed a novel algorithm to calculate the simplicial
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(a) (b)

FIG. 4. Illustrates the internal geometry after we removed the same tetrahedra from the solid sphere. This

illustrates how the bijection maps simply connected regions to simply connected regions of the sphere, and points in

the two coordinate systems can be associated.

decomposition of volume adapted to surface. Our experimental results on both synthetic and

brain MRI image data are promising.

Since the exterior brain surface is highly convoluted, computation of 3D harmonic maps

is difficult. In the future, we will study the necessary and sufficient conditions for a 3D

harmonic map to be diffeomorphic. We will also use non-structured tetrahedral mesh to

represent brain volumetric data and test our algorithm on it.
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Illustrates the internal volume change when the surface mapping of a cube changes following a möbius

transformation. (a) and (b) are volumetric view and surface view of a cube volumetric image in a sphere. A bunny

is barycentric embedded into the sphere. (c),(d),(e),and (f) show some snapshots when we rotate the sphere. We can

find the distortion on the bunny model which is due to the möbius transformation of the cube image on the sphere.
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(a) (b)

(c) (d)

FIG. 6. Illustrates volumetric brain harmonic mapping. (a) is the volumetric brain surface; (b) is the brain

volume in wireframe mode; (c) is the surface of the brain volumetric harmonic map into a sphere; (d) is brain

volumetric harmonic map into a sphere in wireframe mode.

FIG. 7. Illustrates the images data used to build volumetric prostate model. They are a sequence of MRI

images. The prostate boundaries (yellow line) are hand-drawn by physicians.
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(a) (b)

(c) (d)

FIG. 8. Illustrates volumetric prostate harmonic mapping. (a) is the volumetric prostate surface; (b) is the

prostate volume in wireframe mode; (c) is the surface of the prostate volumetric harmonic map into a sphere; (d) is

prostate volumetric harmonic map into a sphere in wireframe mode.
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