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A COMBINATORIAL PROBLEM; STABILITY AND
ORDER FOR MODELS AND THEORIES

IN INFINITARY LANGUAGES

SAHARON SHELAH

Some infinite combinatorial problems of Erdόs and Makkai
are solved, and we use them to investigate the connection
between unstability and the existence of ordered sets; we
also prove the existence of indiscernible sets under suitable
conditions.

O* Introduction* In § 1 we deal with combinatorial problems
raised by Erdδs and Makkai in [5] (they appear later in Erdδs and
Hajnal [3], [18] Problem 71).

Let us define: P2(λ, μ9 a) holds when for every set A of cardi-
nality μ, and family S of subsets of A of cardinality λ, there are
ake A, Xk e S for k < a, such that either fc, I < a implies ak e Xt <=>
k < I or k, I < a implies ake Xι*=> I ^ k.

Erdδs and Makkai proved in [5] that if λ > μ ^ fc$o> then P2(λ,
μ, ω) holds. Assuming G.C.H. for simlicity only, our theorems imply
-P2(y^+2, VWi, ϊ*β) holds for every β.

In § 2 we mainly generalize results on stability from Morley [9]
and Shelah [12] to models, and theories of infinitary languages. We
first deal with stable models. Let M be a model, L the first-order
language associated with it, Δ a set of formulas of Lλ+,ω (for any λ)
each with finite number of free variables. We shall assume Δ is
closed under some simple operations. M is (J, λ)-stable, if for each
Ad I M\, \A\ ^ λ, the elements of M realize over A no more than λ
different J-types. Let λ e OdΔ(M) if there is <p(x, y) e Δ and sequences
άk, k < λ, of elements of M such that for every k, I < λ, M \= φ[ak, a1]
if and only if k < I.

By Theorem 2.1, if M is not (Δ, /c)-stable £ | J | = K, tc = Σ*μ<λ(*μ + 220,
then λ G OdΔ(M). Theorem 2.2 says that if M is (Δ, λ)-stable, λ g OdΔ(M),
\\M\\ > λ, Acz \M\, I A\ ^ λ, and the cofinality of λ is > \Δ\, then
in M there is an indiscernible set over A of cardinality > λ. This
generalizes Theorem 4.6 of Morley [9] for models of totally transcen-
dental theories.

A theory T, TaLλ+,ω for some λ, is (Δ, μ)-stable, if every model
of T is (Δ, μ)-stable. By Theorem 2.4, if Γ, Δ c Lλ+,ω \ T \ ̂  λ, and
μ(X) e Odj(M) for some model M of T, then for every tc, T is not (Δ, K)-
stable. This is a converse of Theorem 2.1. (Morley [9] proved a
particular case of this theorem (3.9) that if T is a first-order, counta-
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ble, complete, totally trancendental theory, (i.e., T is (Δ, y$0)-stable,
where Δ is the set of all formulas of L), then )£^£θdΔ{M) for any
model M of T. (In fact he used a little stronger definition for

By Theorem 2.5, if TaLλ+,ω, and Δ is arbitrary, and for every
K, T is not (zf, /c)-stable, then for some Δx c Lj+,ω, | Λ | ^ λ, T is (Λ, £)-
unstable for every Λ;. By Shelah [16], we deduce that for every
K > I T\ + λ, T has 2* nonisomorphic models of cardinality tc.

NOTATIONS. Let λ, Λ:, μ, X denote cardinals (infinite, if not clear
otherwise). Let a, β, 7, i, i, &, I denote ordinals and m, n denote
natural numbers. We shall indentify cardinals with initial ordinals,
and y$α will be the αth infinite cardinal (y$0-the first). The first in-
finite ordinal is denoted by ft). λ+ is the first cardinal greater than
λ. I AI is the cardinality of the set A.

1Φ Combinatorial problems. Let A denote a set, S a family
of subsets of A. Let A ( - ) S be the family {A- B:BeS}. Aa is
the set of sequences of length a of A; and if a e Aa, l(a) = a and α^
is the /9th element in the sequence. After Erdos and Makkai [5], a
if strongly cut by S if for every β < a, there is Xβe S such that
aγ e Xβ <=> 7 < β for every 7, β < a. Erdos and Makkai [5] proved that
is I SI > I AI ^ y$0> then there is a sequence άe Aω which is strongly
cut by S or by A ( —) S. They asked several questions ([5] p. 159 and
[3] problem 71 p. 45). We shall here answer some of their questions.

Let us define

DEFINITION 1.1. Pl(λ, μ, a) holds, if \S\ = λ, | A\ = μ implies
there are α, b e Aa, Xe Sa such that: for every β, Ύ < a,

dβ e Xr <=> bβ e Xr if and only if 7 < β.

DEFINITION 1.2. P2(λ, μ, a) holds, if | S | = λ, | A\ = μ implies
there are deAa, XeSa such that:

either β, 7 < a implies dβ e Xr ^=> β < 7

or

β, 7 < a implies dβ e Xr <=> 7 ^ / 3 .

REMARK. This means that a is strongly cut by S or by A (—) S.

DEFINITION 1.3. P3(λ, μ, a) holds if | S | = λ, | A\ = μ implies
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there are a e Aa, Xe Sa such that for every β, 7 < a, aβ e Xr <=> β < 7.

REMARK. This means a is strongly cut by S.

NOTATION. In each of PI, P2, P3 we shall always implicitly
assume 2μ ^ λ > μ. For otherwise, those relations are not interesting.

Clearly, the theorem of [5] is by our notation, that P2(λ+, λ, ω)
holds. Let us now list the results proved here about those three
properties.

THEOREM 1.1. For every λ, P3(λ+, λ, ω) does not hold. (This
solves negatively problem 1 in [5], which is the same as problem
71A, in [3] p. 45.) (In fact, we prove a stronger result.)

THEOREM 1.2. // λ > Σo*,<χ {μκ + 22*) then Pl(λ, μ, χ) holds.

THEOREM 1.3. If λ > μ2 then P2(λ, μ, χ+) holds. Moreover if
1° = Σo*.<z 2% λ > μ*° then P2(λ, μ, χ) holds.

THEOREM 1.4. If Pl(λ, μ, χ) and χ —> (κ)l holds, then P2(x, μ, tc)
holds.

REMARK. (1) χ —> {κ)\ is defined in Erdos, Hajnal and Rado [4].
As the proof is straightforward, we leave it to the reader.

(2) We can combine theorems 1.2 and 1.4 to get results about
P2(λ, μ, a). For example by Ramsey [11], M<>—>(K>)ϊ, hence P2(λ, μ, ω)
holds (which is the result of [5]). (Here, as usual, we implicitly
assume λ > μ ^ y$0.)

(3) Theorems 1.2, 1.3, 1.4 give partial answer to a question
which naturally arises from [5], and problem 2, [5], and 71B [3] are
the most simple cases of it.

THEOREM 1.5. P2(λ, μ, ω + 1) holds. Moreover, if λ > μ = μ*°,
n < ω, then P2(λ, μ, ω + n) holds.

REMARK. This answers problem 3 of [5] (in fact even stronger)
and partially answer problem 2 of [5] (= 71B of [3]). The proof
gives several more results of this kind.

To clarify our results let us assume G.C.H.

COROLLARY 1.6. (G.C.H.) For every regular cardinality μ, and
any cardinal χ < μ, P2(μ+, μ, χ) holds. Moreover, if μ is singular,
χ is less than the cofinality of μ, then P2(μ+, μ, χ) holds. If χ is
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not greater than the cofinality of μ, Pl(μ+, μ, χ) holds.

Proof. Immediate from Theorems 1.2, 1.3, 1.4, and by [4], (2; )+—>
(λ+)4

2 holds.
The question naturally arises whether those are the best possible

results. Prikry essentially proved this. See [18] Problem. 72.

THEOREM 1.7. Suppose λ = μγ> Σo^< χ μ
κ = μQ then P2(λ, μ0, χ +

2) does not holds, (χ + 2—this is an ordinal addition). Moreover
Pl(λ, μθ9 χ + 2) does not holds.

In [5], not P2(^ x , V$o, o) + 2) was proved; and as the proof is
similar and straightforward we leave it to the reader.

The most simple open problems are: (for simplicity only we
assume G.C.H.)

PROBLEM 1. If #a is regular, does Pl(Vί«+i, ϊ$a, fcU hold? Does
P2(«β + 1 > «β, * U hold?

PROBLEM 2. If y α̂ singular, \ξβ is the cofinality of ^ α , does
P2(«α + 1, «β, «,) hold?

Maybe the answers are independent of Z F + AC.
Let us summarize the trivial facts about our properties.

LEMMA 1.8. (A) If \ ^ \ μ^μ, a^ a and Pl(λ, μ, a) hold,
then Pl(λ1? μx, at) holds. The same is ture for P2 and P3.

(B) P3(λ, μ, a) implies P2(λ, μ, a); P2(λ, μ, a) implies Pl(λ, μ, a),
where a is a limit ordinal) and P2(λ, μ, a + 1) implies Pl(λ, μ, a).

(C) If a < ω,X> μ then P3(λ, μ, a) holds.
(D) 1/ c/(λ) ^ ^ < λ, (Vχ < λ) -i P2(χ, μ, a) then not P2(λ, μ, a).

Proof. Immediate. We use (D) for (B).
Let us now prove the theorems.

DEFINITION 1.4. Ded(//) is the first cardinal λ such that there
is no ordered set of cardinality λ with a dense subset of cardinality μ.

REMARK. Clearly μ+ < Ded(μ) ^ (2μ)+. By Mitchell [8] it is con-

sistent with ZF + AC that Ded(Ki) <

THEOREM 1.9. If μ < λ < Ded(μ) then P3(λ, μ, ω) does not hold.

REMARK. Clearly Theorem 1.1 is an immediate conclusion of this
theorem.
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Proof. Let a tree mean a pair of a set and a well ordering of the
set, which is not necessarily a total ordering. A branch of a tree is a
maximal ordered subset It can be easily shown that there is a tree
<04, <> (A—the set, <—the ordering) such that \A\ = μ and the
tree has ^ λ branches. Let SL be the family of the branches of the
tree and S = A (-) S,. Clearly | S\ ^ λ, | A | = μ and S is a family
of subsets of A. So it suffices to show that there is no a e Aω which
is strongly cut by S.

So suppose a e Aω is strongly cut by S. By using Ramsey theo-
rem ([11]) we know there is an infinite subsequence of ά, 6, such
that exactly one of the following conditions is fulfilled

(1) for every n < m < ω, bn < bm (in the tree)
(2) for every n < m < ω, bn — bm

(3) for every n < m < ω, bn> bm

(4) for every n < m < α>, bnbm are incomparable, i.e., bn Φ bm,
not 6Λ > 6m, and not b«_ < bm.

Now clearly also b is strongly cut by S. Hence (2) cannot be
fulfilled. As < is a well ordering (3) cannot be fulfilled. Now as b
is strongly cut by S, there is a branch of <(A, <> which contains
two of the δn's and so they are comparable, in contradiction to (4).
So (1) is fulfilled. As b is strongly cut by S, there is l e S such
that b0GI, &!ί X. But A — X is a branch of the tree, 6 ^ 4 - 1 ,
ô < &!, hence ^ e A — X, a contradiction.

THEOREM 1.2. If x > Σ o ^ < * (μκ + 22") ίfeew P l ( λ , μy χ) holds.

Proof. Let S be a family of subsets of A, \S\ — λ, \A\ = μ.
We should prove there are ά, beAχ and XeSχ such that , for every
a, β <X> aaeXβ<=>baeXβ iff /S < α.

Let us define, for every Γ c S , an equivalence relation Eτ on A: aEτ

b holds if and only if for every Xe Γ, ae X<=>be X. Clearly Eτ is an
equivalence relation, and the number of equivalence classes is ^ 2 m .

Let us also define that TaS fixes XeS if for every α, be A,
aEτb implies ae X<=>be X. Clearly the number of J e S which are
fixed by T cannot be more than the number of subsets of the set of
the EV-equivalence classes. Hence | {X: Xe S, X is fixed by T) \ ̂  22 | Γ |.

Let us now define by induction the families Sκ for 0 rg fc < χ
such that:

(1) SκaS, [Sκ\£μ*
( 2 ) fc,< fc2 implies SKl c S,2

( 3) if J?, C c A, I BI ^ /c, | C \ ̂  Λ:, and there is Xe S such that
B c X, C Π X = 0, ί&ew there is Γ e >SΛ such that B c 7, C ΓΊ Γ = 0.

Clearly we can define the Sκ. We shall now prove that
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(*) there is YeS such that for any Γ, TaSκ, 0 ^ ic < χ, \T\£
tc, Y is not fixed by T.

Suppose (*) does not hold and we shall get a contradiction. So

S = U U {X Xe S, X is fixed by T} .

We have proved that |{X:XeS, X is fixed by T}\ ^ 22|7Ί, and
by its contruction | Sκ \ ̂  μκ. Hence

^ Σ I S , |β x 22K = Q Σ (I Sκ \
κ + 22 C)

V (ft- + 22Λ) < λΣ

a contradiction. So (*) holds.
Now we shall define by induction ak, bk, Xk for k < χ such that:
(A) α* e A, 6A e A, and X& e Slkl+1

(B) if Z ̂  fc then at e Xky axeY,bt$ Xk, and btί Γ
(C) if Z < ft, then akeXι if and only if δ A eX z .

Suppose αz, 6Z and Xz has been defined for every Z < ft. Let
1 + 1 ft I = A;, and T = {Xt: I < ft}. Clearly TaSκ,\T\^ ic. Hence, by
the definition of Y, it is not fixed by T. So there are akf bke A such
that: ake Y, bkg Y and akEτbk, i.e., for every I < k, ake Xt if and
only if δfc e X,. Clearly {αz: Z ^ ft} c Γ, {c,: I £ ft} n Γ = 0, | {αz: Z ^ ft} | ^
/r, I {b^. I ^ ft} I ̂  /c; hence by the definition of Sκ there is Xk e Sκ such
that

{at: I £ ft} c X,, {&,: Z ̂  ft} n X, = 0 .

Clearly ζak: ft < χ>, <6A: ft < χ)>, and ^X^: ft < χ> are the required
sequences, and so Theorem 1.2 is proved.

THEOREM 1.3. 1/ χ° = Σo^<α 2% λ > ^χ°? then P2(λ, ^, χ) feoZds.

Proof. As the proof is very similar to the proof of Theorem 2,
we shall only sketch it.

Suppose S is a family of subsets of A, \ S \ = λ, | A | = μ. It is
easy to find Sι c S, | S, \ ̂  ^̂ ° such that:

(1) if 5 c A, | B | ^ 2 % 0 ^ Λ: < χ , and Γ c S , | Γ | £ ic and F e S
then there is XeS^ such that: (A) Xf]B = Yf] B (B) if C is an
.^-equivalence class then CaX<=>Cc:Y and C n l = 0 « C ί l F = 0.

( 2 ) if X*f ft < α, < χ, Z < χ°, Γ^, ft < βι < χ, I < χ° and Zh I < χ°
are sets from S19 and there is J e S such that: for every Z < χ°
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i n n xϊ n Π (A - Y?) = zt n n xt n n (A - Y?)
k<aι k<βι k<aι k<β

then there is XeSly which satisfies this condition.
Now we can repeat a construction similar to that which appears

in the proof of Theorem 1.
As Theorem 1.4 is trivial, it remains to prove only

THEOREM 1.5. (A) If λ > μ then P2(λ, μ, ω + 1) holds.
(B) If λ > μ = Σo^<χ μ% a ^ 1 and P2(λ, μ, a) holds then

P2(λ, μ, a + 1) holds. Hence for every n, if in addition a < χ,
P2(λ, μ, α: + n) holds. (By 1.8D we can assume cf(λ) > μ).

(C) // λ > μ*°, £Λew P2(λ, μ, ω + w)

REMARK. (1) Clearly (A) cannot be improved by [5]
y$0, ω + 2) does not hold.

(2) Part of the proof is a generalization of a proof of A. Mate
which appeared in [5].

Proof. As the proof of (B) is obvious from the proof of A, we
shall prove A only. (C follow from B).

So let S be a family of subsets of A, \ S \ = λ, | A | — μ.
First, there is a0 e A such that Sλ = {X: Xe S, α° e X} is of cardi-

nality > μ. Otherwise

[J{X:XeS,aeX}U{0}
aeA

^ Σ |{X: XeS, αeX}| + 1 = μ-μ + 1 = ̂  < λ

a contradiction. Similarly there is α1 e A such that S2 = {X: Xe S19

a1 £ X} is of cardinality > μ. Now at first we assume
(*) there is A1 c A, and Sι c {Y Π A1: Γe ̂ J such that | S11 > μ;

and for every XeS 1 ,

Then it can be easily seen that if Xί9 •• , I w e S 1 , I = I 1 U U l ,
then

{ Γ Π X : ^ μ

So we can easily find S2aS\\S2\^μ such that: if Xl9 , Xn e S\
XeS1 and X c X . U ••• U Xn then XeS2; and if α0, •••, aneA, XeS\
then there is Ye S2 such that {α0, , an} (Ί X = {α0, , α j Π F.
Now let Γ ^ S 1 , Γ ° $ S 2 . (Γ° exists as | S11 > μ ̂  | S21). Now we
shall define by induction on n, an, Xn such that: an e Y°, Xn e S2, and
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an $ Xo, an $ Xu , an $ Xn; α0, , an_x e -X*. Suppose αn, Xw has been
defined for every n<m<ω. As Y° $ S2, Y° <£ Xo U U -X*"1, hence
there is αw e Γ°, αm $ Xo U U Xw - 1. Also there is Xm e S2 such that
K, , αΛ} Π -X» = {α0, , am} f] Y°.

Now clearly if we define aω = α\ clearly <(αα ] a < ω + Γ>e Aω+1

and is strongly cut by S; so the conclusion of theorem holds.
Similarly the conclusion of the theorem holds if
(**) there is A1 c A and S1 c {Y Π A1: Ye S2} such that | S1 \ > μ,

and for every Xe S1

HYΠiA1- X): YeS1}\^μ.

Hence we can assume (*) and (**) do not hold. So there is
X°eS2 such that S3 = {Yf)X°:Ye S2} is of cardinality > μ. (Other-
wise, taking A1 = A, Sι = S2, (*) holds.) Similarly there is X'eSs
such that S, = {Yf](X°-X1):Ye Sz} is of cardinality > μ (other-
wise taking A1 = X\ Sι - S3, (**) holds). Now | S41 > μ ^ | X°- X11,
and >S4 is a family of subsets of X° — X1. Hence there is αe (X° —
Xι)ω which is strongly cut by S4 or by (X° - XX)(-)S4. Taking as
αω, α° or α1 (accordingly), we get a sequence from Aω+1 which is
strongly cut by S or A(—) S. So we prove Thorem 1.5A.

Naturally the question arises on the finite case. More exactly

DEFINITION 1.5. For natural numbers m, n let /(m, n) be the
first ordinal a such that P3(α, m, ri) holds.

The result is f(m, n) = 1 + Σut~l (^) The proof follows from a

little more complex result, of Perles and Shelah.
Another natural generalization is the relation P4(λ, μ, χ) which is

DEFINITION 1.5. P4(λ, μ, χ) holds if whenever \S\ = λ, \A\ — μ,
and S is a family of subsets of A, there exists BcA,\B\=χ, such
that for every CaB there is I G S such that I n B = C.

Clearly P4(λ, μ, χ) implies P3(λ, /̂ , χ) and P3(λ, μ, a) for every
α < χ+. The only result known to me is that if λ ^ Ded(μ), λ is
regular and χ is finite, then P4(λ, μ, χ) holds, (see Shelah [15]).
Perles and I prove that if μ and χ are finite P4(λ, μ, X) holds if and

only if λ > Σϋtoί 7 )• Later and independently Sauer [19] proved it.

2. On stable models and theories* In this section we shall
apply a combinatorial theorem from § 1 to get results in the theory
of models.

Let L be a first-order language; Lλ,ω will be its extension by
permitting conjunctions on sets of < λ formulas, provided that in the
conjunction, only finitely many variables appear free. Loo,ω will be
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the class of formulas \Jλ Lz.ω T w ^ denote a set of sentences from
jLoo,ω. Δ will denote a seί of formulas φ(x) from L ^ (more exactly,
Δ is a set of pairs ζφ, αΓ> where φeL^^x is a finite sequence of
variables, and every free variable of φ appears in x). Δ is closed if
it is closed under negation, finite conjunction (hence all connective),
adding dummy variables and changing the order of the variables.
Δ is the closure of Δ. M, N shall denote models (L-models, if not
said otherwise). | M\ is the set of elements of Λf. If A a | Λf |, p is
a (Δ, m)-type over A iff p is a set whose elements are of the form
φ(x, a) where x = ζx0, , xm^y, φ(x, y)£ Δ and de A (or more exactly
a0, au 6 A).

For c e \ Λf |, the z/-type <Γ realizes over A, p(c, A, M, Δ) is

{φ(x, d):ae A, φ(x, y)eΔ, M\= φ[c, a]} .

Let

Sm(A, M, Δ) = {p(c, A, M, Δ)\ ce \ M\m} .

The model Λf is called (Δ, X)-stable if | A | g λ implies | S\A9 Λf, Δ) | ^
λ; otherwise Λf is (λ, zί)-unstable.

Let λ e Odά(M) if there is n < ω, and sequences αz e | Λf \n, I < λ;
and a formula <£>(#, ?/) e Δ such that Λf f= <p[ak, dι] if and only iΐ k<l
for every k, I <X.

T H E O R E M 2 . 1 . Suppose Mis (Δ, fc)-unstable, Δ — Δ,κ — Σ 0 ^ < ; t ( ^ +
2 2 0 αm£ tc — tclJl. Then λ e Od\M).

Proof. L e t z/ = {φk{x, y k ) : k < \Δ\}, Δ k = {φk(^f yk)} A s Λf is (Δ,
Λ;)-unstable, there is Aa\M\,\A\ ^ ic such t h a t | S'iA, M, Δ) \ > tc.
If for every k<\Δ\,\ S'iA, Λf, Λ) I ̂  * then

tc < I S 1 ^ , Λf, A) I

a contradiction. Hence there is k < Λ: such t h a t | SX(A, Λf, Δk) \ > tc.
L e t φ = 9?fc. Now clearly ^(.A, ikf, Jfc) is a set of subsets of

Φ — {Φkiw, a): a e A, a is of the length of yk) .

Clearly \φ\ ^ tc. Hence by Theorem 1.2, there are pι e S^A, Λf, Δk)
d\ bι e I AI for I < λ such that <p(x, dι) e pό <=> <p(x, bι) e pό if and only
if j < I. Let pj = p(cz, A, Λf, z/&), and ώz = dι^bι^cι (the juxta-
position of the three sequences). Clearly Λf |= φ[cj, a1] = φ[cd, bι] if
and only if j < I. As z/ = zT, we can easily find ψ(x, y)e A such that
for k, I < λ; Λf N f [J&, d1] if and only if & < Z. Hence λ e OdΔ{M).

k<\Δ\
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DEFINITION 2.1. Let A, Ca\M\. C is zf-indiscernible over A in
M if for every n, and every n different elements c0, , cn^ of C, and
every additional n different elements c°, , cn~ι of C

P«Co, , c^X A, ΛΓ, A) = p«c°, , c*->, A, M, J)

THEOREM 2.2. Suppose M is (Δ, xy stable, X $ Oefe(Λf), A c | M\,
C c I MI, I AI ^ λ < I C |, ami £/ιe cofinalίty of X is greater than | J |.
ϊ%ew there exists Cγ c C, | C1 \ > λ sue/? ί/̂ aί d is A-indiscernϊble in
M over A.

REMARK. Taking a Souslin tree, we can see that the condition
λ $ Odj(M) is necessary. (More exactly, this is consistent with ZF +
AC.) Instead c/(λ) > | A \ we can demand lμ < λ, μ $ Od2{M).

Morley in [9] Theorem 4.6 proved a similar theorem for models
of a complete, first-order, countable, totally transcendental theory. In
[12] this was generalized to models of stable theories, and in [13],
Theorem 3.1 to models with stable finite diagram. Another generaliza-
tion is Theorem 5.9A of Shelah [15]. Theorem 2.2, in fact, implies all
these theorems. (For 5.9A [15] we should note that if Δ is finite, then
there is a finite Δ19 A c ^ c l , such that for any M, λ; M is (Δl9 λ)-
stable if and only if it is (J, λ)-stable.)

Proof. As the proof is very similar to the proof of Theorem 3.1
[13], we omit it.

DEFINITION 2.2. T is (A, λ)-stable if every model of T is (Δ, λ)-
stable. T is zί-stable, if for at least one λ it is (Δ, λ)-stable, T is
(A, λ)-unstable [zί-unstable] if it is not (Δ, λ)-stable [J-stable]. Let
λe Odj(T) if for at least one model M of T,\eOdΔ{M). T is stable
if it is //-stable for every A; otherwise-unstable.

REMARK. If T has no model of cardinality > λ, then it is (Δ, λ)-
stable, and hence stable.

THEOREM 2.3. Suppose T, A c Lλ+,ω, \ T\ ^ λ, | L | ^ λ, T is (A, K)-

unstable, tcμ{λ) — fc. Then T is A-unstable.

REMARK. ( 1 ) μ(X) is the first cardinality such that if a sen-
tence of a language L)+,ω has a model of cardinality μ(X), it has models
in any cardinalty ^ λ.

(2) We can demand only: T, AaLλ+,ω, | T\ + \Δ\ ^ λ, and for
every μ < μ(X) there is /c = κμ such that T is (Δ, /c)-unstable.

( 3) We can demand only Γ, A c Lλ+,ω, \ T\ ^ λ, | L \ < μ(X), ic =
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T is (d, £)-unstable.

Proof. Here we use Ehrefeucht-Mostowski models (see [2]) and
the method of Morley [10]. All the results we use appeared in Chang
[1], As T is (J, £)-unstable, T has a model M and Aa\M\ sueh
that I Sι(A, M, A) \ > tc :> | A |. It is well known that χ < μ(X) implies
2* < μ(X); hence χ < μ(X) implies 22X < μ(X). So /c = ΣJχ<μ{λ) {κγ + 22*).
As | J | ^ \Lλ+,ω\ < μ(X), exactly as in the proof of Theorem 2.1, this
implies t h a t there are sequences ak, bk, k < μ(X) from A and cke\M\,
k < μ(X) and a formula <p(x, ?/) e A such t h a t :

for every k, I < ^(λ), ikf 1= φ[clf ak] = φ\ch bk] if and only if I < k .

Now we add to M the one place relation PM = {cΛ: A; < ^(χ)}, and the
functions Ff, F2

¥ defined by FΛ(αfc) = cfc, F f (bk) = ck, and otherwise
F?(a) φ P^, F f $ PM.

Now using Morley's method we get (in fact we need an improve-
ment of Chang [1]):

(*) for every ordered set I, there is a model MΣ of T, in which
there are c8, as, bs for every se I such that: for every s, te I

MΣ |= φ[ct, as] = [ct, bs] if and only if t < s .

Let χ be any cardinality, and we shall prove T is (z/, χ)-unstable.
We can find easily an ordered set I, | J | > χ, with a dense subset J,
I J | <̂  χ (If χx = inf {χ̂ . 2 n > χ}, then / can be the set of sequences of
ones and zeroes of length χ1? ordered lexicographically.) Let M = MI9

and let A = U {Rang as U Rang δ s: s e J}. Clearly | A \ ^ ^ 0 + | J\ ^
χ. On the other hand we shall show that tL Φ t2i t19 t2e I implies
p(ch, A , M, Δ) Φ p(ct2, A , M, A). H e n c e | S\A, M,Δ)\> χ, so T is (Δ, χ ) -
unstable.

Suppose ίx ^ ί2, ίx, ί2 ^ I. Without loss of generality suppose tL <
t2. As J is a dense subset of I, there is se J, tx < s < t2. By the
definition of Mn

M t= 9>[cίlf αs] = [cίl? 6 J

M t= -i (φ[c v α8] Ξ cp[cί2, 6J) .

Hence

φ(x, as) e p(ch, A, M, A) if and only if φ(x, bs) e p(ch, A, M, A)

and

φ(x, as) G p(ch, A, M, A) if and only if φ(x, bs) $ p(ch, A, M, A) .

So p(ch, A, M, A) Φ p(ch, A, M, A), and as noted before this implies T
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is (Δ, χ)-unstable, for every χ.
Similarly we can prove

THEOREM 2.4. ( 1 ) If T, Δc Lλ+,ω; | T | + | Δ | ^ λ, and for every
tc < μ(X), /ceOdj(T), then every /ceOdj(T)_.

( 2 ) // every fceOdj(T), then T is I-unstable.

REMARK. In 2.4.2 we use the following fact: if M is (I, λ)-stable,
A c I MI, I AI ^ λ, m < ω then | Sm(A, M,Δ)\^ X.

THEOREM 2.5. Suppose TczLλ+,ω, \ T\ ^ λ, | L | ^ λ, and T is un-
stable. Then there exists Δί c Lλ+,m \ Δ1 | tί λ such that T is Δrunstable.

Proof. As in the proof of Theorem 2.3, we depend on the method
of Morley [10], Chang [1]. So let T be J-unstable. Without loss of
generality, let Δ = I and Δ c Lκ+,ω. From Theorem 2.1 it follows
that every μeOdj(T) [as T is (Δ, 22 ( ί i + κ + | J ! + | L ! ))-unstable]. Let λ1 =
μ(X + \T\ + κ+\Δ\ + \L\). So Thas a model Msuch t h a t λ1 e 0dΔ{M).

We expand now M to M1 in the following way:
( 1 ) For every subformula φ(x) of a formula from T U Δ (in-

cluding the formulas form Δ themselves) we add to M the relation
Rf = {α: M h 9>[α]}.

( 2 ) M1 has Skolem function for every first-order formula in its
language.

Let Lι — L(ML) be the first-order language associated with Mι.
C l e a r l y | L i M 1 ) \ ^ \ L \ + \T\ + \Δ\ + i c + \. A s V G 0 d Δ ( M ) , t h e r e
are dk, k < λ1 from M1 and there is φo(x, y) e Δ such that M1 ϊ=φo[ak, a1]
if and only if k < I. For simplicity we shall assume the sequences dk

are of length one, and dk = <αfe>.
Hence there is a model N and ase\N\ for se I, which satisfy

the following properties:
(1) the first-order language associated with N is L\
(2) N, M1 are elementarily equivalent.
( 3 ) N is a model of T, and for every subformula φ{x) of a

formula from T U 4 iV |= (VE)[<?(£) Ξ ie^(f)].
(4) I is an ordered set isomorphic to the rationals (s, ί will

denote elements of I).
( 5 ) for each s, te I; N \= φQ[aS} at] if and only if s < t.
(6) for each c e ΛΓ, there are sx < < sn( e I) and a term β

of L1 such that

JV |= c = #[αS l, •••, α s j .

( 7) for every <p(xl9 •• , X B ) G L 1 , S 1 < < sn, and ίx < < ίn
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the following holds:

N N Φ&h, ' , atn] if and only if N N φ[a9l, -asj .

As / is dense, by [7], [17], this holds also for every φeL^^.
Let x° = Oo, x,y, xι = ζx2, xzy.
Let {φk,n(x°, x\ Vo, ί/Λ_.i): ^ < ω, A: < | L |} be the list of the atomic

formulas of L. Let

Φn(x°, x\ y0, , yn_lf zQ, , ^ - 0 =

fc|

Φ{x\ x1) =

A Φ*(£°, ^ , I/O, , Vn-U
n<ω

By Shelah [14], for every L-model M» and α, be \M.\\ Mλ \= Φ[a, b]
if and only if a and 5" realizes different L^-types (i.e., there is
φ(x°) e Loo,ω such that

M1 N φ[a\,M1 \= -π ̂ [6]) .

REMARK. The definition of the satisfaction of Φ[α, 6] is self-
evident. Discussion about languages with such expressions can be
found in Keisler [6].

Hence we can find functions Fl9 , Fn, whose domains and
ranges are |JV|, each with a finite number of places such that:

(*) if Nι is a submodel of a reduct of N, whose associated first
order language include L, and | Nx | is closed under the functions {Fn:
n < ω) then for every α, be\Nι\

2, N \= Φ[α, b] implies N1 1= Φ[a, b].
Now as in the downward Lowenheim-Skolem theorem, we can find

a model Nt such that:
(A) I N, I c I JV|, {as:sel} c | N, |, || N, \\ ̂  λ and iVΊ is a submodel

of a reduct of N.
(B) I iVj. I is closed under {Fn: n < ω)
(C) if α G I iSΓi I, ?>(ίc, y) is a subformula of ψ G Γ, and iV |= (3α;)̂ (α;, α),

then for some be \ Nλ |, N t= 9>[δ, α]. Hence iVΊ is a model of T.
(D) if §! < < sn, tx < < tn, B is a term from L1, and

^ V K , , α.J G I ΛΓ, I, then B^[αtl, , α t j G | ^ |.

REMARK. Notice that by property (7) of N, if B?[a8, •••, α s j =
Bξ[aSl, , α.J then 5f[α t l, , α t j - Sf[α t l, , atj.

(E) The language of N19 L\ contains, L, is of cardinality λ, is
contained in L\ and for each ce \ iVΊ | there is a term J? from U such
that c = BN[as^, , αSw] for some st < < sn
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It is easy to prove that Nt satisfies properties (6) and (7) of N,
with L1 replaced by ZΛ It is also clear, by (C), that Nλ is a model
of T. Let s < t, we know t h a t N \= φo[as, at\, but N N —ι <Po[aa, α«].

Hence <αs, aty, ζau αs> do that satisfy the same L^ ω-type in N. By
(*) and (B), ζa8, aty, ζat, αs)> also do not realize the same L^ ω-typs in
N,.. As || Ni || ^ λ, by Chang [1] it follows that ζaa, αt>, <αt, αs> do not
realize the same Lλ+,ω-tγipQ in A .̂ So there is a formula ^(x, y) e Lλ+.ω

such that N, \= φ[a8, at], N, N= —i 9>[αt, α j . Let Ao = {^(α, #)}, Λ = i"0.
We shall prove that T is z/i-unstable, and so prove the theorem.

By Theorem 2.4.2 it suffices to prove that for every fc, fee OdΔι(T).
Let fc be any cardinal, and J a dense order set, IaJ, and J contain
a subset with order-type fc. We shall define now N2 as an extension
of JVΊ such that:

(a) {as:seJ}a\N2\
(β) for every element c of N2 there are sλ < - - - sne J and term

J5 G L2 such that

(7) if 9>(£clf , xn) is an atomic formula, sλ < < s n e J, tλ< <
ζ e J then

ΛΓ2 |= φ[a8l, , αβΛ] if and only if iV2 \= φ[ah, , atj .

It can be easily seen that iV2 exists. We can also show by in-
duction on formulas of Lλ+,ω that N2 is an Lλ+ ω-elementary extension
of Nt. (See [7], [17]-) Hence N2 is a model of T. It is also clear
that for every s, te J, N2 N ^i[αβ, ĉ ί] if and only if s < t. By the
definition of J and Aι this implies tceOdΔι(N2) hence tceOdΔι(T), and
by 2.4.2, this implies T is z/runstable, where | J1 \ fj λ, | Aι \ c Lλ+,ω.

THEOREM 2.6. 1/ T is unstable, TczLλ+ω, μ > λ + | T|,
exactly 2μ non-ίsomorphίc models of cardinality μ. (For most

cases it suffices to demand μ 2> λ + | Γ | + ^ l β )

Proo/ By Theorem 2.5, and Shelah [16].
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