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1. Introduction. Riemannian differential geometry originated in attempts to 
generalize the highly successful theory of compact surfaces. From the earliest 
days, conformai changes of metric (multiplication of the metric by a positive 
function) have played an important role in surface theory. For example, one 
consequence of the famous uniformization theorem of complex analysis is the 
fact that every surface has a conformai metric of constant (Gaussian) curva­
ture. This provides a "standard model" for each homeomorphism class of 
surfaces, and reduces topological questions to differential geometric ones. 

Life would be simple if the naive generalization of this theorem held in 
higher dimensions: every «-manifold would have a conformai metric of con­
stant curvature, and questions in differential topology would be reduced to 
geometric questions about the constant-curvature models. However, it is easy 
to see that this cannot be true. In general the problem is highly overde-
termined: the curvature tensor has on the order of n4 independent compo­
nents, while a conformai change of metric allows us to choose only one 
unknown function. For example, if n ^ 4, the Weyl tensor, formed from the 
components of the Riemannian curvature tensor, is conformally invariant and 
vanishes if and only if the metric is locally conformally equivalent to the 
Euclidean metric. From this point of view it seems natural instead to seek a 

Received by the editors June 24, 1986. 
1980 Mathematics Subject Classification. Primary 53A30; Secondary 35J20, 35J60. 
Research of the first author supported in part by a research grant from the National Science 

Foundation. 
©1987 American Mathematical Society 

0273-0979/87 $1.00 + $.25 per page 

37 



38 J. M. LEE AND T. H. PARKER 

conformai change of metric that makes only the scalar curvature (the complete 
contraction of the curvature tensor) constant, for then we are looking for one 
unknown function to satisfy one condition. Thus we are led to: 

The Yamabe Problem. Given a compact Riemannian manifold (M, g) of 
dimension n > 3, find a metric conformai to g with constant scalar curvature. 

In 1960, H. Yamabe [Y] attempted to solve this problem using techniques of 
calculus of variations and elliptic partial differential equations. He claimed 
that every compact Riemannian «-manifold M has a conformai metric of 
constant scalar curvature. Unfortunately, his proof contained an error, dis­
covered in 1968 by Neil Trudinger [T]. Trudinger was able to repair the proof, 
but only with a rather restrictive assumption on the manifold M. In order to 
understand the restriction, let us describe Yamabe's approach. 

Suppose (Af, g) is a compact Riemannian manifold of dimension n > 3 
(which we will always assume is connected). Any metric conformai to g can be 
written g = e2fg, where ƒ is a smooth real-valued function on M. If S and S 
denote the scalar curvatures of g and g, respectively, they satisfy the transfor­
mation law: 

S = e~2f(s + 2(n - l ) A / - ( / i - l)(n - 2 ) | v / f ) , 

in which A/ denotes the Laplacian of ƒ and v / its covariant derivative, 
defined with respect to the metric g. This formula is considerably simplified if 
we make the substitution e2* = (pp~2, with p = 2n/(n — 2) and g = <pp~2g: 

(1.1) S = ( ^ ( 4 ^ ^ +Sep 

NOTATION. Throughout this paper, we will use the following notations: 

« = d i m M > 3 ; p = r-, a = 4 - ; D = #A + S. 
n - 2 n - 2 

Thus g = <pp~2g has constant scalar curvature X iff <p satisfies the Yamabe 
equation: 
(1.2) D<p = \<pP-1. 

This is a sort of "nonlinear eigenvalue problem." The analytic properties of 
the equation D<p = \<pq depend critically on the value of the exponent q: when 
q = 1, the equation is just the linear eigenvalue problem for D. When q is close 
to 1, as we will see in §4, its analytic behavior is quite similar to that of the 
linear case, and the problem is easily solved. When q is very large, the methods 
based on linear theory break down altogether. It happens that the exponent 
q=p — l = (n + 2)/(n - 2) that occurs in the Yamabe equation is precisely 
the critical value, below which the equation is easy to solve and above which it 
may be impossible. This accounts for the analytic complexity of the Yamabe 
problem. 

Yamabe observed that equation (1.2) is the Euler-Lagrange equation for the 
functional 

LSdV, 

(Ldv,)2 (!-3) G ( S ) - - , . . 2 / „ , 



THE YAMABE PROBLEM 39 

where g is allowed to vary over metrics conformally equivalent to g. To see 
this, observe that Q can be written Q(g) = Q(<pp~2g) = Qg(<p), where 

Qg(<p) = E(<p)/\\cp\\2
p, 

(1-4) . . , . . , - . . . . / , . . » \V' ( \ i 

ration by parts yields 

ƒ (aAy + Sy -hf/EMyr-^dV,. 

Then for any i// e C°°(Af ), integration by parts yields 

2 
!fi,(v + <+) 

IMI2/" 
Thus <p is a critical point of Q if and only if it satisfies the Yamabe equation 
(1.2) with X = £(9) / IMI^ 

Since by Holder's inequality \fMS(p2\ is bounded by a multiple of ||<p||J, it 
follows easily that g (and thus Q) is bounded below. We set 
(1.5) X(M) = inf{g(g) : g conformai to g} 

= inf { Qg(<p) ' <p a smooth, positive function on M }. 

This constant X(M) is an invariant of the conformai class of (Af, g), called the 
Yamabe invariant. Its value is central to the analysis of the Yamabe problem. 

The solution of the Yamabe problem follows its historical development. It is 
summarized by three main theorems. 

Trudinger's modification of Yamabe's proof worked whenever X(M) < 0. 
In fact, he showed that there is a positive constant a(M) such that the proof 
works when X(M) < a(M). Now it is easy to show (see §3) that X(M) < 
\(SW) , where Sn is the sphere with its standard metric. In 1976, Thierry Aubin 
[A2] extended Trudinger's result by showing, in effect, that a(M) = X(Sn) for 
every M. This established: 

THEOREM A (YAMABE, TRUDINGER, AUBIN). The Yamabe problem can be 
solved on any compact manifold M with X(M) < \(Sn), where Sn is the sphere 
with its standard metric. 

This result shifts the focus of the proof from analysis to the problem of 
understanding the essentially geometric invariant \(M). The obvious ap­
proach to showing that X(M) < X(Sn) is to find a "test function" cp with 
Qg(<p) < X(Sn). Aubin [A2] sought such a function compactly supported in a 
small neighborhood of a point P G M. By carefully studying the local geome­
try of M near P in normal coordinates, he was able to construct such test 
functions in many cases, proving the following theorem. 

THEOREM B (AUBIN). If M has dimension n > 6 and is not locally conformally 
flat then X(M) < X(Sn). 

The remaining cases are more difficult because the local conformai geometry 
does not contain sufficient information to conclude that X(M) < X(Sn). These 
cases thus require the construction of a global test function. This was done by 
Richard Schoen [S] in 1984. His theorem completes the solution of the 
Yamabe problem. 
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THEOREM C (SCHOEN). If M has dimension 3, 4, or 5, or if M is locally 
conformally flat, then X(M) < X(Sn) unless M is conformai to the standard 
sphere. 

Schoen's proof introduced two important new ideas. First, he recognized the 
key role of the Green function for the operator D; in fact, his test function was 
simply the Green function with its singularity smoothed out. Second, he 
discovered the unexpected relevance of the positive mass theorem of general 
relativity, which had recently been proved in dimensions 3 and 4 by Schoen 
and S.-T. Tau [SY1, SY2, SY4]. A curious feature of Schoen's proof is that it 
works only in the cases not covered by Aubin's theorem. 

The proof of Theorem C actually requires an «-dimensional version (as yet 
unpublished) of the positive mass theorem, which was announced by Schoen in 
[S]. The 5-dimensional case appears to be a straightforward generalization of 
the 4-dimensional proof in [SY2]. The higher-dimensional case is more dif­
ficult. However, for n > 6 the result is needed only for locally conformally flat 
manifolds; Schoen and Yau [SY6] have recently given an alternate proof for 
this case (see §10). 

The solution of the Yamabe problem marks a milestone in the development 
of the theory of nonlinear partial differential equations. Semilinear equations 
of the form (1.2) with critical exponent arise in many contexts and have long 
been studied by analysts. This is the first time that such an equation has been 
completely solved. 

The aim of the present paper is to provide a unified expository account of 
the proof of the Yamabe theorem, presenting for the first time the complete 
solution in one place. This account should be accessible to anyone familiar 
with enough differential geometry to feel comfortable with tensors, covariant 
derivatives, and normal coordinates; and enough analysis to follow arguments 
involving Sobolev and Holder spaces and basic elliptic regularity theory for the 
Laplace operator. 

The proof we present is self-contained (except for a central step in the 
positive mass theorem), and incorporates several improvements over the proofs 
currently available in the literature. Most importantly, we show how to recast 
the local proof of Aubin and the global proof of Schoen in a single framework. 

The key simplification is achieved by introducing a special coordinate 
system, called "conformai normal coordinates". These are analogous to geo­
desic normal coordinates on a Riemannian manifold, and greatly simplify local 
analysis on conformai manifolds. (A related coordinate system was invented by 
Robin Graham [G] to study conformai invariant theory.) 

Using the Green function for D, we define a " stereographic projection" from 
M minus a point to a noncompact manifold M with zero scalar curvature. We 
then construct a test function on M whose Yamabe quotient is very close to 
that of the sphere. Conformai normal coordinates allow us to obtain a precise 
estimate of this Yamabe quotient. This shows that X(M) < X(Sn) provided a 
certain quantity called the "distortion coefficient" is positive. This coefficient 
measures the average behavior of the metric on M near infinity. In the case of 
Theorem B, it is readily computed from the local conformai geometry of M, 
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while in the case of Theorem C its positivity follows from the positive mass 
theorem. 

This approach, we feel, sheds considerable light on the relationship between 
Theorems B and C, and eliminates the need for the "delicate perturbation 
argument" that Schoen used to handle dimensions 4 and 5. It also shows that 
the expansion of the Green function contains all the information needed to 
prove that X(M) < \(Sn). 

In §2 of this paper, we recall the notation and background material from 
differential geometry and analysis that we will be using throughout the paper. 
§3 is a discussion of the "model case" for the Yamabe problem, the sphere 
with its standard metric. In §4, we complete the analytic part of the proof by 
showing that the problem can be solved if X(M) < X(Sn). 

Conformai normal coordinates are introduced in §5, and used to give a very 
simple proof of Aubin's theorem. In §6, we define a stereographic projection 
for a compact manifold with positive Yamabe invariant, and derive the 
asymptotic expansion of its metric explicitly to high order. In §7 we construct a 
test function on M and compute its Yamabe quotient. 

§§8, 9, and 10 give a brief treatment of the positive mass theorem. In §8, we 
introduce the physicists' notion of mass of an asymptotically flat manifold, 
and describe the physical motivation for the positive mass and positive action 
conjectures. §9 discusses some analytic tools for asymptotically flat manifolds, 
and §10 sketches a proof of the «-dimensional positive mass theorem. Finally, 
in §11 we complete the proof of the Yamabe theorem. 

We are indebted to Karen Uhlenbeck, who first introduced us to the 
Yamabe problem, and to David Jerison, whose ideas about the expansion of 
the Green function were very helpful in early conversations. We would also 
like to thank Jean-Pierre Bourguignon for helpful comments on the manuscript. 

2. Geometric and analytic preliminaries. In this section we collect some 
notations and well-known facts from differential geometry and the theory of 
linear partial differential equations on manifolds. Most of the results stated 
here without proof can be found in [KN, A3, or GT]. 

Geometric notations. We use standard index notation for tensors. If gjk are 
the components of the metric tensor with respect to a coordinate system {x1}, 
gjk and its inverse gjk are used to raise and lower indices: Tl

k = gjlTjk. The 
metric extends to an inner product on tensors of any type: for example, the 
norm of the 2-tensor T with components Tjk is \T\2 = TjkT

jk = gjlgkmTjkTlm. 
Covariant differentiation is denoted by V. If ƒ is a function on M, its 

covariant derivative is the 1-tensor v / whose components we will write fJm The 
mth covariant derivative of ƒ is the m-tensor v mf, with components fit ... ; . 
If T is a tensor, indices of vmT that result from differentiation will be 
separated by a comma: for example, if TJk are the components of a 2-tensor T 
as above, then the components of V 2T are denoted by Tjklm. 

The Euclidean volume form dx1 A • • • A à " o n R " will be denoted by dx. 
The standard volume form on the unit (n - l)-sphere in Rn will be denoted by 
dco9 and we write dcor = rn~ldw for the volume form on the sphere Sr of 
radius r. We let <o denote the volume of the unit sphere, and wr = rn~xo). If g 
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is a Riemannian metric, dVg denotes its Riemannian density, which is defined 
whether or not M is oriented. In local coordinates, dVg = (det g)1/2|dx\. 

The divergence operator is the formal adjoint V * of V, given on 1-forms by 
V*co = — coi

 l. On a compact manifold with boundary it satisfies the diver­
gence theorem 

f v W F = - f u(N)dVg, 
JM JdM 

where g is the induced metric on dM and N is the outward unit normal. (If M 
is oriented this is just Stokes' theorem. If not, it follows from Stokes' theorem 
on the oriented double cover of M.) The Laplacian is the second-order 
differential operator A given on functions by 

(2.1) AM = v*Vw = -(detg)"1 / 23 /(g°(cietg)1 / 23y W). 

On a compact manifold without boundary the divergence theorem yields the 
"integration by parts" formula 

f (w,Vu)dV = f vAudV^. 

The Riemannian curvature tensor is the tensor with components RiJkh 

computed in a coordinate system { xl} by: 

Rljkl = (R(9k>WjA), 

where R is the curvature operator R(V, W) = [ V F , V j - V[FtW]. It satisfies 
the Ricci identity 

(2-2) <*j,ki ~ <*j,ik = Rijki<»i 

for any one-form a)jdxJ, and the Bianchi identities: 

(2.3) RijU + Riklj + Riljk = 0, Rijkl,m + Rijlm,k + Rijmk,l = 0. 

The Ricci tensor is the contraction Rjt = Rk
jki of the curvature tensor, and 

the scalar curvature is the trace S = Rj j of the Ricci tensor. M is said to be 
Einstein if its Ricci tensor is a scalar multiple of the metric, or equivalently if 
the traceless Ricci tensor Btj = Rtj - (S/n)gtj vanishes. Contracting the 
second equation in (2.3) on the indices /, k and again on 7, /, we obtain: 

(2-4) S,m - 2R'm, = 0. 

It follows that an Einstein manifold has constant scalar curvature. 
The remaining components of the curvature tensor constitute the Weyl tensor 

W, with components: 

wuki = Riju - -n~zr2^Ri^ji ~ RuSjk + RjiSik - Rjkgu) 

+ (n-l)(n-2){g^-g^k)' 
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(This formula is chosen so that the trace of W on any pair of indices vanishes. 
W vanishes identically if n = 3.) Using the definitions of W and B, we can 
write the curvature tensor as a sum of three parts: 

Rijki = Wijkl + -—^(Bikgjl - Bilgjk + Bj,gik - Bjkga) 

S , , 
+ n(n-iygik8jl~gilgjk'' 

In particular, if W = 0 and B = 0, the curvature tensor is completely de­
termined by the (constant) scalar curvature S, and M is said to have constant 
curvature. It is well known that a complete, simply connected manifold of 
constant curvature is isometric to Rn, Sn, or «-dimensional hyperbolic space. 

If g = e2 f g is a metric conformai to g, one can compute the components of 
the curvature tensor R of g in terms of those of the curvature of g. The results 
we will need are the transformation laws for the Ricci and scalar curvatures: 

(2.5) RJk = RJk - (n - 2)fJk +(n- 2)fjfk + (A/ - (n - l)fj%k, 

(2.6) S = e"2 ' (S + 2(» - l ) A / - ( » - 1)(» - 2) ƒ,ƒ')• 

As in the introduction, this can be rewritten in the form (1.1). One computes 
also that the Weyl tensor is conformally invariant: Wl

jkl = Wl
Jkl. 

A Riemannian mamfold M is said to be locally conformally flat if it is locally 
conformai to Euclidean space. It is a classical result (see for example [E, §28]) 
that for n > 4 the Weyl tensor vanishes identically if and only if M is locally 
conformally flat. 

The operator D = a A + S, where a = A{n - l)/(n - 2), is called the con-
formal Laplacian. It is conformally invariant in the following sense. If g = 
<pp~2g (with p = 2n/(n — 2)) is a metric conformai to g, and D is similarly 
defined with respect to g, then computing A in terms of A and using the 
transformation law (1.1) for scalar curvature, one finds that 

(2.7) Ùiw^u) = tf-PUu. 

Analytic preliminaries. Suppose P is a linear partial differential operator on 
a manifold M. If u and ƒ are locally integrable functions on M, we say u is a 
weak (or distribution) solution to the equation Pu = ƒ if, for every smooth 
compactly supported function cp, 

f uP*<pdVg= f fq>dVg9 
JM 8 JM g 

in which P* is the formal adjoint of P, obtained from P by formally 
integrating by parts. (In particular, A* = A.) 

There are many function spaces used in solving differential equations; a 
nonlinear problem such as the Yamabe problem requires the use of a number 
of them. Therefore, we begin by defining the spaces we will be using. 
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If q > 1, the Lebesgue space Lq(M) is the set of locally integrable functions 
u on M for which the norm 

!••.-(ƒ„ i-r*!) 
1/4 

is finite. 
If in addition A: is a nonnegative integer, the Sobolev space Lq

k(M)is the set 
of « e Lq(M) such that Pu = ƒ e Lq(M) (in the weak sense) whenever P is a 
smooth differential operator of order < k. We define the Sobolev norm || \\q k 

on Lq
k(M) by: 

The space Ck(M) is the set of /: times continuously differentiable functions 
on M, for which the norm 

A: 

II" He* = L SUP | V ' M | 
I = 0 M 

is finite. Then the Holder space Ck,a(M) is defined for 0 < a < 1 as the set of 
M e Ck(M) for which the norm 

„ „ „ „ , \vku(x) - Vku(y)\ 
II"He*-- =||«||c* + sup J ^ a

 yJn 

x,y \x — y\ 

is finite, where the supremum is over all x =£ y such that y is contained in a 
normal coordinate neighborhood of x9 and V ku{y) is taken to mean the tensor 
at x obtained by parallel transport along the radial geodesic from x to y. As 
usual, C°°(M) and C™{M) denote the spaces of smooth functions and smooth 
compactly supported functions on M, respectively. We note that if M is 
complete, C™(M) is dense in Lq

k(M). 
The relations among these spaces are expressed in the following theorems. 

THEOREM 2.1 (SOBOLEV EMBEDDING THEOREMS FOR R"). 

(a) Suppose 

r q n' 

Then Lq
k(R

n) is continuously embedded in Lr(Rn). In particular, for q = 2, 
k = 1, r = p = 2n/(n — 2), we have the following Sobolev inequality: 

(2.8) \\<ptp<oH[ |v<p|2</x, <peLl(R"). 

We will call the smallest such constant on the n-dimensional Sobolev constant. 
(b) Suppose 0 < a < 1, and 

1 k- a 
— < . 
q n 

Then Lq
k(R

n) is continuously embedded in Ca(Rn). D 
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We can transfer these results to a compact manifold M by covering M with 
small coordinate patches, applying the above theorems in normal coordinates, 
and summing the results with a partition of unity. The general results are 
expressed in the following theorem. 

THEOREM 2.2 (SOBOLEV EMBEDDING THEOREMS FOR COMPACT MANIFOLDS). 

Suppose M is a compact Riemannian manifold of dimension n {possibly with Cl 

boundary). 
(a ) / / 

I I_ * 
r ^ q n' 

then Lq
k(M) is continuously embedded in Lr(M). 

(b) (RELLICH-KONDRAKOV THEOREM) Suppose strict inequality holds in (a). 
Then the inclusion Lq

k(M) c U(M) is a compact operator. 
(c) Suppose 0 < a < 1, and 

1 k- a 
- < . 
q n 

Then Lq
k(M) is continuously embedded in Ca(M). D 

It is an important fact, due to Aubin, that in a certain sense the Sobolev 
inequality holds with the same constant on any compact manifold M. We 
present here a simple proof of this result. The technique is typical of the proofs 
of Theorem 2.2. 

THEOREM 2.3 (AUBIN [Al]). Let M be a compact Riemannian manifold with 
metric g, p = 2n/(n — 2), and let an be the best Sobolev constant defined in 
Theorem 2.1(a). Then for every e > 0 there exists a constant Ce such that for all 
<p G C™(M\ 

l k | | ^ < ( l + e ) a j \v<p\2dVg+Cef cp2dVg. 

PROOF. Fix e > 0. Around each point P G M we can choose a neighbor­
hood U such that, in normal coordinates on U, the eigenvalues of gjk are 
between (1 + e)"1 and (1 4- e), and furthermore dVg = fdx where (1 + e)"1 

< ƒ < (1 4- e). Choose a finite subcover {Ut) and a subordinate partition of 
unity, which we may write as {a,2}, where at e C^iM) and £ a 2 = 1. Then 
we have 

l<p||2, = lk2IL>/2 = 
II / \ 2 / p 

E«?<p2 < E ƒ WMPdv\ 

I , \2/p 

<(l + e)2/ 'I ^ K v f * • 
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The Sobolev inequality on R" (2.8), together with our estimates on the 
deviation of g and dVg from the Euclidean metric, imply 

ƒ |a,.«pf <ix I < a„J |v(a,<p)|0Jx, 

< ( l + e)2a„J |v(a , .<p) |V g , 

where | 10 represents the Euclidean metric in normal coordinates. Furthermore, 

|v(a,-<p) | = a?|v<p| + 2a/<jp(v«/,V(p> + <p2|Va,| 

< (1 + e)a2|v<p|2 + ( l + E-l)<p2\va^\ 

the last line follows from the Cauchy-Schwartz inequality and the inequality 
lab < ea2 + e~~lb2. Thus for e small, 

| M l U ( l + 4 e K L / «? |v<p |V g +Cj ; / <p1\Vai\
2dVg 

i JV, i JU, 

< (1 + 4e)anf \v<p\2dVg+C;[ <p2dVg. D 

Next we turn to the analysis of the Laplace operator A. 

THEOREM 2.4 (LOCAL ELLIPTIC REGULARITY). Suppose Œ is an open set in Rn, 
A is the Laplacian with respect to any metric on £2, and u e Ll

loc(ü) is a weak 
solution to Au = ƒ. 

(a) If ƒ ' e Lq
k(2), then u e Lq

k+1(K) for any compact set K <= Œ, and if 
u e L%ü) then 

WUWLI+2(K)< c(\\&u\\Li(Q) + \\u\\LHQ)y 

(b) (Schauder estimates). 7 / /eC* ' a (£2) , then u e Ck+2>a(K) for any 
compact subset K <s Q, and if u e Ca{ü) then 

IMIc*+2.«<tf) < c(llku\\ck,«(Q) + | |M| | C « ( 0 ) ) . a 

By a procedure similar to that mentioned above, these results can be 
transferred to a compact manifold. 

THEOREM 2.5 (GLOBAL ELLIPTIC REGULARITY). Let M be a compact Rieman-
nian manifold, and suppose u e l}Xoc(M) is a weak solution to Au = ƒ. 

(a) Iff e Lq
k(M\ then u e Lq

k+2(M), and 

H ^ + 2 < C ( | | A W | | ^ + | |W | | , ) . 

(b) Iff e Ck>a(M\ then u e Ck+2>a(M% and 

Hc*+ 2 -< C(||Aii||c*.-+||tt||c«). • 

THEOREM 2.6 (STRONG MAXIMUM PRINCIPLE). Suppose h is a nonnegative, 
smooth function on a connected manifold M, andu e C2(M) satisfies (A + h)u 
^Q.Ifu attains its minimum m < 0, then u is constant on M. D 
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PROPOSITION 2.7 (WEAK REMOVABLE SINGULARITIES THEOREM). Let U be an 

open set in M and P e U. Suppose u is a weak solution of (A + h)u = 0 on 
U - {P}, with h G Ln^(U) and u e L«(U) for some q > p/2 = n/(n - 2). 
Then u satisfies (A + /z)w = 0 weakly on all of U. 

PROOF. We need to show that 

(wA<p + hu<p)dV = 0 /„' 
for any cp <E C?(U). Choose a e C?(U) with support in a ball BR(P) of 
small radius R around P, such that a = 1 in BR/2(P), and define «e(;c) = 
a(jc/e) in normal coordinates around P. Then ae is supported in BeR(P). 
Since (1 - ae)<p is compactly supported in U - {P} and (A + /i)w = 0 there, 

f (wA<p 4- Aw<p) dF = f (uA(aE(p) + /zwae(p) dK. 

We will show that the right-hand side goes to zero as e -> 0. 
Note that /w is integrable by Holder's inequality, and so the second term 

above goes to zero as the support of aE shrinks. As for the first term, we have 

A(ae<p) = <pAae - 2(v«e,V<p) + ««AP-

It is easy to check that |V«e| < C/e and |Aae| < C/e2. Therefore, if q_1 + r~l 

= 1, 

( uk(a£<p)dVg\^Ce-2[ \u\dVg 

ui\LdA < Ce 

^ C^-^^llwll,. 
Since q > p/2 implies n/r > 2, this goes to zero as e -» 0. D 

Note that the example u = r 2 _ n on Euclidean space shows that the hy­
pothesis q > p/2 cannot be improved. 

THEOREM 2.8 (EXISTENCE OF THE GREEN FUNCTION). Suppose M is a 
compact Riemannian manifold of dimension n > 3, and h is a strictly positive 
smooth function on M. For each P e l , there exists a unique smooth function TP 

on M — {P}, called the Green Junction jor A + hatP, such that (A + h)TP = 8P 

in the distribution sense, where 8P is the Dirac measure at P. D 

3. The model case: the sphere. The analysis of the Yamabe equation (1.2) 
depends upon a precise understanding of the model case of the sphere Sn. In 
this section we will describe the solution to the Yamabe problem on Sn and 
prove that the infimum of the Yamabe functional (1.3) is realized by the 
standard metric on the sphere. We will also show how this leads to the sharp 
form of the Sobolev inequahty on Rn. Using the extremals for this inequality 
we will show that \(M) ^ \(Sn) for any compact manifold M. 



48 J. M. LEE AND T. H. PARKER 

Let P = (0 , . . . , 0,1) be the north pole on Sn c Rn+1. Stereographic projec­
tion a: Sn - {P} -»RW is defined by o(Ç\...,£",£) = (x\...,xH) for (f,£) 
G 5 " - {P} , where 

*wv(i-o. 
It is easy to verify that a is a conformai diffeomorphism. In fact, if g is the 
standard metric on Sn, and ds2 the Euclidean metric on R", then under a, g 
corresponds to 

f>*g = 4(|x|2 + l ) ~ V , 

where p denotes a"1. This can be written as 4u?~2ds2, where 

(3-D u1(X) = ()x\2
 + lf-")/2. 

By means of stereographic projection, it is simple to write down conformai 
diffeomorphisms of the sphere. The group of such diffeomorphisms is gener­
ated by the rotations, together with maps of the form o~\a and o~l8ao, where 
rv, 8a: R

n -> Rn are respectively translation by y G R": 

and dilation by a > 0; 

The spherical metric on Rn transforms under dilations to 

(3.2) ô>*g = Aup
a~

2ds2, where ua(x) = 

There is an obvious metric of constant scalar curvature on the sphere, 
namely the standard metric. It is an important fact that this metric in fact 
minimizes the Yamabe functional Q (see Theorem 3.2 below). This result is 
due originally to Aubin [Al], and independently to G. Talenti [Ta]. We will 
give a simpler proof, due to Karen Uhlenbeck and Mono Obata. 

First we note that the infimum \(Sn) is actually attained by a smooth 
metric g in the conformai class of the standard metric g. This will be proved 
later in §4 (Proposition 4.6). This extremal metric g is thus a metric on Sn, 
conformai to the standard one, which has constant scalar curvature. The 
following proposition shows that such a metric must be the standard one (up 
to a conformai diffeomorphism and a constant scale factor). Our proof is a 
simplification of Obata's original argument. (The last step was improved 
following a suggestion of Roger Penrose.) 

PROPOSITION 3.1 (OBATA [O]). If g is a metric on Sn that is conformai to the 
standard metric g and has constant scalar curvature, then up to a constant scale 
factor, g is obtained from g by a conformai diffeomorphism of the sphere. 

PROOF. We begin by showing that g is Einstein. Considering the given 
metric g as "background" metric on the sphere, we can write g = <p~2g, where 
<p e C°°(Sn) is strictly positive. Making the substitution e2f = <p~2 in the 

|x|2 + a2 

a 

l \ K*~n)/i 
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transformation law (2.5) for the Ricci tensor, we obtain: 

RJk = RJk + « r 1 ((« - 2)9jk - ( » - i ) ^ - g , t - bpgjX 

in which the covariant derivatives and Laplacian are to be taken with respect 
to g, not with respect to the standard metric g. If Bjk = Rjk - (S/n)gjk 

represents the traceless Ricci tensor, then since g is Einstein, 

(3.3) 0 = Bjk = BJk + (» - 2)<p-\%k +(l/n)AcpgJk). 

Since the scalar curvature S is constant, the contracted Bianchi identity (2.4) 
implies that the divergence Rl

 mi of the Ricci tensor vanishes identically, and 
thus so also does Bl

 mi. Because Bjk is traceless, integration by parts gives 

(3.4) j s n <p\B|2dVg = j ^ <pBJkBJkdVg 

= -{n-2)JsnB^jk + \^gjk)dVg 

= -(n-2)JsnB%kdVg 

= (n-2)f Bi\k%dVg=0. 

Thus Bjk must be identically zero, and so g is Einstein. 
Since g is conformai to the standard metric g on the sphere, which is locally 

conformally flat, we have W = 0 as well as B = 0. As noted in §2, this implies 
that g has constant curvature, and so (Sn, g) is isometric to a standard sphere. 
The isometry is the desired conformai diffeomorphism. D 

Combining Propositions 3.1 and 4.6, we obtain the complete solution to the 
Yamabe problem on the sphere: 

THEOREM 3.2. The Yamabe functional (1.3) on (Sn, g) is minimized by 
constant multiples of the standard metric and its images under conformai diffeo-
morphisms. These are the only metrics conformai to the standard one on Sn that 
have constant scalar curvature. D 

The Sobolev inequality. The above theorem is closely related to the Sobolev 
inequality (2.8) on Rn. Since the infimum of the Yamabe functional on the 
sphere is conformally invariant, stereographic projection converts the Yamabe 
problem on Sn to an equivalent problem on R", as follows. 

First it is useful to observe that the restriction to smooth positive test 
functions in the definition (1.5) of X(M) is unnecessary. Indeed, the functional 
Qg is continuous on L\(M) by the Sobolev theorem, and C°°(M) is dense 
in L\(M). But ôgCM) == Qgiv) f° r smooth <p, and a nonnegative function can 
be approximated arbitrarily closely in L\ norm by a positive function. Thus 
X(M) is the infimum of Qg over all of L\(M). 

For <p e C°°(Sn\ let <p denote the weighted push-forward function on R" 
defined by <p = u^y, with uY the conformai factor given by (3.1). We then 
have 

P*(<Pp~2g) = 4yp~2ds2. 
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By the conformai invariance of g, 

\(Sn)= inf J* ' T l 

^^(f^fdx) VP 

But a simple argument using cutoff functions (cf. Lemma 3.4 below) shows 
that 9 can be approximated by compactly supported functions, and therefore 

(3.5) HSn)= inf aWvvWllhWl 
<peQ-(R") 

The Sobolev inequality says that X(Sn) > 0. Thus, identifying X(Sn) and 
the associated extremal functions is equivalent to identifying the best constant 
and extremal functions for the Sobolev inequality. Theorem 3.2 then can be 
rephrased in the following way. 

THEOREM 3.3. The n-dimensional Sobolev constant an is equal to a/A, where 

A = \(Sn) = 0 ( g ) = n(n - 1) vol(S") 2 / \ 

Thus the sharp form of the Sobolev inequality on Rn is: 

(3.6) lkll/»<T- ƒ |v<p| dx. 

Equality is attained only by constant multiples and translates of the functions ua 

defined by (3.2). D 

An upper bound for the Yamabe invariant. An extremely important feature of 
the extremal functions ua is that they become more and more concentrated 
near the origin as a -> 0. In fact, as the following lemma shows, they can be 
approximated very closely by compactly supported functions, which can in 
turn be transplanted to a small neighborhood on a manifold M to obtain a test 
function whose Yamabe quotient is very close to\(Sn). 

LEMMA 3.4 (AUBIN [A2]). If M is any compact Riemannian manifold of 
dimension n > 3, then X(M) < X(Sn). 

PROOF. The functions ua satisfy allVwJli = A|IWJI^ on Rn. For any fixed 
e > 0, let Be denote the ball of radius £ in RM, and choose a smooth radial 
cutoff function 0 < TJ < 1 supported in Z?2e, with TJ = 1 on BE. Consider the 
smooth, compactly supported function cp = t]ua. Since cp is a function of 
r = |JC| alone, 

(3.7) ƒ a\v<p\dx=\ (tf7j2|vwj + 2aTjwa(vi7,Vwa> + au2
a\vr\\ ) dx 

^f a\drua\
2dx + cf (ua\drua\+u2

a)dx, 



VP 
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where Ae denotes the annulus B2e — Be. To estimate these terms we observe 
that 

(3.8) drUaB(2-n)ra-^^^yH/2
9 

and so ua < ain-iyifi-n a n d | g ^ j ^ („ _ 2)a(n~2)/2rl-n. Thus, for fixed e, 
the second term in (3.7) is 0(an~2) as a -> 0. For the first term, 

/ \2/p 

(3.9) f a\drua\ dx = A\ f up
adx + f w£dx 

< A [f <ppdx + f anr~2ndx 
\JB2e

 JR"-Be 

= AI ƒ «p'dxj + 0(<x"). 

Therefore the Sobolev quotient of <p on R" is less than A + Canl. 
On a compact manifold M, let <p = rjwa in normal coordinates {x1} in a 

neighborhood of ? G M, extended by zero to a smooth function on M. Since 
<p is a radial function and grr = 1 in normal coordinates, we have |V<p|2 = |9r<p|2 

as before. The only corrections to the above estimate are introduced by the 
scalar curvature term and the difference between dVg and dx. Since dVg = 
(1 + O(r)) dx in normal coordinates, the previous calculation gives 

E(<P)=J (a\v<p\2 + S<p2)dVg 

< (1 + C7e)[ 7V||<p||̂  + Canl + Cf2e ƒ u2
ar

n-ldi*d\ 

Lemma 3.5 below shows that the last term is bounded by a constant multiple 
of a. Thus, choosing first £ and then a small, we can arrange that 

Qg(q>) < (1 + Ce)(A + Ca), 

which proves that X(M) < A. D 
The following simple calculus lemma will be used again in §5, so we state it 

in somewhat more generality than needed for the above argument. 

LEMMA 3.5. Suppose k > —n. Then as a -» 0, 

1(a) = f rku2
ar

n-ldr 

is bounded above and below by positive multiples of ak + 2 if n > k + 4, 
a*+ 2 log( l /a) ifn = k + 4, and an~2 ifn<k + 4. 

PROOF. The substitution a = r / a gives 

re/a 

' 0 

1(a) = ak+2 fe/a ok+n~l(o2 + \f-n do. 
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Observe that a2 < o2 + 1 < 2a2 for a > 1, so 1(a) is bounded above and 
below by positive multiples of 

ak+2(c + fE/aak + 3-ndo). 

The expression in parentheses is bounded if n > k + 4; it is comparable to 
an-k-4 i f n < k + ^ a n d t 0 log(l/a) if « = fc + 4. D 

4. The variational approach. In this section we will prove that the Yamabe 
problem can be solved on a general compact manifold M provided that 
X(M) < X(Sn). This is the analytic part of the solution. 

The most direct approach to minimizing (1.4) would be to construct a 
sequence of functions for which the functional Qg approaches its infimum (a 
"minimizing sequence"), and hope that some subsequence converges to an 
actual extremal function. However, as we shall see, because the exponent p 
that occurs in the definition of Qg is exactly the critical exponent for the 
Sobolev inequality, this direct approach does not work. 

Suppose {ut} is a sequence of smooth functions such that Qg(ut) -> X(M). 
By homogeneity we can assume that \\ut\\p = 1 for each i. Then 

\\uif2,l=JM(\Vui\
2^u2)dVg 

by Holder's inequality. Therefore, {ut} is bounded in L\(M). Since bounded 
sets in a Hilbert space are weakly precompact, this implies that a subsequence 
converges weakly to a function <p e L\(M). But since p is precisely the 
exponent for which the inclusion L\ c Lp is not compact, we have no 
guarantee that the constraint \\ut\\p = 1 is preserved in the limit. In particular, 
the limit function cp may be identically zero. 

The subcritical equation. Yamabe's approach was to consider first the per­
turbed functional Q\<p) = £(cp)/||(p||2 for 2 < s < p. We set Xs = inf{Ô5(<p): 
9 e C°°(M)}. Observe that a minimizing function <p with ||cp||5 = 1 satisfies 

(4.1) Dcp = x y - 1 . 

We will see that, for s < p, this equation always has a smooth, positive, 
minimizing solution <p5. We begin by showing that elliptic regularity for A 
implies the following basic regularity result for equation (4.1). 

THEOREM 4.1 (REGULARITY THEOREM). Suppose <p G L\(M) is a nonnega-
tiue weak solution of (4.1) with 2 < s < /?, and \XS\ < K for some constant K. If 
<p e Lr(M) for some r > (s — 2)n/2 (in particular if r = s < p, or if s = p < 
r), then <p is either identically zero or strictly positive and C00, and ||<p||C2,« < C, 
where C depends only on M, g, K, and ||<p||r. 
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PROOF. Since <p e U{M\ (4.1) implies that aky = \sy
s~l - S<p e L\M\ 

with q = r / (^ — 1). By elliptic regularity (Theorem 2.5), this in turn implies 
<p G Lq

2(M). The Sobolev embedding theorem now gives <p e Lr(M), with 
r ' = nr/(ns — n — 2r). Observe that our hypothesis on r implies r' > r. 
Iterating this argument shows that <p e Lq

2(M) for all q > 1. Now the Ca case 
of the Sobolev embedding theorem (Theorem 2.2(c)) implies that <p e Ca(M) 
for some a > 0. Then <p*-1 G Ca(M) as well, so by elliptic regularity again we 
conclude that <p e C 2 a (M). Each of the above applications of the Sobolev 
and elliptic regularity theorems gives us a bound on the corresponding norm, 
so we obtain the desired bound on ||<p||C2,«. 

From (4.1) it follows that (A + m)(p > 0, for some constant m > 0 and 
m > sup {(S - \s(p

s~2)/a}. If <p = 0 somewhere, then cp is identically zero by 
the strong maximum principle (Theorem 2.6). Thus cp is either strictly positive 
or zero. 

Finally, since cp is C2,a and nowhere zero, so is (p5_1, and so we can apply 
elliptic regularity iteratively to (4.1) to conclude that (p is C°°. D 

We remark that the above result (without the uniform bound on ||<p||C2,«) has 
been proved in the borderline case r = s = p by Trudinger [T]. Since it is not 
needed for the present argument, we omit it. 

PROPOSITION 4.2 (YAMABE [Y]). For 2 < s < p, there exists a smooth, 
positive solution <ps to the subcritical equation (4.1), for which Qs(q>s) = Xs and 

\\<Ps\\s = I-

PROOF. Let {«,} c C°°(M) be a minimizing sequence for Q\ with \\ut\\s = 1. 
Since Qs(\ut\) = Q'iu^), after replacing ui by \ut\ we may assume ut > 0. As 
we noted at the beginning of this section, {ui} is bounded in L\(M). Since the 
inclusion map L\ c U is compact, a subsequence of the {ut} converges 
weakly in L\ and strongly in Ls to a function % e L\{M) with \\q>s\\s = 1. 

Since by Holder's inequality the L2 norm is dominated by the Ls norm, it 
follows that ƒ Sw,2 -» ƒ Sep2. Weak convergence in L\ implies that 

f \vcps\
2dVg= lim f {vut,V<ps)dVg 

<limsup ƒ \vufdVA ƒ \\?<ps\
2dVg 

and therefore Qs(<ps) < lim^^g^M,-) = Xs. But since Xs is by definition the 
infimum of Q\ we must have Qs(%) = \ s , and so cps is extremal. Thus cps is a 
weak solution to the Euler-Lagrange equation (4.1). By the regularity theorem, 
<ps is positive and C00. D 

The limit as s -> p. Now our task is to investigate the limit of cps as s -> p. 
We will see that, provided \(M) < \(S"), the functions q>s converge uni­
formly to a solution of the Yamabe problem. 

We begin by describing the behavior of Xs. As the following lemma shows, 
the situation is simplified if the metric g is chosen so that fMdVg = 1. From 
now on, multiplying g by a constant if necessary, we will assume that this 
holds. We note that Holder's inequality then implies that \\u\\s < ||w||^ if 
s < s'. 

l / Z 

file:///vufdVA
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LEMMA 4.3 (AUBIN [A2]). If fM dVg = 1, then \XS\ is nonincreasing as a 
function of s e [2, p\\ and if X(M) > 0, Xs is continuous from the left. 

PROOF. We show first that \XS\ is nonincreasing. Observe that for any s and 
s\ and any nonzero u e Cco(M), 

(4.2) Q^u) = ^Q'(u). 

If s < s\ then ||w||5 < ||K||5,, and therefore \XS,\ < \\s\. 
We remark that if Xs < 0 for some s, we can choose M G C°°(M) such that 

Q\u) < 0, and (4.2) shows that Qs\u) < 0 for any s'\ thus Xs < 0 for all 5. 
Now suppose X(M) > 0; by the above remark Xs > 0 for 2 < 5 < p. 

Choose s e [2, />]. Given e > 0, there exists u e C°°(M) such that Qs(u) < 
Xs + e. Since ||w||5 is a continuous function of s, Xs, ^ Qs\u) < Xs + 2e for 
s' < s sufficiently close to s. Since \ 5 is nonincreasing, this shows that Xs is 
continuous from the left. D 

The error in Yamabe's proof was the claim that the functions {<p5} are 
uniformly bounded as s -> p. This is false in general, as we will see below in 
the case of the sphere. However, the following uniform U bound does hold 
provided X(M) < X(Sn), and this is sufficient to solve the problem. 

It has been traditional to consider separately the cases X(M) < 0 and 
X(M) > 0. The following proof disposes of both cases together. 

PROPOSITION 4.4 (TRUDINGER [T], AUBIN [A2]). Suppose X(M) < X(Sn), 
and let {(ps) be the collection of functions given by Proposition 4.2. There are 
constants s0 < /?, r > p, and C > 0 such that \\%\\r < Cfor all s > s0. 

PROOF. Let 8 > 0. Multiplying (4.1) by (p] + 28 and integrating, we obtain 

ƒ {a(d<ps,(l + 2Ô)<p?d<ps)+S<p^)dVg = \s( <pt+2SdVg. 

If we set w = <p]+s, this can be written 

1 + 28 f , , ,2 

(1 + 8YJM " JM 
f a\dw\2dVg=f (Xsw

2cps
s-

2 - Sw2)dVg. 

Now applying the sharp Sobolev inequality (Theorems 2.3 and 3.3), for any 
e > 0, 

|w| |*< (l + e ) x / " \dw\2dVg+Ce[ w2dVg 

/^ \ (1 + 8) A„ ,, „2.. ,.s-2 „ , „ „2 

< (i + e)j^^^\H\phA(s-2)n/2 + c:\\w\\2, 
by Holder's inequality. 
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Since s < p, (s — 2)n/2 < s, and thus by Holder's inequality again 
\\<Ps\\(3-2)n/2 < \\<Ps\\s = 1- N 0 W i f 0 < X ( M ) < A> t h e n f 0 r S O m e 0̂ < P> *s/A 

< XSo/A < 1 for s > sQ. Thus we can choose e and 8 small enough so that the 
coefficient of the first term above is less than 1, and so can be absorbed in the 
left-hand side. Thus 

2 2 

\\w\\p < Cl|w||2. 

The same result obviously holds if X(M) (and hence Xs) is less than zero. But 
applying Holder's inequality once more, we see that 

lkll2 = lkJl2(î+a)<ll<pJL+ = i . 

Therefore HwĤ  = ||<p5||̂ ~/+s) is bounded independently of s. D 
We can now prove that the Yamabe problem has a solution if X(M) < X(Sn). 

Theorem A of the Introduction is an immediate consequence of the following 
result. 

THEOREM 4.5. Let {ys} be the functions given by Proposition 4.2, and assume 
X(M) < X(Sn). As s -> /?, a subsequence converges uniformly to a positive 
function <p e C°°(M) which satisfies: 

Ôg(<p) = A(M), U<p = \(M)<p'-1. 

Thus the metric g = <pp~2g has constant scalar curvature X(M). 

PROOF. Since the functions {<ps} are uniformly bounded in Z/(M), the 
regularity theorem shows they are uniformly bounded in C 2 a (M) as well. The 
Arzela-Ascoli theorem then implies that a subsequence converges in C2 norm 
to a function <p G C2(M). The limit function <p therefore satisfies 

n<p = \<p'-1
9 Qg(q>) = \, 

where X = l im^^A^. If X(M) > 0, Lemma 4.3 shows that X = X(M). On 
the other hand, if X(M) < 0, the fact that Xs is increasing implies that 
X < X(M); but since X(M) is the infimum of Q we must have X = X(M) in 
that case as well. 

Now a final application of Theorem 4.1 shows that <p is C00, and it is strictly 
positive because \\<p\\p > Kms_+p\\<ps\\s = 1. D 

There are many other methods of obtaining the solution in the case 
X(M) < 0. Jerry Kazdan [K] has given an excellent survey. 

Existence on the sphere. It is important to note that the hypothesis X(M) < 
X(Sn) is necessary in the previous theorem. On the sphere itself, the presence 
of a noncompact group of conformai diffeomorphisms defeats the above 
approach: the family of metrics ( a " 1 ^ ) * ^ on the sphere, as a -> oo, are all 
solutions to the Yamabe equation, but not uniformly bounded. 

On the other hand, the very existence of this family of conformai diffeomor­
phisms enables us, with a little more effort, to prove existence of extremals on 
the sphere, by means of the following "renormalization" approach, due to 
Karen Uhlenbeck. 
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PROPOSITION 4.6. There exists a positive, C00 function \p on Sn satisfying 
Q-g(4,) = \(Sn). 

PROOF. For 2 < s < p, let cps be the solution on Sn to the subcritical 
problem (4.1), given by Proposition 4.2. Composing with a rotation, we may 
assume that the supremum of (ps is attained at the south pole for each s. If 
{cps} is uniformly bounded, the method of Theorem 4.5 shows that a subse­
quence converges to an extremal solution; so assume from now on that 
sup<p, -> oo. 

Now let Ka = o~l8ao: Sn -» Sn be the conformai diffeomorphism induced 
by dilation on R", as described in the beginning of §3. If we set ga = /c*g, we 
can write ga = tp

a~
2g, where the conformai factor ta is the function 

, . ( f , t ) .((i + o+j-o-«>)-•" 
Observe that at the south pole ta = a (2_n) /2. 

For each s < /?, let \ps = taK*(ps, with a = as chosen so that \ps = 1 at the 
south pole. This implies that as = (sup<p5)

2/(w_2) -> oo as s -> /?, and i//5 < 
a(«-2)/2^ o n ^ j^et Da denote the conformally invariant Laplacian with 
respect to the metric ga; by naturality of D, Da(K*q>s) = K*(Dq>s). Then by the 
transformation law for D (2.7) we have 

( 4 . 3 ) D ^ s = n(taK*a<ps) = t'-^aiKfr,) = Kt'-^Kfr,)'-1 

Observe that this transformation law also implies that 

l l ^ l k i < Ci ÏM.dVg = Cf <psO<psdV-g < C'||V,||2>1 
Jsn

 JS" 

so {\ps} is bounded in L\(Sn), and hence also in Lp(Sn) by the Sobolev 
theorem. Let xp G L\(Sn) denote the weak limit. 

Now if P is the north pole, on any compact subset of Sn — {P} there exists 
a constant A such that ta < Aa^2~n)/1, and thus the right-hand side of (4.3) is 
bounded there by X2A

p~l, independently of s. This implies that, on any such 
set, the right-hand side is bounded in U for every r. Arguing as in the proof of 
Theorem 4.1, but using local elliptic regularity (Theorem 2.4), {\ps) is bounded 
in C2a on compact sets disjoint from P. Let Kx c K2 c • • • be a sequence of 
compact sets whose union is Sn - {P}. By the Arzela-Ascoli theorem, we can 
choose a subsequence of {\ps} that converges in C2(Arx), and then a subse­
quence that converges in C2(K2), etc. Taking a diagonal subsequence, we see 
that the limit function \p is C2 on Sn - {P}. 

Since Xs -> A and tp
a~

s < 1 away from P for s near p, we conclude that \p 
satisfies Di// = fxpp~l on Sn - {P}, for some C2 function ƒ with 0 < ƒ < A. 
By the removable singularities result (Proposition 2.7), the same equation must 
hold weakly on all of Sn. For each s, 

Hst = f tPa(<%YdVg 

= ƒ (<<Ps)"<dVg = HvX > VoliS-f-^C 
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This implies that ||^|| > 1, and therefore QË(^) < A. But since A is by 
definition the infimum of Qg, we must have D\p = A^p~l and Qg(\p) = A. 

It remains to show that \p is positive and smooth. By the regularity theorem, 
it suffices to show that i(/GL r for some r > p. For q > 1 the operator D: 
L\ -> Lq has a bounded inverse by elliptic regularity. Consider the perturba­
tion 

D, = D - rjAip-2 

for i) e C0O(5,n) supported in a small neighborhood of P. D^ will also have a 
bounded inverse if the operator norm of the perturbation term r)A\pp~2 is 
small enough. If we choose q such that 2n/(n -f 2) < q < n/2 and set 
r = nq/(n — 2g), then for u e L*, 

| |T,A*'-2«||, < A||V/('-2)*ir/2|l«ll. < CA||V/('-2)*||'/2||«IU 

by the Holder and Sobolev inequalities. Thus we can make the operator norm 
as small as we like by choosing r\ with small support and 0 < TJ < 1. 

Now D ^ = (1 - r))Axj,p-1 G Lq(Sn) since ^ is C2 away from P. There­
fore, since D^: L\ -> Lq is invertible, there exists £ e L^S"1) c Li(5w) such 
that Dî?(£ — ^/) = 0. Using the Sobolev and Holder inequalities as above, 
IMlli ^ ƒ u^u < ƒ "•,,« + e|Ml2,i when the support of T] is small. Thus D^ is 
injective on L2, and so we must have */, = £ e L\(Sn) c U{Sn). Since r > /?, 
Theorem 4.1 implies that ^ is C00, and since \p = 1 at the south pole, /̂ is 
strictly positive. D 

It can be shown, in fact, using methods of H. Brezis, L. Nirenberg, E. Lieb, 
and P.-L. Lions (see [BL, BN, and L]), that any minimizing sequence on the 
sphere can be renormalized to converge to a smooth extremal. 

Uhlenbeck has adapted the renormalization method described above to give 
another proof that the Yamabe problem can be solved on any compact 
manifold M provided that X(M) < X(Sn). Assuming the sequence of solu­
tions to the subcritical equation is not uniformly bounded, she uses Rieman-
nian normal coordinates to transfer the sequence to R", where a renormalized 
sequence can be made to converge to a function that contradicts the Sobolev 
inequality if X(M) < X(Sn). (See also [SU and JL2] for other applications of 
this technique.) 

5. Conformai normal coordinates. In Riemannian geometry, geodesic normal 
coordinates are invaluable for comparing the local geometry of a manifold with 
that of Rw. In this section we will describe a set of similar coordinate charts on 
a conformai manifold M. These will be normal coordinate charts for some 
metric g within the conformai class; the freedom in the choice of g will enable 
us to find coordinate systems that simplify the local geometry more than 
normal coordinates in a fixed Riemannian structure. 

Our first application of conformai normal coordinates will be a very simple 
proof of Aubin's Theorem B of the Introduction. In the next section we will 
apply them to the calculation of asymptotic expansions of the Green function 
for D, and in §7 we will use them again to prove Theorem C. 
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Normalized conformai structures were first constructed by Robin Graham 
[G], who proved, in connection with his work with Charles Fefferman on 
conformai invariant theory, that for any P e M it is possible to find a 
conformai metric for which the symmetrized covariant derivatives of the Ricci 
tensor of g vanish at P. Later in this section we will give a simple proof of 
Graham's theorem. 

Graham's normalization is designed for simplifying the algebra of conformai 
invariant theory. For our purposes we want a normalization that simplifies the 
local analysis. Based on formula (2.1) for the Laplacian, we might guess that a 
good choice for this normalization would be to choose a conformai metric for 
which det g = 1 in g-normal coordinates. (Intrinsically, this means that the 
Jacobian of the exponential map of g is 1.) This is the normalization we will 
choose. 

THEOREM 5.1 (CONFORMAI, NORMAL COORDINATES). Let M be a Riemannian 
manifold and P e M. For each N > 2 there is a conformai metric g on M such 
that 

detg0 .= l + 0 ( r " ) , 

where r = \x\ in g-normal coordinates at P. In these coordinates, if N > 5, the 
scalar curvature of g satisfies S = 0(r2) and AS = ^\W\2 at P. 

The proof will be carried out below. First, to illustrate the usefulness of these 
coordinates, we present an application. 

PROOF OF THEOREM B. Let { JC'} be conformai normal coordinates in a 
neighborhood of ? e M. Recalling the notation of Lemma 3.4, let <p = t]ua in 
x-coordinates, where TJ is a cutoff function supported in P2e. Since dVg = dx 
in conformai normal coordinates, the estimates of that lemma apply without 
the factor (1 4- Ce) to show that 

£(<p) < A\\<pfp + Can~2 + ƒ S<p2dx. 

But now in conformai normal coordinates S = 0(r2) and âS(P) 
= i | ^ ( P ) | 2 , s o 

f S<p2dx^ f Suldx + cf u\dx 
B2e Be Ae 

= f f l^StijX
ixJ+ O(r3))u2

ado)rdr + 0(an~2) 

= f (-Cr2\W(P)\2 + 0{r3))u2
ar

n-ldr+ 0{an~2). 

Lemma 3.5 therefore shows that 

( A | M | 2 , - C | ^ ( / > ) | V + 0 ( « 4 ) if»>6, 

(A| |qp| | , -C|FF(/») | a 4 log( l /«) + 0 ( a 4 ) if n = 6. 
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If M is not locally conformally flat, we can choose P so that |W(P)|2 > 0, and 
then Qg(<p) < A for a sufficiently small and n ̂  6. Thus X(M) < A. D 

The key ingredient in the proof of Theorem 5.1 is the following inhomoge-
neous version of Graham's main result. 

THEOREM 5.2. Let P e M, k ̂  0, and let The a symmetric (k + 2)-tensor on 
TPM. There is a unique homogeneous polynomial f of degree k + 2 in g-normal 
coordinates such that the metric g = e2 f g satisfies 

Sym(vk~Ru)(P)=T. 

PROOF. Let {JC*} be g-normal coordinates at P, r = \x\, and let 0)
m denote 

the space of homogeneous polynomials in x of degree m. If we set Fg(x) = 
RiJ(x)xlxJ\ then by Taylor's theorem 

Fg= £ Fg
(w)+0(r^+3), 

m = 2 

where 

^ ( m ) =
 ( m ! 2 ) ! ^ ( i > > A ¥ e ^ ' 

(The sum is over i, j and all multi-indices K = (fc l5... ,fcw_2) of length 
| A'| = m - 2.) Observe that the covariant derivatives of !£,.. are related to 
ordinary partial derivatives by Rtj K(P) = dKRtj(P) + SijK, where the S ^ 
are constructed as polynomials in the curvature and its derivatives of order 
< \K\ at P. If g = e2/g with ƒ G 0>fc+2, then SiyX = SijK when |tf| = k. 

Our result is equivalent to finding ƒ G ^ + 2 s u c r i t r i a t 

(5.1) ° = F ^ I^W-v)*'*'** 

(We have used the fact that g-normal coordinates differ from g-normal 
coordinates by 0(rk+2).) By Euler's formula, x'x'djdjf = (x'd^f - xldtf = 
(k + 2)(k + 1)/; and A / = A0/4- 0(rk+1\ where A0 is the Euclidean Lapla-
cian in x-coordinates. Thus the transformation law (2.5) for RtJ gives 

FSk+2\x) = J?*+2>(*) + x'XJ{-(n - 2 )3 ,8 /+ A0/8„) 

= i f + 2 > ( x ) - ( « - 2)(* + 2)(fc + 1 ) / + /-2A0/. 

Thus there is a unique ƒ so that (5.1) is satisfied provided that the operator 
r2A0 — (n - 2)(k + 2)(A: 4- 1) is invertible on @k+2- This is guaranteed by the 
following lemma. D 

LEMMA 5.3. The eigenvalues ofr2k0 on @m are 

{\j = -2j(n - 2 + 2m - 2j): j = 0 , . . . , [m/2]}. 
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The eigenfunctions corresponding to Xj are the functions of the form r2ju, where 
u G ^m-ij *s harmonic. 

PROOF. This holds for m = 0 or 1 since r2à0 = 0 on &m in these cases. For 
m > 2 suppose ƒ e 0>m satisfies r2A0/ = Xf. By Euler's formula, A0 / e ^ m _ 2 

satisfies 

AA 0 /= A0(r2A0 /) = A 0 ( r 2 ) A 0 / - 4x%à0f + r2A2
0/ 

= - 2 * A 0 / - 4 ( m - 2 ) A 0 / + r 2 A 2
0 / , 

so r2A0(A0 /) = (X + In + 4m - 8)A0/. This means that either A0 / = 0, in 
which case X = 0 and ƒ is harmonic, o r \ + 2« + 4m — 8 is an eigenvalue of 
r2A0 on ^ m _ 2 with eigenfunction A0/. In the latter case, ƒ = A~V2A0/. The 
lemma now follows by induction. D 

COROLLARY 5.4 (GRAHAM [G]). Given P e M, TV > 0, //*m? existe a me/nc 
conformai to g such that all symmetrized covariant derivatives of the Ricci tensor 
of order < N vanish at P. 

PROOF. By induction on N: choose T = 0 in the above theorem, and note 
that ƒ e &>N+2 implies that V *&l7 = V kRtj for fc < N. D 

LEMMA 5.5. /« g-normal coordinates, the function det gy • has the expansion 

(5.2) det glJ = 1 - }*„•*'*> - \RIJtkx'xJxk 

~\U5^ijtkl "*" 9öRpijmRpklm ~ T$RijRkl)X xJx X + ^ ( r )> 

vv/iere //ie curvatures are evaluated at P. 

PROOF. Let {x1} denote normal coordinates for g on a neighborhood U of 
P, and use them to identify U with an open set in Rn. To compute the 
expansion of the metric gtj{x), we first recall the definition of a Jacobi field. 

Fix T, i e Rw, consider the map y: R X R -> Rn by ys(t) = *(T + s£) which 
gives a one-parameter family of radial geodesies, and let T = y5'(0- The 
variational vector field 

x{y,(t)) = £y,(')-ti 
is called a Jacobi field. Since for each s, ys satisfies the geodesic equation 
VTT = 0, and since 0 = y*[9/9f, d/ds] = |T, X] = v r X - vxT, we have 

o = VXVTT = v r v x r -([v r , v*] - V[^r])r 
= V r V r X - R(T,X)T. 

Thus X satisfies the Jacobi equation V%X = RT(X), where RT is the curvature 
endomorphism R(T, )T. 

The Taylor series of f(t) = \X(y0(t))\
2 can be computed by repeatedly 

differentiating with respect to v r , using the Jacobi equation, and evaluating at 
/ = 0, noting that X(0) = 0 and vTX(0) = £. The first few terms are: 

VT / (0) = 0, V £ / ( 0 ) - 2 < U > 0 , 

W/(0) = 0, v£/(0) = 8<tfT^>0> 
V^/(0) = 20((vrRT)è, t)0, V ^ ( 0 ) = 36((vT

2*T)*> l ) 0 +32(*T£, tfT£>0-
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Therefore, 

(5.3) a 0 , T = r2|*(Yo(O)|2 

2 3 

= <£,£)o + y <*,*,*><, + j <(vTüT)«,€>0 

Polarizing this with respect to £ and substituting x = tr yields the expansion 
for the metric in normal coordinates: 

(5.4) gpq(x) = Spq + \Rpijqx^ + i i ^ . ^ x W 

+ \2Ö%'^,it/+ 45^pijm^qklm)X X X X + 0\T ), 

where the curvature terms are to be evaluated at the origin. This can be written 

gpq = QXPA
Pq>

 w h e r e 

Apq(x) = hRpij^xJ + LRM^XWX" 

Then det gpq = exp (tr^4 ) has the expansion (5.2). D 
PROOF OF THEOREM 5.1. Assume by induction that g satisfies detg/y = 1 + 

0(rN), N ̂  2. It can easily be seen that each term in the expansion (5.3) for 
(£, £) has the form 

c / ( ( ( v * - \ ) U ) + B t ( U ) ) , 

where ck is a constant and Bk is a bilinear form constructed from JRT and its 
derivatives of order less than k — 2. Thus the expansion of det gtj is of the 
form 

detg,,. = 1 + Z cN(RIJiK - TljK)xlxJxK + 0(rN^), 

where TijK are the coefficients of a symmetric tensor T on TP M constructed 
from the curvature and its derivatives of order less than N - 2. 

By Theorem 5.2, there is a unique ƒ e &>N for which Sym(v7V_2A/y) = T. 
But T = t when ƒ G ̂ , so det gtj vanishes to order TV + 1 in g-normal 
coordinates. From now on, we will replace g by g. 

The condition det gtj = 1 means that the symmetrization of the coefficients 
of (5.2) vanishes, so at P 

(a) 0 = *,.,, 

(5.5) (b) 0 = RIJik + RJktl + Rkl<J, 

(c) 0 = Sym (RiJikl + ÏRpiJmRpklm). 

Then RiJkl = Wijkl by (5.5a), and 

R-ij,kl ~ R-ijJk ~ & iklR-mj + R jkl^-im = «> 
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so (5.5c) gives 

o = {Rw + Rki,u + 2Rikji + ^ji,ik)^j 

~*~ 9 v wptjmwpklm+ WpikmWpjim -r rrpkimyypjim 

"*"'WpjknjVplim + WpkjmWplim + WplkrJVpjim)x x . 

Now contract on k, /, noting the contracted Bianchi identity (2.4), and that 
WpikmWpkjm = Wpikm(Wpkjm - Wpmjk) = \WpikmWpjkm by the symmetries 
of the Weyl tensor: 

Contracting on /, 7 implies AS = - S 7 = £|W|2 at P. 
Finally, S(P) = P,7(P) = 0 by (5.5a), 0 = (2Rjktk + P ^ 7 ) ( P ) = 2SJP) 

by (5.5b) and the Bianchi identity, so S = 0(r2). D 
It is worth noting that, just as Riemannian normal coordinates are unique 

up to the action of O(n), conformai normal coordinates are unique up to a 
similar finite-dimensional group action. 

THEOREM 5.6. Let (M, g) be a Riemannian manifold and P G M, and let H 
be the group of conformai diffeomorphisms of Sn fixing the north pole. There is a 
natural simply transitive action of H on the set of formal power series of 
conformai normal coordinates for the conformai class of g at P. 

PROOF. H is generated by O(n) (rotations fixing the north pole), together 
with the 'dilations' a " 1 ^ and 'translations' o~\a, as described in §3. From 
Theorem 5.2 above, the power series of the metric g with detg,7 = 1 is 
uniquely determined once we fix the one-jet of g; and conformai normal 
coordinates are then uniquely determined by the choice of a g-orthonormal 
frame at P. 

The action of H on the set of conformai normal coordinate charts is 
obtained as follows: Let ö be the stereographic projection sending the north 
pole in Sn to 0 G R". Given conformai normal coordinates x: M -> R" for a 
metric g in the conformai class, and h G H, let g' = (x~löhö~lx)*g, and let 
{et} be the frame obtained by pulling back {d/dx1} by the same map. It is 
easy to check that {et} is g'-orthonormal and that the one-jet of g' is 
conformai to g. So we can let {y1} denote the unique conformai normal 
coordinates determined by the one-jet of g' and the frame {e,}, and set 
h - x = y. 

Since O(n) acts simply transitively on the set of frames for any choice of 
metric at P, the proof is completed by the observation that H/0(n) acts 
simply transitively on the set of one-jets of conformai metrics at P. (If we write 
g' = e2fg, then /(O) is determined by a dilation, and df(0) is determined by a 
translation.) D 

Of course the above construction of conformai normal coordinates does not 
achieve the normalization det g = 1 exactly; however, we can make the error 
terms 0(rN) for N arbitrarily large. In the rest of this paper, whenever we 
refer to conformai normal coordinates, it will be understood that we are 
calculating modulo such inconsequential error terms. 
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Although a formal power series approximation of conformai normal coordi­
nates is sufficient for the Yamabe problem, it would be of interest to know if 
the normalization can be achieved exactly in a neighborhood of P. Such 
normalized coordinates could be of value in other analytic problems in 
conformai geometry. 

6. Stereographic projections. In §3 we used stereographic projection to 
transfer the Yamabe functional from Sn to RM, where analysis is simpler. In 
this section we will describe an analogous conformai map which is defined for 
any compact manifold M with positive Yamabe invariant. We will then use 
conformai normal coordinates to compute the asymptotic behavior of this 
map. 

Under stereographic projection, the Euclidean metric pulls back to a metric 
g on Sn — {P}, conformai to the standard metric g, with zero scalar curva­
ture. Therefore g = Gp~2g for some function G which satisfies DG = 0. This 
function G is singular at P and, in fact, is a multiple of the Green function of 
D at P o n Sn. Conversely, if we start with the Green function, then Gp~2g 
defines a metric on Sn - {P} which is isometric to the Euclidean metric on 
Rn. The isometry, of course, is stereographic projection. 

The property of Rn that is most useful in the analysis of the Yamabe 
functional is vanishing scalar curvature. With this in mind, we can repeat the 
above construction for an arbitrary compact manifold (M, g), replacing g by 
Gp~2g, provided the Green function exists. This will always be the case if the 
Yamabe invariant of M is positive. 

LEMMA 6.1. Suppose X(M) > 0. Then at each P e M the Green function TP 

for D exists and is strictly positive. 

PROOF. Let u > 0 be the smooth, positive solution to the subcritical equa­
tion (4.1) for any s < p given by Proposition 4.2, and define a new metric 
g' = up~2g. The scalar curvature S' of g' is S" = ul~pDu = Xsu

s~p. Since 
X(M) > 0 implies Xs > 0, S' is strictly positive. Thus by Theorem 2.8, the 
Green function Tp for D' exists. If at its minimum Tj> < 0, then Tp would be 
constant by the strong maximum principle, which is impossible; therefore Tp is 
strictly positive. 

Now if we set TP(x) = u(P)u(x)TP(x\ then TP is strictly positive, and by 
(2.7) and Theorem 2.8 it satisfies for any ƒ e C™{M) 

u~\P)f{P)= ƒ Tp(xp'{u-\x)f(x))dVg,(x) 

= f u-1(P)u-l(x)TP(x)(u1-P(x)Df(x))u''(x)dVg(x) 
JM 

= u-\P)f TP(x)Df(x)dVg(x). 

This is equivalent to DTP = 8P. Thus TP is the Green function for D. D 
If X(M) < 0, the Yamabe problem for M has already been solved by the 

results of §4. Thus we will assume throughout this section that X(M) > 0. In 
that context we define generalized stereographic projections. 
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DEFINITION 6.2. Suppose (M, g) is a compact Riemannian manifold with 
X(M) > 0. For P e M define the metric g = Gp~2g on M = M - {P}, where 
(6.1) G=(n-2)uaTP. 
The manifold (M, g) together with the natural map o: M — {P} -> M is called 
the stereographic projection of M from P. 

The image manifold of a stereographic projection has a special geometric 
structure, called asymptotically flat. 

DEFINITION 6.3. A Riemannian manifold N with C°° metric g is called 
asymptotically flat of order r > 0 if there exists a decomposition N = N0 U N^ 
(with N0 compact) and a diffeomorphism N^ <-» Rn — BR for some R > 0, 
satisfying'. 

giJ = 6,j + <9(p"T), 9kg,j = Ofp-*-1) , 3*3,gy = 0 ( p - T " 2 ) , 
as p = \z\ -> oo in the coordinates {z1} induced on N^. The coordinates {z1} 
are called asymptotic coordinates. 

This definition apparently depends on the choice of asymptotic coordinates. 
However, we shall see in §9 that the asymptotically flat structure is determined 
by the metric alone. 

Now fix a point P e M. By an initial conformai change we may assume 
that, near P, g is the metric of a conformai normal coordinate system. In this 
case we will give a very explicit description of the asymptotically flat structure 
of the stereographic projection ( Af, g). 

The singularity of the Green function TP is, to highest order, the same as 
that of the fundamental solution of the Laplacian on R". In fact (cf. [PR]), TP 

has an asymptotic expansion in terms of the geodesic distance r from P9 the 
leading terms of which are readily computed in conformai normal coordinates. 
For convenience we adopt the following notations. 

NOTATION. We write f = 0\rk) to mean f = 0(rk) and v / = O^*"1) . O" 
is defined similarly. The set ofC°° functions that vanish to order k at P is denoted 
^k. As in §5, &k is the space of homogeneous polynomials of degree k. 

LEMMA 6.4. Let G be given by (6.1). In conformai normal coordinates {x1} at 
P, G has an asymptotic expansion 

(6.2) G(x) = r2~» 1 + t **(*)) + clogr 4- 0" ( l ) , 

where r = \x\, \pk e <Pk9 and the log term appears only if n is even. The leading 
terms are: 

(a) if n = 3, 4, 5, or M is conformally flat in a neighborhood of P, 

G = r2~" + A + 0"(r) {A = constant)', 
(b) ifn = 6, 

G = r2~n- 2 ^ l ^ ( P ) | 2 l o g r + 0 - ( l ) ; 

(c) ifn > 7, 

G = r 2-n 1 + ÏM^(ï2(^l^)la- s . '^)*H 
+ 0"(r1-"). 
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This will be proved below. First, we observe that the asymptotically flat 
structure of g can be derived immediately from this lemma. 

Let {x*} be conformai normal coordinates on a neighborhood U of P, and 
define 'inverted conformai normal coordinates' zl' = r~2xl on U - {P}. With 
p = \z\ = r" 1 we have 

d/dz* = P~2{SU - 2p-2zizJ)'è/'àxj. 

If we write y = rn~2G, the components of g in z-coordinates are 

(6.3) gu(z) = yP-yg(d/dz',d/dzJ) 

= y»-*{ôik - 2p"Vz*)(8, ; - 2p" Vz ' )s* , (p- 2 *) 

= y ' - 2 ( 8 y + 0 " ( p - 2 ) ) . 

If M is conformally flat near i \ g^ = 8kl in conformai normal coordinates, so 
this reduces to gtj = yp~28iJ in that case. Noting that the expansions for G 
give corresponding expansions for y, we have proved the following explicit 
description of the stereographic projection. 

THEOREM 6.5. The metric g is asymptotically flat of order 1 if n = 3, order 2 if 
n ^ 4 a«J order « — 2 if M is conformally flat near P. In inverted conformai 
normal coordinates it has the expansion 

(6-4) g„.(z) = Y*-2(z)(8,,+ 0 " ( p - 2 ) ) 

where, in the three cases of Lemma 6.4, 

(a) y(z) = 1 + Ap2-" + O'^p1-") (A = constant); 

(b) y(z) = 1 + ^\W(P)\2p-*logp + 0 " ( p " 4 ) ; 

+ 0 " ( p - 5 ) . D 

PROOF OF LEMMA 6.4. Write G = r2~n(l 4- ^/). Since g r r = detg = 1 in 
conformai normal coordinates, the Laplacian A (given by (2.1)) is equal to the 
Euclidean Laplacian A0 when applied to functions of r alone. Hence Ar2~n = 
A0r2 _ w = (n — 2)o)8p on U, and the equation DG = (n — 2)ùia8P becomes 

(6.5) n(r2-"xp) + Sr2~n = 0. 

From (2.1), A^ = A<ty 4- Aty, where 

(6.6) ^ = a/((ô^-g^)a^). 
Multiplying by rn/a, writing L = r2A0 4- 2(« — 2)rdn and assuming ^ is 
continuous, we see that (6.5) is equivalent to 

Li// + L
ar

2{S + Sty 4- oAty) = 0. 

We begin by computing a formal asymptotic solution to this equation, 
writing ^ = i/^ 4- --- +\pn, with ^ e 0>k9 and solving inductively for each 
\pk. Since S' = 0(r2) in conformai normal coordinates,_we start by setting 
^ i = ^ 2 = ^3 ^ 0. Suppose by induction we have found \p = ^ 4- • • • 4 - ^ _ 1 
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such that 

(6.7) L$ + i r 2 ( S 4- S$ + aK$) e Vk. 

Write the right-hand side as bk 4- Vk+1, with bk e 0>k. Now suppose we can 
find ipk e 0>k such that 

L*k + bk = 0. 

Then, noting that r2S\pk G ^ + 4 and r2K\pk e ^ + 2 , when we replace \p by 
^/x 4- • • • +tpfc, (6.7) is satisfied with A: replaced by fc + 1, completing the 
induction step. 

First consider the case when n is odd. Since L = r2A0 4- 2k(n — 2) on ^ , 
Lemma 5.3 shows that L is always invertible on &k when n is odd, so we 
simply take \pk= — L - 1 ^ . By induction, there exists \j/ = ^ 4- • • • 4-i//w such 
that (6.7) holds with k = n 4- 1, which is equivalent to 

(6.8) D ^ 2 - ^ ) 4- Sr2-" G r ' X + i -

If n is even, this construction works for k < n - 2 but then breaks down 
since L is not invertible on &k îor k ^ n — 2. Observe, however, that 
&k = imL © kerL since L is self-adjoint with respect to the EucUdean inner 
product (LajX^Y.bjX1) =Y,ajbj on &>k. When kerL # 0, we try instead a 
function of the form \pk = / ^ 4- g^logr, with /?£, 4^ G ^ . By direct compu­
tation, 

(6.9) L(pk + flfelogr) = L ^ +(n - 2 - 2k)qk +{Lqk) logr. 

Thus if k > n — 2 we can solve Li/^ 4- 6^ = 0 with 6^ e ^ by writing 
— bk = Lpk 4- #£, L ^ = 0, and setting 

tk=Pk+(rl ~ 2-2k)~lqk\ogr. 

For k < n — 2 the induction proceeds as in the odd-dimensional case. When 
k = n — 2, Lemma 5.3 shows that the kernel of L on &n_2 is spanned by 
rn~2. Thus there exist c e R and /?n_2 e ^ n _ 2 such that i//w_2 = /?n_2 + 
c r n - 2 l o g r satisfies L\pn_2 4- 6n_2 = 0. 

Before continuing with the next two steps (k = n — 1, «) we note that 
fortunately */>M_2 does not introduce any logarithmic error terms on the 
right-hand side of (6.7). Indeed, if *// is a function of r alone then (6.6) and the 
expansion (5.4) for the metric show that 

K* = ^({\Rikljx
kxl + ^3)r-V3 r4 

But Rikljx
kxlxj = 0 by the symmetries of the curvature, so with \pn_2 as 

above, K\pn_2 e c€n_2 4- <£n_l logr. Writing j / = ^ + • • • +^„_2 , this im­
plies 

L ^ + i r 2 ( S + Sj 4- a*ty) e <^n_1 + Vn+l logr. 

As before, writing the right-hand side as bk 4- ^k+1 4- # r t+1 logr, we can 
solve successively for \pk e ^ 4- ̂  logr, k = n — 1, n. Thus we end up with 
^ = $i + * * * + */'« satisfying 

(6.10) D ( r 2 " ^ ) 4- Sr2~n e r~HVn+1 4- r - " logr« ; + 1. 
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Now for any n write \p = \p + <p. By (6.5) together with (6.8) or (6.10), 

n(r2~n<p) = - D ( r 2 " ^ ) - Sr2~n e Ca. 

Therefore by local elliptic regularity r2~nq> e C2,a. This proves (6.2), and it 
remains only to verify the stated expansions of G. 

If M is conformally flat near P, then S = 0, so (6.5) shows that r2~n\p is 
harmonic and hence C°°. Therefore G = r2~n + A + 0"(r) in that case. If 
n = 3,4, or 5, the same result holds since then r2~n(p e C 2 a and r 2 _ n ^ = 
0"(r). 

Finally, for n ^ 6, we need only confirm that the leading term \p4 is given 
by the stated formulas. Expanding S in its Taylor series at P, the above proof 
shows that \p4 satisfies 

(6.11) L*4= -(l/2a)r2Skl(P)xkx'. 

If n > 6, beginning with the guess \p4 = r2bklx
kxl and using the fact that 

s,kk(p) = ~ AS(P) = - \\W(P)\2 by Theorem 5.1, we find by explicit com­
putation that (6.11) is satisfied with 

*<" ÎM7T3)(u^l-WI2-s^Wxw). 
If « = 6, we try \//4 = r2(bkl + c^ / logr )*^ , and find that 

solves (6.11). This proves the lemma. D 
This argument can easily be adapted to give a direct proof of the existence of 

the Green function. 

7. The test function estimate. We will now construct a test function on the 
asymptotically flat manifold M and express its Yamabe quotient in terms of a 
number determined by the geometry of M. This approach combines the proofs 
of Theorems B and C of the Introduction. 

Most of the results in this section were inspired by the work of Schoen [S]. 
For a > 0 let ua be the Sobolev extremal functions on Rn given by (3.2). 

One can check easily that ah0ua = 4n(n - l)w£ - 1 (where A0 is the Euclidean 
Laplacian), and therefore A = X(Sn) = 4n(n - l)||t/J|£~2. 

Fix a large radius R > 0, let p(z) = \z\ in inverted conformai normal 
coordinates (extended to a smooth positive function on M), and let M^ = 
{ p > R } as in §6. Define <p on M by 

^Z) \ua(R) P(z)<R, 

with a » R to be determined later. Observe that, as a -> oo, ua(z) becomes 
very nearly constant for \z\ < R, and so we can expect that the effect of 
replacing ua by a constant inside radius R should become negligible. More­
over, the metric on M^ closely approximates the Euclidean metric, and so the 
Yamabe quotient QJ<p) should become close to A. 
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Since <p is a function of the radial variable p alone, the behavior of Qg(<p) as 
a -> oo depends on the "average" behavior of the metric g over large spheres. 
It is useful to introduce a number, which we call the 'distortion coefficient' of 
g, that measures this average behavior. 

It is well known that the scalar curvature measures the deviation of volumes 
from the Euclidean case. To see this, let g denote any metric on a manifold M, 
and let r = |JC| in normal coordinates around a point P e M. The ratio of the 
g-volume of the geodesic sphere Sr around P to its Euclidean volume is given 
by the spherical density function 

h(r) = œr
 l f d&„ 

•Tc 

where dibr is the volume element induced on Sr by g. Since the unit normal 
vector to Sr is TV = grad r/\ grad r\9 we have 

du>r = N AdV~g = (detg)1 /2(g r r)""1 /2r-1g iVa i . Jdx. 

But since 3, j dx = r~lxldo)r on Sr, this reduces to dcor = (grrdetg)1/2dcor. 
Thus 

(7.1) h{r) = ^ j ( r r d e t g ) v X -

Since grr = 1 in normal coordinates at P9 the expansion (5.2) for detg 
shows that 

h{r) = co"1 ƒ ( l - ^Rijx'xJ + 0(r3)\ dur = 1 - j^Sr2 + 0 ( r 3 ) . 

Thus when the scalar curvature S(P) is positive, volumes of geodesic spheres 
grow slower than in R", as on the sphere, and when S(P) < 0 they grow faster, 
as in hyperbohc space. (The scalar curvature has a similar meaning using balls 
rather than spheres. In dimension 2, this is a familiar interpretation of 
Gaussian curvature.) 

On an asymptotically flat manifold we will consider this same function h(p) 
for large values of p = \z\. In particular, on the manifold (M, g) obtained in §6 
by stereographic projection with inverted conformai normal coordinates {zy}, 
we have gpp = y 2~p and det g = y2p. Thus (7.1) reduces to 

(7.2) h(p) = co,"1/ yW*d%. 

The expansion of y given by Theorem 6.5 then gives an asymptotic expansion 
as p -» oo : 

(73) h( )=(l+(n/k)p~k+0"(p-k-1) i f « * 6 , 

\l+(ju/4)p-4logp+ 0"{p-4) if n = 6, 
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and therefore, since the (n — l)-form dcop/cop is homogeneous of degree zero, 

1JSp
 w p 

-\ip-k~l + 0(p'k~2) if n ± 6, 

-/xp"5logp + 0(p~5) if « = 6. 

We call the constant /x, defined using inverted conformai normal coordinates, 
the distortion coefficient of g. Its geometric meaning at infinity is analogous to 
that of the scalar curvature at a finite point. It is this constant that determines 
the values of Qè(<p) for large a. 

PROPOSITION 7.1. Let <p be defined as above. There are positive constants C 
and k such that 

(7.5) E(q>) < A\\<p\\2
p - C/ia"* + 0{a~k-1) 

ifn # 6 or M is conformally flat near P, 

(7.6) E(q>) < A||<p||* - Cfi«-4loga + 0 ( a " 4 ) 

ifn = 6 and M is not conformally flat near P. 
Thus if JU > 0, <p can be chosen so that Q&(q>) < A. 

PROOF. Since the scalar curvature of g is zero, the energy E(<p) is 

,2 
I t E(<p) = ƒ . a\v<p\2dVê= f. a g " " ( 8 p M „ ) 2 ^ = [. a{^uafy

2dz. 

Letting AL denote the annulus {R < p < L) and integrating by parts using 
the Euclidean Laplacian gives 

(7.7) ƒ a(dpua)
2y2dz 

= ƒ auak0uay
2dz - f au^u^(y2)dz-f auaduay

2djdz. 
JAL

 JAL
 JSRUSL 

Since y is bounded, (3.8) shows that the integral over SL is 0(L2~n) for fixed 
a, and thus vanishes as L -> oo. Similarly, the integral over SR is 0(a~n). We 
can bound the first integral by using Holder's inequality and formula (3.2) for 
ua: 

ƒ auaA0uay
2dz = 4n(n-l)f up-2(uay)2 dz 

\l~2/PI r \2/P 

< 4 / i ( / i - l ) | j f updz\ fjf u'y'dz) 

i \ 2 

^An(n-l)\\uJp-
2U^PdVÀ 

\VP 

A|MI,. 
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The critical term is the second term in (7.7). After letting L -> oo it becomes 

- f ™<?pUa[ dp(y
2)dü> dp. 

JR JSp 

From (7.4), if n # 6 or M is conformally flat near P, 

af \{y2)d% = 4(h'(p) + 0{p-^))% 

= - ^ j a p - * " 1 + 0{p-k-2))up. 

Just as in Lemma 3.5, the change of variables a = p/a shows that if 2 — n < k 
< n 

C~la-k+l < f°° P~k(^^)1 Hpn~ldp < Ca-k+1. 

Thus the second term in (7.7) is 

-4jf p a - ^ ^ ^ j ^ V p - * - 1 + O(p-^))o>pdr 

< -Ciia~k + C^cr*- 1 ) . 

Combining the results of the above calculations, we obtain (7.5). If n = 6, we 
use instead the inequality 

C-la-k+1logaK ƒ p ' M o g p K ^ pn~ldp^ Ca-k+l\oga, 

and a similar analysis yields (7.6). D 
The above calculation reduces the solution of the Yamabe problem in the 

case X(M) > 0 to determining the sign of /x. Indeed, by the same argument as 
we used in the case of Rn to prove (3.5), we have 

MM)- inf ^ 4 , 
^C^(M) | | ^ | | 2 

and so approximating our test function <p by a function \p e C™(M), we find 
that X(M) < X(SM) if ju, > 0. So we have proved the following theorem. 

THEOREM 7.2. If (M, g) w a compact Riemannian manifold of dimension 
n > 3 w/Y/ï X(M) > 0, //ie/t X(M)<A(5'n) if there is a generalized stereo-
graphic projection M of M with strictly positive distortion coefficient //,. D 

The distortion coefficient, defined by (7.2) and (7.3), is obtained from the 
first correction term in the asymptotic expansion of y. If n > 6 and M is not 
locally conformally flat, Theorem 6.5 gives this term explicitly in terms of local 
geometric invariants of M. In the remaining cases, however, it turns out that JU, 
can be identified with a global invariant called the 'mass' of the asymptotically 
flat manifold M. The next three sections are devoted to a detailed study of this 
invariant. 
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8. General relativity. Asymptotically flat manifolds were originally studied 
by physicists. In this section we will describe how they arise in general 
relativity, and how physical reasoning leads to the identification of a funda­
mental geometric invariant called the mass. 

General relativity models the world by a four-dimensional spacetime mam-
fold X with a Lorentz metric g. The metric represents the gravitational field, 
and as such it plays two roles in the theory. First, the metric determines the 
dynamics: the trajectories ("worldlines") of freely falling point particles are 
geodesies. Second, the metric itself satisfies an equation that describes how a 
matter distribution determines its gravitational field. This equation, the Ein­
stein field equation, is 

(8.1) Ru - \Sgij = T,j, 

in which the metric tensor g plays a role analogous to the classical gravita­
tional potential, and the energy-momentum tensor T is analogous to the 
classical mass density. 

The most famous solution of this equation is the Schwarzschild metric, 
which represents the gravitational field of a static point particle (a "black 
hole") of mass m. It is a (singular) Lorentz metric on R4 which, when restricted 
to any constant-time three-plane, is asymptotically flat of order 1 and has the 
form 

(8.2) g , 7 ( z ) = ( l + m p - 1 ) o , 7 + 0 ( p - 2 ) 

in suitable coordinates. 
More realistic solutions of (8.1) model isolated gravitational systems (e.g. a 

binary star in an otherwise empty universe). Physically, one expects that when 
such a system is observed from a great distance its gravitational field should 
resemble that of a point mass. Thus the spacetime (X, g) modeling the system 
should be asymptotically Schwarzschild, and should admit spacelike hyper-
surfaces which are asymptotically flat Riemannian 3-manifolds. 

It is in this context that physicists began to study solutions of (8.1) on 
asymptotically flat manifolds. One way to do this is to introduce the Einstein-
Hilbert action integral: 

(8.3) A(g) = - ƒ SgdVg. 

The first variation of A(g) gives the vacuum Einstein equation, as shown by 
the following well-known lemma. 

LEMMA 8.1. Given a Riemannian or pseudo-Riemannian manifold (X, g), let h 
be a smooth symmetric 2-tensor, and consider a one-parameter family of metrics 
gt with h = dgt/dt at t = 0. If St and dVt denote the scalar curvature and volume 
form of gt, then 

(8.4) j-t(S,dVt)l=0 = -(hJ"GJk + V*t)dVg, 

where G is the Einstein tensor Gjk = Rjk — \Sgjk, and i~ is the 1-form 

(8.5) £ = -{v*h + v( t r ,A)) = {hJk
k - hk

kJ) dxJ. 
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PROOF. In any local coordinate system, the variation of the volume form 
dVt = /deTg" dx is 

(8.6) idvj * ^~ '"• • 1 

dt 
= lyfà^gHjkdx^ jh%kdVg. 

The classical expression for the Ricci tensor is 

(8-7) RJk = d,T'kJ - 9kTlj + TIP', - T ^ . 

At the origin in g-normal coordinates (where digjlc = 0) we have 

a,r* = k*m9/(3,gym + a,&m - 9mglj). 
Thus, computing dSt/dt and evaluating at the origin yields 

dts' 
d r 

t-0 •l[^(^)J,, 
- -2hJ"Rjk + gJYhiWv- Wu)-

From the definition of covariant differentiation, 
njk,l °lnjk lklnjm Ljlnmk> 

and thus if £ is defined by (8.5), at the origin in normal coordinates we have 

-V*S = hjk,kJ-hk
kj

J 

= djdkhJk - aya,*** + ( M # - djT?k)hjm 

= 9/My* ~ üfijhkk - RJmhJm, 

where we have used the fact that Rjm = —Rjk
km by the symmetries of the 

curvature tensor. Thus we have the tensorial identity 

(8.8) ftSt 

\A(gt) = j hJ"GJkdVg9 

= -hjkRik-V*l. 

Combining this with (8.6) yields the result. D 
Physicists apply this lemma with compactly supported variations. If h is 

compactly supported, the lemma and the divergence theorem show that at 
/ = 0 

A. 

and thus a Lorentz metric g is a critical point of A if it satisfies the vacuum 
Einstein equation Gtj = 0. 

The variational lemma can also be applied on an asymptotically flat 
Riemannian manifold (iV, g). We can then look for metrics that are critical for 
A(g) under all variations that maintain the asymptotically flat structure (not 
just compactly supported ones). The divergence term in the lemma then comes 
into play. If we integrate (8.4) over a large sphere SR in the asymptotic end and 
take the limit as R -> oo, we obtain 

(8.9) ftA(gt) = f WkGjkdVg- lim f £(N)dVg, 
,=0 JN

 JK g
 R^OO JSR

 8 

where £y = (9^,-y - 9jhu)(l 4- 0(p *)). One sees immediately that this 
boundary term is the variation of a geometric invariant called the mass. 
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DEFINITION 8.2. Given an asymptotically flat Riemannian manifold (N, g) 
with asymptotic coordinates {V }, define the mass as follows: 

(8.10) m(g)= lim co"1 f \iidz, 
R -> oo JsR 

if the limit exists, where /x is the mass-density vector field defined on N^ : 

The preceding discussion shows that for a family gt of asymptotically flat 
metrics, 

(8.11) jSA{gt) + OT(«'))'-o - ƒ„ * A G > * ^ . 
provided the mass is a differentiable function of g. We will discuss the analytic 
properties of the mass, including the justification for this equation, in the next 
section. For now we return to the physics, describing how the mass occurs in 
general relativity and why the term "mass" is appropriate. 

In 1960, Arnowitt, Deser, and Misner [ADM1, 2,3] made a detailed study of 
isolated gravitational systems. They adopted the Hamiltonian viewpoint, which 
meant choosing a spacelike hypersurface as an "initial surface" and writing 
Einstein's equations as evolution equations from this initial data. After in­
tegrating by parts, they discovered a conserved quantity given precisely by the 
integral (8.10). Using equation (8.2) it is easy to check that in Schwarzschild 
space m(g) agrees with the mass m (up to a constant). Thus, they concluded, 
the conserved quantity m(g) is the total mass of the isolated system. 

Arnowitt, Deser, and Misner then conjectured that the mass, measured along 
a spacelike hypersurface in a physical spacetime, is nonnegative (and zero only 
if the spacetime is empty). Now the metric of any physical spacetime must 
satisfy Einstein's equation (8.1), where Ttj is a physically reasonable energy-
momentum tensor. It turns out that the energy-momentum tensors encoun­
tered in realistic physical models satisfy a certain positivity condition, called 
the dominant energy condition (see [HE]). By Einstein's equation this becomes a 
positivity condition on the Ricci tensor. In particular, for a time-independent 
spacetime X = TV3 X R this condition is equivalent to the requirement that the 
scalar curvature of N (which then represents local mass density) be nonnega­
tive. Thus one case of the ADM conjecture is: 

POSITIVE MASS CONJECTURE. If (N, g) is an asymptotically flat Riemannian 
3-manifold with nonnegative scalar curvature then m(g) > 0, with equality if and 
only if (TV, g) is isometric to R3 with its Euclidean metric. 

In fact, Arnowitt, Deser, and Misner found that the mass is the first 
component of a conserved 4-vector, which represents the total energy-momen­
tum of the system. If the system, viewed from a large distance, behaves like a 
relativistic point particle then this energy-momentum vector should be time­
like. The general form of their conjecture, called the positive energy conjecture, 
is that this is the case in any spacetime satisfying the dominant energy 
condition (see [W] or [PT] for a precise statement). This general conjecture is 
essentially equivalent to the positive mass conjecture (see [SY3]). 

file:///iidz
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The mass integral (8.10) on a 4-dimensional Riemannian manifold also 
appears in physics. In his "Euclidean" approach to quantum gravity, Stephen 
Hawking proposed that one replace the spacetime manifold by an asymptoti­
cally flat Riemannian 4-manifold, and quantize its metric. (This rather unin­
tuitive substitution has proved quite valuable in studying Yang-Mills theories.) 
One finds that the Einstein-Hilbert action A(g) must be replaced by 

B(g)=A(g) + m(g). 

Equation (8.11) then shows that the critical points of B, thought of as a 
functional on the space of asymptotically flat metrics, satisfy Gjk = 0. Gib­
bons, Hawking, and Perry [GHP] analyzed this action B(g) and concluded 
that it might lead to a reasonably well-behaved quantum gravitational theory 
provided B(g) ^ 0 whenever g has zero scalar curvature. This led them to the 
following conjecture. 

POSITIVE ACTION CONJECTURE. If (N9 g) is an asymptotically flat Riemannian 
4-manifold with zero scalar curvature then B(g) > 0, with equality if and only if 
(N9 g) is isometric to R4 with its Euclidean metric. 

Note that this would be an easy consequence of the 4-dimensional analogue 
of the positive mass conjecture. 

These conjectures have a long history. Partial results were obtained by 
numerous physicists and mathematicians over a 20-year period (see [W] for 
references). Finally, in 1979 Richard Schoen and S.-T. Yau solved the problem. 
In a series of papers [SY1, SY2, SY3, SY4] they used geometric and p.d.e. 
methods to give complete, rigorous proofs to all of these conjectures. Shortly 
thereafter Edward Witten gave a simpler proof of the positive energy theorem 
based on an integration-by-parts formula for spinors [W, PT]. 

While these conjectures arose in general relativity, they are purely geometric 
facts about asymptotically flat manifolds. The natural generalization of both 
conjectures is that an asymptotically flat Riemannian manifold (N, g) of 
dimension n > 3 with nonnegative scalar curvature has m(g) > 0, with equal­
ity if and only if N is isometric to Euclidean Rn. Schoen and Yau [S] have 
announced a proof of this result, which we will continue to call the positive 
mass theorem. 

9. Analysis on asymptotically flat manifolds. Before we sketch the proof of 
the general positive mass theorem, we pause to introduce some analytic tools 
that will be useful for understanding asymptotically flat manifolds, analogous 
to those discussed in §2 for compact manifolds. 

The appropriate analytic setting for studying asymptotically flat manifolds is 
weighted function spaces. Let (N, g) be an asymptotically flat manifold, with 
asymptotic coordinates (z '} on N^. Let p(z) = \z\ on N^, extended to a 
smooth positive function on all of N. For q > 1 and j S e R w e define the 
weighted Lebesgue space Lq

0^{N) as the set of locally integrable functions u for 
which the norm 

\\uho,fi=ifN\p-pu\qp-ndVg 
wq 
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is finite. For a nonnegative integer k the weighted Sobolev space Lq
k^(N) is the 

set of u for which |v lu\ e L^_t{N) for 0 < / < k, with norm 
k 

Nk*,/*= E llv'wll̂ o,̂ -/. 
i -O 

We note that C™(N) is dense in Lk^(N). 
We also define the weighted Ck space Cp(N) as the set of Ck functions u for 

which the norm 
k 

ML*= E supp-*+'|v'n| 
i - O N 

is finite. The weighted Holder space Cp,a(N) is defined for 0 < a < 1 as the set 
of u G Cp(N) for which the norm 

II u ||c*.. = II u\\Ck + sup (mm p(x) ,p ( y )) J ^ v ^ ' 
'̂-̂  I * ~~ y \ 

is finite. (Here, as in §2, the supremum is over all x ¥= y such that y is 
contained in a normal coordinate neighborhood of x, and V ku(y) is the tensor 
at x obtained by parallel transport along the radial geodesic from x to y.) It is 
easy to check that multiplication is a continuous map from Co,a X Q°'a to 
^P + 8' 

Note that the definitions of the weighted spaces depend on the 'distance 
function' p, and thereby on a choice of asymptotic coordinates. However, it is 
easy to see that p is uniformly equivalent to the geodesic distance from an 
arbitrary fixed point in N as p -> oo, so all choices of p define equivalent 
norms. 

The theory of elliptic operators on these spaces was introduced by Nirenberg 
and Walker [NW], and has been developed extensively by Lockhart [Lo], 
McOwen [M], Cantor [C], Bartnik [B], Choquet-Bruhat and Christodoulou 
[CBC], Chaljub-Simon and Choquet-Bruhat [CSCB], and others. 

We remark that the definition of asymptotically flat manifolds can be 
extended to manifolds with two or more asymptotic 'ends', and all of the 
results of this section extend easily to that case (see [C], for example). 

In the literature there are several ways of indexing weighted spaces. Follow­
ing Bartnik, we have chosen our definitions so that the index /? reflects order of 
growth: functions in C^a or Lq

k^ grow at most like p^. Indeed, it follows 
immediately from the definitions that ƒ G C^,CL implies ƒ = O(p^). The corre­
sponding fact for Lq

kp is a consequence of the following Sobolev lemma for 
weighted spaces. 

LEMMA 9.1 (WEIGHTED SOBOLEV LEMMA). Suppose q > 1 and I - k - a > 
n/q. For each e > 0 there are continuous embeddings C^£ c Lq^ c C^a. In 
particular, iff G Lq

lfi with I > n/q then ƒ = O(p^). 

PROOF. The first embedding is easily obtained from the definitions. The 
second is proved for weighted Ck spaces on Rn by Cantor [C]. Bartnik sketches 
a proof of the general case in [B]; although his definition of the weighted 
Holder spaces differs slightly from ours, the same method applies. D 
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The beauty of the weighted spaces is that they give us analogues of many of 
the global elliptic regularity results that we stated for compact manifolds in §2. 
In general, these theorems are not true on noncompact manifolds without 
weights. 

THEOREM 9.2 (WEIGHTED ELLIPTIC REGULARITY). Let (N9 g) be asymptoti­
cally flat with gtj - Sfj e Cb^N), r > 0, and q > 1. 

(a) For all u e Lq
%fi(N\ 

\\u\\q,2,fi < C ( | | Afl||f,0,/l-2 + ||fl||*,0,j8). 

(b) A: L\p{N) •-» Lq
0p_2(N) is an isomorphism iff 2 - n < ft < 0. In 

addition, if ft £ Z, A is surjective for all ft > 2 — n and injective for all ft < 0, 
and the dimension of ker A is the same as that of the kernel of the Euclidean 
Laplacian A0: Ll^(Rn) -> Lq

)^_2(R
n), which is the space of harmonic polynomi­

als of degree < ft. 
(c) If u G C$(N) and Aw e C$?2(N), then u e Cj£>a(N) and 

\Mci- < C(IIAMIIC^2 + NIC,°)-

(d) If 2 - n < ft < 0, h e Cg>a(N) for some 8 < - 2 , and in addition the 
operator A + h: Cp'a(N) -> Cp^^N) is injective, then it is an isomorphism. 

PROOF. Part (a) is essentially Proposition 1.6 in [B]. Part (b) is proved in [C, 
M, Lo, and B]. The estimate in part (c) is proved in [CSCB] in the case n = 3 
and 2 - n < ft < 0, and under the assumption that u e C^a{N)\ in the 
general case stated here, the fact that u e C%g(N) follows from local elliptic 
regularity, and the global estimate is proved by the same techniques as in 
[CSCB]. Finally, (d) is proved in [CSCB]. D 

As an immediate application of these results, we prove the existence of a 
preferred system of coordinates near infinity, called harmonic coordinates (cf. 
[B]). 

THEOREM 9.3 (HARMONIC COORDINATES). Suppose (N, g) is asymptotically 
flat with gtJ — 8tj G Cb"(N), r > (n — 2)/2, and let {z1} be any asymptotic 
coordinates on N^. There exist C00 functions {yl,...,yn) on N satisfying 
Ayi = 0 and 

( 9 1 ) '̂'-^e^J ifn>4, 
*' ~ / ' e C2J;+1+B{NJ I / H - 3 , 

such that {y1} form asymptotic coordinates for N on some set { p > R0 }. 

PROOF. Extend the functions zl arbitrarily to smooth functions on N. Then 
the fact that r > (n — 2)/2 implies that 

Az' = -gJkW),jk = gJkTjk e C°v"-i(A0-

If n > 4, Theorem 9.2(d) shows there exist functions ul e C?.'"+1(iV) such that 
Lu1 = Az'. If n = 3, however, the index ft = — r 4- 1 may be positive, so this 
approach fails. Instead, note that Az' e Lo_T_1+e(iV) for any q > 1, e > 0 by 
Lemma 9.1. If we set ft = - T + 1 + e, and assume e is chosen so that ft £ Z 

file:///Mci-
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and /? > 2 - «, then Theorem 9.2(b) shows there exists ul e Lq
2^{N) with 

Aw' = Az'. If # > n the weighted Sobolev lemma implies u' e Cfa(N\ and 
thus Theorem 9.2(c) shows that w' e C?£+ 1 + e (#) . 

Set yi = z' - w'. The fact that |Vt/'| = 0(p~T+e) means that the differen­
tials of the functions yl are independent near infinity; a simple application of 
the mean value theorem then shows that the resulting map y: M -» Rn is 
injective for \y\ large enough, and thus {y*} form coordinates near infinity. 
The formula for the metric coefficients in ^-coordinates shows that {y') are 
indeed asymptotic coordinates. D 

The weighted Holder spaces provide us with an appropriate topology in 
which to study the mass functional introduced in §8. It turns out, as we will see 
in the next lemma, that finiteness of the mass is intimately related to integrabil-
ity of the scalar curvature. For r > (n — 2)/2 we define Jt'T to be the set of 
all C00 metrics on N such that (in some asymptotic coordinates) 

gu - 8Ue cLv«(i\rJ, sgei}(N). 

In z-coordinates on N^, 

(9.2) 5 = gJk(d,Tjk - dkT!j + T!,Tjk - 1 ^ ) 

= 3y(a,g,7-ayg,,) + o(p-2T-2). 

Choosing a base metric g0 e JtT, it follows that the scalar curvature of a 
metric g0 4- b is in L1 iff 9,9,6,, - 9,9,6,, e L^A^). Thus we can identify JtT 

with a subset of the affine space 

{g0 + b: b G C1J:(N) and 9,8A7 - 3,3/,, e ^ W } 

with the obvious norm. In this topology gk -* g in ^ T if ||gk - g||ci,« -* 0 
and | |S, - SIK - 0. 

LEMMA 9.4. /ƒ r > (n — 2)/2, the mass functional is a continuous affine 
functional on Jt'T, #«d ^us W infinitely differentiable. 

PROOF. The mass is evidently an affine function from its definition. From 
(9.2), S = — V *> + 0(p~2T~2) on N^, where ju. is the mass-density field as in 
Definition 8.2. Let r\ be a smooth cutoff function which is supported in N^ 
and identically one for large p. Then by the divergence theorem, 

m(g) = lim f \iAdz= lim ƒ r)(ii,N) dooR 
#->oo ^ r-+oo ^ 

N o w g ^ J t T implies 77V> e L 1 ^ ) and </x,Vr?> e Cc
0a(M) c L^iV). Thus 

the last expression above is continuous on Jt r. D 
We remark that the above proof can be adapted to show that the CL'? norm 

can be replaced by the L\^_ny2 norm on Jtr. 
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We can now show that asymptotic coordinates are unique up to an obvious 
equivalence relation. Suppose {z'} are asymptotic coordinates with respect to 
which 

(9.3) glJ - stJ G cLv«(J\rj, 

and { V } are any other coordinates on N^ such that 

(9.4) z(z) - E(z) G Cl-:+l(Nj 

for some EucHdean motion E: Rn -> Rn. Then it is clear from the definitions 
that (9.3) holds also in z-coordinates. It is an important fact that all choices of 
asymptotic coordinates are related in this way if N is asymptotically flat of 
sufficiently high order. The proof (in the three-dimensional case) is due to 
Robert Bartnik. 

THEOREM 9.5 (BARTNIK [B]). Suppose (N9 g) is asymptotically flat, and (z '} , 
{z1} are any two choices of asymptotic coordinates with respect to which (9.3) 
holds with T > (n — 2)/2. Then there is a Euclidean motion E such that (9.4) 
holds ( possibly with r replaced by r — e for some small e > 0). 

PROOF. Let {y') and { j>'} be harmonic coordinates asymptotic to {z1*} and 
{£'"} respectively, obtained from Theorem 9.3. Observe that y\ y* e L\ (N) 
for any 1 < TJ < 2. By Theorem 9.2(b), the dimension of kerA on L\ (N) is 
the same as that of the EucHdean Laplacian on Lf>TÏ(R

n), which is spanned by 
the Hnear functions and the constants. Thus {yl,..., yn, 1} form a basis for 
kerA c Lq

lr)(N\ and so there exist a matrix A'j and constants b' so that 

(9.5) y' = A)yi + b'. 

The fact that the metric g is asymptotically flat with respect to both {y1} and 
{y1} shows that A'j must be orthogonal. Combining (9.1) and (9.5) now yields 
the result. D 

The definition of mass involves a choice of asymptotic coordinates. But it 
follows from Bartnik's result that the mass is in fact an invariant of the metric. 

THEOREM 9.6 [ADM, B]. If N is asymptotically flat with metric g e Jt'T, 
T > (n — 2)/2, then m(g) depends only on the metric g. 

PROOF. Suppose (z ' ) and {z1} are two choices of asymptotic coordinates on 
N^. By Theorem 9.5, after composing with a EucHdean motion (and replacing 
T by r — e if necessary) we may assume that 

V = z' + <p', where <p' e C^T \ i (AU-

The first key observation is that the radial distance functions p = \z\ and 
p = \z\ are related by C~lp < p < Cp for some positive constant C. Thus if SR 

and SR represent the spheres (p = R) and (p = R} respectively, and ^4^ is 
the annulus {C~lR < p < CR), the divergence theorem shows 

I HJdz — I /xJ dz < ƒ | V *ju | dz. 
Jv Jç JA 

This last integral goes to zero as R -> oo, since V V e L1 by (9.2). Therefore 
we can replace SR by SR in the definition of m(g) without changing the mass. 
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If gtj and g.j are the components of the metric in the two coordinate 
systems, then, writing 3, = d/dzl and dk = d/dzk = 3^ - 3 ^ 3 / + 0(p~T), 

#iy = g y - 3 y - 3 y + 0 ( p - 2 T ) , 

\èij - 3*fty - 3*3,V " 9*9,V + 0 ( p - 2 T - x ) . 
Therefore the mass density field ju = (3,g,7 - 9,g,,)3y' is 

M = A +(3,3,V - 3,3yV)3y + Oip-2*-1). 

Since the volume forms of {zl} and {zl} are related by dz = dz + 0(p _ T) , 

juj dz = j& jdz + dt) + 0 ( P " 2 T _ 1 ) , 

where TJ is the (n — 2)-form 

7] = dtf^djJdjJdz). 

Integrating this over SR and taking the limit, we conclude that m(g) = m(g). 
D 

For the Yamabe problem, we are interested in the asymptotically flat 
manifold M obtained by stereographic projection from a compact manifold 
M. The simplest case is when M is locally conformally flat, for then 

giJ(z) = y(zy-28iJ, 

where 

y(z) = 1 4- Ap2-"+ 0"(p 1 _ n ) -
Using (7.2) and (7.3), one can calculate easily that the constant A is related to 
the mass and the distortion coefficient by 2(n - 1)A = \i = \m(g). More 
generally, we have the following relation between ju, and m(g). 

LEMMA 9.7. Let M be the stereographic projection of M from P e M, and /x 
the distortion coefficient computed with respect to inverted conformai normal 
coordinates. If n < 6 or M is conformally flat in a neighborhood of P, then \i 
= hm(g). 

PROOF. Theorem 6.5 and the fact that the scalar curvature of g is identically 
zero show that in these cases g e / T with r > (n — 2)/2, so the mass is 
defined. It can be expressed in terms of radial derivatives as follows. First note 
that on the sphere Sp, djjdz = p~lzJdup = p~2zJzkdkJdz, so the mass for­
mula becomes 

m(g) = lim co"1 / (p^zh^^j - dkgti)dkJdz. 

Now observe that gpp = g(3p,3p) = p~2zkzjgkj, 3pgpp = p^^z^z^^ and 
that the (n — 2)-form 77 = zjzkgij'èi J3 k Adz satisfies 

di\ = [zh^igij - zJz%èkj + zkgit - nzJgkJ)dkJdz. 

Hence 

(9.6) m(g) = lim co"1 f 3p(gpp - gu) + p~\ngpp - git) do>p. 
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This simplifies greatly in inverted conformai normal coordinates, where we 
have gpp = yp~2 and detg = y2p = 1 + 0(p2~n). Thus 

n\gPP = n{p - 2)y^-33py = y^29p(logdetg) 

= 3 p g,+ 0 ( p - 2 - 1 ) . 

Integrating along rays from infinity and noting that ngpp = n = gu at infinity 
shows that ngpp = gH + 0(p~2r). Then (9.6) becomes 

m(g) = lim co-1/* adydco 

som(g) = 2/*by(7.4). D 

10. The positive mass theorem. We will now sketch the proof of the general 
positive mass theorem, relying on the work of Schoen and Yau. The discussion 
of §9 indicates that the natural setting for studying the mass is an asymptoti­
cally flat manifold with metric g e Jt'T for some r > (n - 2)/2. A general 
version of the theorem is the following. 

THEOREM 10.1 (POSITIVE MASS THEOREM). Let (N,g) be an asymptotic-
ally flat Riemannian manifold of dimension n > 3 with metric g e JtT, r > 
(n — 2)/2, and nonnegative scalar curvature. Then its mass m(g) is nonnega-
tive, with m(g) = 0 if and only if (N, g) is isometric to Rn with its Euclidean 
metric. 

Schoen and Yau [S] have recently announced a proof of this theorem in the 
case T = n — 2. We begin our sketch of the proof with a weaker but much 
simpler theorem, which shows that the mass is nonnegative provided the Ricci 
curvature is nonnegative. This argument extends earlier results of E. Witten, R. 
Bartnik, and R. Schoen. It is a noncompact version of Bochner's vanishing 
theorem. 

PROPOSITION 10.2. Suppose (N, g) is asymptotically flat with g e J T for 
some T > (n — 2)/2, and the Ricci tensor of g is nonnegative. Then the mass 
m(g) is nonnegative, with m(g) = 0 if and only if (JV, g) is isometric to Rn with 
its Euclidean metric. 

PROOF. By Theorem 9.6, we may use any convenient coordinates to compute 
the mass. Let {y') be harmonic coordinates as in Theorem 9.3, so Ay1 = 
d* dyl = 0. Then the 1-forms <o' = dy' satisfy dco' = d*<o' = 0. From the Ricci 
identity (2.2) we obtain the classical Bochner formula for a 1-form co: 

(10.1) Aco = (dd* + d*d)œ = ( v * V + Ric)<o. 

Applying this to <o', taking inner products, summing over /, and integrating by 
parts over NR = {p < R} yields 

E ƒ | v « f + Ric( « ' > ' ) < « ; = E ƒ gJk(^,Vj^)dkAdvg. 
i NR ij SR 
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But observe that Vyco' = Vjdy1 = — Tjkdyk, and in harmonic coordinates 
0 = A y = gJkTjk. Therefore the mass-density field on N^ is 

= I(«',vy»')3> + o(p-2T-1). 

Integrating over SR and taking the limit as R -> oo yields 

™(g) = " _ 1 £ / ( |Vcof+ Ric(co/,(o/))c/Fg>0. 

Now suppose the mass is zero. Then the above formula shows that Vw' = 0 
for each /'. Thus V(<oz, coJ) = (vw', co-7) + (oy,V<oy) = 0, and since the 
coframe {œ1} is orthonormal at infinity it is orthonormal everywhere. This 
implies that the map y: N -> R" is a local isometry. In fact, since it is a proper 
local diffeomorphism, it is a covering map, and therefore a global isometry. 
Thus N is isometric to Euclidean R". D 

In 1981, Witten discovered that a variant of this argument, using spinors in 
place of the one-forms <o', gives a simple proof of the positive mass theorem for 
a manifold with a spin structure. 

THEOREM 10.3 (WITTEN [W]). Suppose N is an asymptotically flat spin 
manifold of dimension n ^ 3, with metric g = 8f- • 4- hij9 where htj e C^"(N) 
for some r > (n — 2)/2. If N has finite mass and nonnegative scalar curvature, 
then m(g) > 0. 

Since the proof is quite simple, we include it in the appendix.1 

We remark that the proof extends easily to spin manifolds with several 
asymptotic ends, as mentioned in §9. In that case there is a mass associated 
with each end, and the theorem states that each mass is nonnegative (see [PT]). 

The definition of a spin manifold implies orientability. But the above remark 
allows us to extend Witten's theorem to certain nonorientable manifolds: if TV 
is an asymptotically flat manifold whose orientable double cover N is spin, the 
theorem applied to N (which has two ends) implies that the mass of N is 
nonnegative. 

Another special case—that of locally conformally flat manifolds—is directly 
applicable to the Yamabe problem. A new proof for this case has recently been 
given by Schoen and Yau [SY6]. Their theorem is as follows: 

THEOREM 10.4. Suppose (M, g) is a stereographic projection of a compact, 
locally conformally flat manifold M of dimension n > 4 with \{M) > 0. Then 
m(g) > 0 unless M is isometric to R". 

The proof of this theorem is based on a careful analysis of the developing 
map, a conformai map from the universal cover of M to the sphere. Schoen 
and Yau showed that the hypotheses on M imply that the developing map is 

xAt the time this was first written, no proof of this version of Witten's theorem had appeared in 
the literature. Since then, Bartnik has independently written a proof and included it in the 
published version of [B]. 



82 J. M. LEE AND T. H. PARKER 

injective; the result then follows by comparing the Green function on M with 
that on the sphere. 

The proof of the general positive mass theorem will be carried out in three 
steps. The heart of the proof is the following lemma, which shows that 
m(g) > Oif g has a particularly simple asymptotic form. 

LEMMA 10.5 (SCHOEN AND YAU [SY1, SY2, SY4, SY5]). Let (N, g) be an 
asymptotically flat manifold with metric g of the following special form: 

giJ(z) = (l+Ap2-")8ij+<S>ij(z), 

where A is a constant and 0 /y e Ci-ni^). U tne scalar curvature of g is 
nonnegative, then m(g) = (n — 2)(n — I)A > 0. 

PROOF. This is proved by induction on n. The case n = 3 is a consequence 
of Witten's theorem (and the remark following it) since every orientable 
3-manifold admits a spin structure. (It also follows from Schoen and Yau's 
original proof of the positive mass theorem [SY1].) 

We give only a brief sketch of the inductive step. One begins by assuming 
the mass is negative. This assumption can be used to prove the existence of an 
embedded asymptotically flat minimal hypersurface H c N. By conformally 
changing the induced metric on H to a metric g of zero scalar curvature, and 
analyzing the second variation of the minimal surface equation, one concludes 
that g has negative mass, contradicting the inductive hypothesis. 

This argument is given in the case of dimension 4 in [SY2]. The general 
result was announced in [S], but a proof has not yet appeared. If w < 7 the 
argument proceeds just as in the 4-dimensional case. For n > 7, the minimal 
hypersurface may have singularities, and one must analyze these carefully, in 
effect proving the theorem for manifolds with certain types of singularities. D 

The next step is to remove the restrictive assumptions on the metric g. 

LEMMA 10.6. Under the hypotheses of Theorem 10.1, m(g) > 0. 

PROOF. We will reduce the theorem to the restricted case above by "flatten­
ing" g£iJtr on the asymptotic end N^, and then conformally changing back 
to nonnegative scalar curvature. 

Let {z1} be asymptotic coordinates on N^, and let p: N -> R be the radial 
distance function as in §9. Fix a smooth cutoff function -q on R with 
0 < ij < 1, r](t) = 1 for f < 1, and -q(t) = 0 for t > 2. For R > 0 define rjR: 
N -* R by 7]R(z) = Tj(/r VU)). Write gtj = Stj + btj with btj e Cl_ia

T(N\ and 
consider the flattened metrics 

These metrics may have negative scalar curvature at some points. A natural 
way to restore positive scalar curvature is to seek a metric gR conformai to gR 

which has prescribed nonnegative scalar curvature, say, equal to t]RS. This 
would require solving the nonlinear prescribed scalar curvature equation 
nR<p = 7]RScpp~1. A much simpler approach is to solve the linear equation 

(10.2) DRcpR = VRSCÇR 
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for <pR > 0, for then the transformation law (1.1) shows that the metric 
gR = <ffR~2gR has scalar curvature 

SR = riT'ErfP* = <P2R-PVRS > 0. 

Writing cpR = 1 + \pR and yR = SR - riRS, (10.1) becomes 

(io.3) ( * A * + Y * ) * * = -yR-

To solve this we first note that, for any positive e, y^ -> 0 in C°'"_2+e(iV) as 
R -> oo. Indeed, the usual coordinate formulas show that the Christoffel 
symbols of g and gR = g + (TJ^ - 1)6 are related by TR - TJ^T = 0(6 • dr)R) 
and 

Y* = SR - vRS = 0 ( 3 ^ • db) + 0 (6 • aai,*) + 0 (6 - l a^ l 2 ) . 

It follows from its definition that 7}R is bounded in CQ,01(N) for any /c, and 
thus 817̂  G C^'i and 3 9 ^ e C°'£, uniformly in #. Since multiplication is 
continuous from C^a X Q°'a to Cpf89 the above formula shows that ||Y/?||c°«„2 

is bounded independently of R. Since yR is supported in the annulus {R < p 
< 2R }, this implies that HY^HC^ "^ 0 for any positive e. 

Since the Laplacian A of g is injective on Ll_T+2e(N) D C^+E(N) by 
Theorem 9.2(b), part (d) of that theorem shows that A: C^+e(N)-* 
C°'"_2+e(Af) is an isomorphism. Thus the operator aAR + yR will also have a 
bounded inverse if the operator norm of the perturbation term a(hR- à) + yR 

is small enough. The multipHcative property of weighted Holder spaces shows 
that the operator norm of yR is bounded by ||Y/J||CO.«. On the other hand, one 
can calculate that 

||(A* - A)n||co.?_2+t ^\\gR - g||ci,«||w||C2,«+e, 

and gR -> g in CQ,(X(N). Thus akR + yR has a bounded inverse for large R, 
and we can solve (10.3) for \pR e C^"+e(N) with H^Hc^ -* 0. In particular, 
<pR = 1 + \^R is strictly positive for large R. 

Now because the Laplacian A^ is equal to the Euclidean Laplacian in 
asymptotic coordinates for p > 2R, and y^ = 0 there, the functions \pR are 
harmonic (in the Euclidean sense) near infinity. Consider the inversion x •-> 
|X|~2JC which sends a neighborhood A of the origin in R" to a neighborhood of 
infinity. It is easy to check that the function \pR(x) =Jx\2~n\p R(\x\~2x) is 
harmonic on A - {0}. Since ^ = 0(p~T+e), we have j R = 0(\x\2-"+T-e), 
and so T > (« - 2)/2 implies \pR e LP(A). Thus the removable singularities 
result (Proposition 2.7)̂  shows that \£R is weakly harmonic on A, and elliptic 
regularity shows that \pR is C°°. In particular, Vk\fiR(x) is bounded for all k. 
Inverting, we find that V k^R{z) = 0(p2~,7~/c) for all k. 

Thus the metric gR = <p£~2gR satisfies the hypotheses of Lemma 10.5, so 
m(gR) > 0. 

The proof is completed by showing that gR -> g in the topology oî JfT_e, 
which implies m(gR) -+ m(g). Note that g — gR = (1 — t]R)b is supported in 
{p > 2R} and bounded in Cb"(N) independently of R, and thus converges to 
zero in CL'?+e(#). W e h a v e 
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The first term goes to zero in Cî_'?+e(iV) by the previous remark, and the 
second goes to zero since yR -* 1 in that space. Finally, 

\S - SR\ = \S - <p2
R-'nRS\<2(l - VR)\S\ 

since cpR -> 1 uniformly, and thus jN \S — SR\ -> 0 since S e LX(N). D 
The proof of the positive mass theorem is completed by examining the case 

m(g) = 0. 

LEMMA 10.7. If (N, g) satisfies the hypotheses of Theorem 10.1 and has 
m(g) = 0, then N is isometric to R" with its Euclidean metric. 

PROOF. We will use the variational formula (8.11) to show that the Ricci 
tensor of g is zero. The lemma then follows from Proposition 10.2. 

Let htj be any smooth, compactly supported symmetric 2-tensor on N, and 
consider the family of metrics gt = g + th. These metrics may no longer have 
nonnegative scalar curvature. Following the method of Lemma 10.6 above, we 
change to the conformai metric gt = <pt

p~2gn where cp, is a positive solution to 
nt<pt = Sq>r This is equivalent to 

(aA, + yt)xpt= - y „ 

where we have written cp, = 1 + \pt and yt = St - S. Since yt is compactly 
supported and St -> S in Ck for any k as / -> 0, it follows that ||Y,||CO«_ ~* 0. 
Arguing as in the proof of Lemma 10.6, for small / we can solve uniquely for 
$t G C^r(N)9 with ||^,||C2.? -> 0 as t -* 0. Thus for t small enough, <pt = 1 + 
i//, > 0, and the metric ĝ  = <pt

p~2gt has scalar curvature 

5, = qp}-̂ D,<pr = q>f-pS > 0. 

Now since m(g) = 0, the previous lemma implies that g is a minimum for 
the mass among the metrics gt. Since m is differentiable by Lemma 9.4, this 
means that m(g) is zero, where a dot denotes the derivative with respect to / at 
t = 0. We will apply the variational formula (8.11) to the family gt. First note 
that <p, is differentiable with respect to t, since the family of operators 
(aùat + yt)~

l depends differentiably on t. At t = 0, 

^ g , = (/> ~ 2)<pg + /i, 

Thus, since 5, = <p2~pS, 

jt{StdVt) = (2 - ^)ç.SdKg + \S{{p - 2)<pg,, + hjk)g'kdVg. 
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From (8.11) we have 

-fNh*RJkdV,. 

This holds for all compactly supported h, so Rjk = 0 on N. This completes the 
proof of the general positive mass theorem. D 

11. Solution of the Yamabe problem. We now have all the ingredients needed 
to solve the Yamabe problem. The solution has proceeded in several steps. 
First, the analytic arguments of §4 showed that we can obtain a solution 
provided that X(M) < X(Sn). Second, the test function estimate of §7 reduced 
the problem to verifying the positivity of the distortion coefficient ju of the 
manifold M obtained by stereographic projection in conformai normal coordi­
nates. In many cases this follows directly from the asymptotic expansions of 
Theorem 6.5. In the remaining cases it is a consequence of the positive mass 
theorem. 

THE YAMABE THEOREM. If (M, g) is a compact Riemannian manifold of 
dimension n > 3, there exists a metric g conformai to g with constant scalar 
curvature S = X(M). 

PROOF. If M is conformai to the standard sphere, then Theorem 3.2 shows 
that the problem is solved by the standard metric. For any other M, by 
Theorem 4.5 it suffices to show that X(M) < X(Sn). If X(M) < 0, this is 
obviously the case. If X(M) > 0, then by Theorem 7.2 it suffices to find a 
stereographic projection M oî M with positive distortion coefficient /A. 

If n > 6, we can calculate the expansion of the spherical density function h 
directly from the expansion for y obtained in Theorem 6.5. Using formula (7.2) 
and the fact that 

f zVdup = \tij(>\, Jo n 

we find that 

1 4- jfi\W(P) |V4logp + 0"(p-4) if n = 6. 

Thus if M is not locally conformally flat we can choose a point P e l with 
W(P) # 0, and then jw = C\W(P)\2 > 0. On the other hand, if n < 6 or M is 
locally conformally flat, then Lemma 9.7 and the positive mass theorem show 
that /* > 0 unless M is conformai to Rw, in which case M is conformai to Sn. 
D 

*(P) 
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There are several questions related to the Yamabe problem that are of 
considerable current interest. Yau [Yau] and others have posed the Yamabe 
problem for complete noncompact Riemannian manifolds. Using the methods 
of weighted spaces discussed in §9, one can show that an asymptotically flat 
manifold N of order T > (n — 2)/2 with positive Yamabe invariant X(N) has 
an asymptotically flat conformai metric of zero scalar curvature provided the 
scalar curvature satisfies S e C^_2(N). More generally, Patricio Aviles and 
Robert McOwen [AM] have recently obtained some interesting results about 
conformai deformations of noncompact manifolds, including a proof that the 
Yamabe problem is solvable for complete Riemannian manifolds whose scalar 
curvature is negative near infinity. In [SY6], Schoen and Yau have made 
progress toward understanding which open submanifolds of the sphere admit 
complete conformai metrics of constant scalar curvature. 

A second question concerns the properties of the functional Qg. The solution 
of the Yamabe problem is based on showing that the minimum of Qg is 
realized. It would be interesting to have a better understanding of the analytic 
properties of Qg, and in particular to examine the higher critical points. 
Recently Ding Weiyue [Wy] has shown that Qg has infinitely many critical 
values on the sphere (although it follows from Obata's theorem that the 
minima are the only critical functions that are strictly positive). Schoen has 
shown that the convergence theorem 4.5 holds for sequences {<p5} that are 
solutions—but not necessarily minima—of the subcritical problem, and for 
which {Qg(<ps)} is bounded. 

In another direction, the Yamabe problem can also be posed for CR 
manifolds, the abstract models of real hypersurfaces in complex manifolds. A 
strictly pseudoconvex CR manifold is an odd-dimensional manifold with a 
given codimension 1 sub-bundle of its tangent bundle, which carries a complex 
structure and a hermitian metric (the Levi form) defined only up to a 
conformai factor. S. Webster [We] has defined a notion of covariant differenti­
ation and curvature for the Levi form, and it is natural to ask whether the 
conformai factor can be chosen so that the Webster scalar curvature is 
constant. This is the CR Yamabe problem. 

The formal structure of this problem is identical in many respects to that of 
the Riemannian Yamabe problem. The analysis, however, is considerably more 
difficult since the operator that takes the place of the Laplacian is only 
subelliptic rather than elliptic. Nonetheless, by using more delicate Sobolev 
estimates, one can still prove the analogue of Theorem A; this has been done 
by Lee and David Jerison in [JL1 and JL2]. 

In order to determine when the problem can be solved, one must identify the 
extremals for the "model case", the sphere in Cw+1. Using a generalization of 
Obata's argument, Lee and Jerison have shown in [JL3] that the CR Yamabe 
functional is minimized by the standard Levi form on the sphere and its images 
under CR automorphisms. 

Once the extremals are known, one must calculate the asymptotic expansion 
for the Yamabe functional of an appropriate test function, and relate it to local 
CR invariants. This calculation is significantly more complicated than in the 
Riemannian case, and requires the construction of special coordinates analo­
gous to conformai normal coordinates. In [JL4], Lee and Jerison have carried 
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out this calculation and proved the following analogue of Theorem B: the CR 
Yamabe problem can be solved on CR manifolds of dimension > 5 that are 
not locally CR equivalent to the sphere ("locally spherical"). 

When the dimension is 3 or the manifold is locally spherical, this local 
approach does not work and we are in a situation analogous to Theorem C. In 
that case one needs an analogue of the positive mass theorem for CR 
manifolds. This problem is still completely open. 

Appendix: Witten's proof. In this appendix we give a proof of Witten's 
Theorem 10.3, beginning with a rapid summary of the geometric context of 
spinors. More details on the constructions discussed here may be found in 
[PT]. 

The group SO(«), n ^ 3, has a twofold universal covering group called 
Spin(«). This group has a fundamental unitary representation on a space V of 
complex dimension 2n~2 called the spin representation p: Spin(«) -> Aut(F). 
When n is odd V is irreducible, and when n is even V = V+ 0 V_ is the direct 
sum of two irreducible representations. In addition there is an equivariant 
linear Clifford multiplication map c: Rn -» End(F). The map c(x) is skew-
hermitian and satisfies c(x)c(y) + c(y)c(x) = —2(x, y)ld for all x, y e R". 

For example, Spin(3) = SU(2) is the universal cover of SO(3), and p is the 
standard representation of SU(2) on C2. In this case Clifford multiplication is 
simply 

/ ix y + z\ ^ ,~\ 
cix, v, z) = . . G 4#(2). 

\iy ~z -ix j 
For later use we note that the Lie algebra representation p: ófrin(n)-^> 

End(F) can be written in terms of Clifford multiplication. Namely, for any 
skew-symmetric matrix A e o#(n) = ófcin(n)we have 
(A.l) p(A) = - H , c ( * ' M * y ) = - H y [ c ( e ' ) , c ( ^ ) ] , 
where {e1} is the standard basis of Rn. (It is easy to verify that this is a Lie 
algebra representation.) 

Now suppose (N,g) is an oriented Riemannian manifold, and FN the 
bundle of oriented orthonormal frames for T*N (a principal SO(«) bundle). 
When the second Stief el-Whitney class <o2( JV) vanishes we can choose a lift FN 

of FN to a principal Spin(«) bundle; in this case one says TV is a spin manifold. 
We then have an associated Hermitian vector bundle S = FN X p V called the 
spin vector bundle, and a global Clifford multiplication c: r(T*iV) -> 
r(End(S)). A section \p G T(5) is called a spinor on N, and for a 1-form co we 
will denote Clifford multiplication byc(w)^ = co-\p. 

The metric g on N gives a Levi-Civita connection on FN, on JF ,̂ and on all 
associated vector bundles. The composition of the covariant derivative v on 
T(S) with Clifford multiplication gives a first-order elliptic operator 

2f\ T(S) ^ T(T*N ® S) ^ T(S) 

called the Dirac operator. If {et} is an orthonormal frame on U c JV, and {el} 
the dual coframe, then on U 
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The square of this operator satisfies the important formula of Lichnerowicz: 

(A.2) ^ 2 = V*V + i S , 

where V *V^ = —ypj is the covariant Laplacian on spinors. It is this formula 
that Witten used in place of the Bochner formula (10.1). 

To prove (A.2), choose P G M and an orthonormal frame {et} with 
Vet(P) = 0. Since el • eJr • + ej • el: • = -28iJ

9 at P we have 
& = et. ^ . v . V y = (-su + i[ei. , ^ -])v,Vy 

= v*v + W' ^'-[v^Vy]. 
At P, the curvature endomorphism R(ei9 ej) = [V,-, Vy] acts on 1-forms via the 
skew-symmetric matrix ^(e, , e,)^ = -K^-, so by (A.l) its action on spinors is 

p(*(e„ «,))*= -**„„«* •*'•*. 
Thus 

B1^ V * V - itf* /0.e'• e ' • <?* • e'• . 

By the symmetries of the curvature tensor, 

0 = (RkliJ + RkiJl + Rkjli)e
i-eJ-ek-el-

= 3J^//7é>/ .e
J>ek'el- + 65. 

Then (A.2) follows. 
Now suppose N is asymptotically flat with metric gtj = ô/y + /*,.., where 

/*0 e C2'?(7V)> T > (n - 2)/2. Orthonormalizing {dz1} yields an orthonormal 
coframe el = dz1 4- \hikdzk 4- (9(p~T_1). The connection coefficients of this 
frame are 

f* = -(v,.e*,cy.) = r* - H A , t + OCp- 2 - 1 ) 

This orthonormal coframe induces a trivialization of FN, and hence of the spin 
bundle FN, over the asymptotic end N^. With respect to this trivialization, the 
Dirac operator is (using (A.l) and the above formula) 

(A.3) 0* = ei • V ^ = e* • 3 ^ - i ( a * & > ' •[*> ' >*k ']* + 0 ( P ~ 2 T _ 1 H -

The trivialization also enables us to define 'constant spinors' on N^. Choose 
such a constant spinor \p0 with |t//0| -> 1 at infinity, and extend it to a smooth 
spinor on N. It follows from (A.3) that &2\p0 e C^_2(N). Now note that 
S > 0 implies that 

(A.4) ^r2: Cl^N) -» C ^ - i W 

is injective. Indeed, suppose Éi1^ = 0 for some £ e C2'"(A^). Then £ = 0(p _ T ) 
and v£ = 0(p~T _ 1) . Applying (A.2) to £ and integrating by parts we see that 
the boundary terms vanish, leaving 

0 = / (t,&t)dVg= ƒ \vt\2 + m?dVg. 
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Since S > 0 this shows that v£ = 0, so V |£|2 = <v£, O + <& v£> = 0. Thus 
| | | is a constant, which is zero since £ vanishes at infinity. 

Theorem 9.2(d) also holds for the operator v *V acting on spinors (with 
essentially the same proof). Therefore (A.4) is an isomorphism, so there exists 
£ e C2j?(N) with # 2 £ = &2\p0. The spinor $ = x^0 - £ then satisfies é2^ = 0. 
Furthermore, <p = if-ty = &$Q — <&}• satisfies <Êfy = 0 and lies in CL'JL^iV), so 
integrating by parts as above shows that <p = 0. We have thus obtained a 
spinor \p which is asymptotic to \p0 and satisfies &ty = 0. 

Now apply (A.2) to \p and integrate by parts over the region NR = { p < R }. 
This time there is a boundary term: 

(A.5) ƒ |v«H2 + i s | i H 2 J F g = R e / <<KV,<|>,JJFg 

= R e / «*o.V^o> - <*o,V,«> - (€,V^o> + (^V^e^dV^ 
SR 

As in (A.3) we have 

Since [eJ • , ek • ] is skew-Hermitian, this is 0(p~2 T _ 1) and so the first term in 
(A.5) vanishes as R -> oo. Furthermore, since £ = 0(p~T), v£ = 0(p~T~l), 
and V*/>0

 = 0(P~T _ 1)> t n e third and fourth terms also vanish. 
To analyze the remaining term, let Lt denote the operator 

Lt = V, + e'-ér= («., + e' • ̂  -)vy = \W • ,^" -]vy . 

If a is the (« - 2)-form a = (|V • , e-7 • ]i/>0,£>£,- J ej J JFg, then 

= - 4 « L ^ 0 , € > - ( ^ 0 , L , É » e i J d K g . 

Therefore, by Stokes' theorem and the fact that üfc£ = #t/>0 , tne second term in 
(A.5) is 

(A.6) R e / (^„{ei^-Ll)i)elAdVg 
SR 

= Re / ( (* 0 ,* ' .^ 0 ) -<L,* 0 ,É»e , j< /K g . 
' ' SR 

As before, <L,.i//0, £> = 0(p- 2 T _ 1 ) , while (A.3) gives 

e' • ^ o = - i ( 3 * g y + O l p - 2 - 1 ) ) ^ ' • e' - [ ^ • ,e* •]*„ 

= - i ( 8 f t g y + 0{p-2^))e' • e'-(8Jk + e' • ek •)*„ 

= -i(3yfo> - KSJJ + 0(p-2*-l))e' • ek • * 0 . 

Writing e' • ek • = \[e' • ek • ] - S'k and noting that [e' • , ek • ] is skew, we 
see that (A.6) becomes 

i ƒ (3y% - 3,gy7 + ^ (p - 2 - 1 ) ) ! ^^ , i dv s . 
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Putting this into (A.5) and letting R -> oo gives Witten's formula 

ƒ M| 2 +iS | i /> |V g = jrn(g). 

The theorem follows immediately. D 
We remark that with a little more work the weighted Holder spaces can be 

replaced by weighted Sobolev spaces in the above proof, and one need only 
assume that g is asymptotically flat of order r > (n - 2)/2 and has finite 
mass. 
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