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We address the question: How should IV n-dimensional sub-
spaces of m-dimensional Euclidean space be arranged so that
they are as far apart as possible? The results of extensive com-
putations for modest values of N, n, m are described, as well
as a reformulation of the problem that was suggested by these
computations. The reformulation gives a way to describe n-
dimensional subspaces of m-space as points on a sphere in
dimension 3 (m—1)(m+2), which provides a (usually) lower-
dimensional representation than the Plicker embedding, and
leads to a proof that many of the new packings are optimal.
The results have applications to the graphical display of multi-
dimensional data via Asimov’s grand tour method.

1. INTRODUCTION

Although there is a considerable literature dealing
with Grassmannian spaces, exemplified by [Chow
1949; Leichtweiss 1961; Wong 1967; James and
Constantine 1974; Griffiths and Harris 1978, Sec-
tion 1.5; MacKenzie and Morgan 1995; Zanella
1995], the problem of finding the best packings in
such spaces seems to have received little attention.

We have made extensive computations on this
problem, and have found a number of putatively
optimal packings. These computations have led
us to conclude that the best definition of distance
on Grassmannian space is the “chordal distance”
defined in Section 2.

Sections 3, 4, 5, 6 discuss the problems of pack-
ing lines in R?, planes in R?, n-spaces in R™, and
lines in R™, respectively. Our search has concen-
trated on packings of N < 55 subspaces of G(m, n),
for m < 16 and n < 3. The results are available
electronically: see before the bibliography.
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2. GRASSMANNIAN SPACE

Grassmannian space G(m,n) is the set of all n-
dimensional subspaces of real Euclidean m-dimen-
sional space R™. It is a homogeneous space isomor-
phic to O(m)/(O(n) x O(m—n)), and forms a com-
pact Riemannian manifold of dimension n(m —n).

We start by discussing how to define the dis-
tance between two elements of G(m,n). Following
[Golub and Van Loan 1989, p. 584], for example, we
associate with two n-planes P and Q) principal an-
gles 0; € [0,7/2] and principal vectors u; € P and
v; € Q, fori=1,...,n, as follows. Choose u, € P
and v; € @ having length 1 and such that u; - v,
is maximal. Inductively, define u; € P and v; € Q
having length 1 and such that wu; - v; is maximal,
subject to the conditions u; -u; = 0 and v; - v; =0
for all 1 < j < 4. Then set 0; = arccos u;-v;.

Wong [1967] shows that the geodesic distance on
G(m,n) between P and @ is

dg(PaQ): \/9%"'"'""9%-

This distance function has the drawback of not be-
ing everywhere differentiable. Consider the case
n = 1, for example, and hold one line P fixed while
rotating another line @ (both passing through the
origin). As the angle ¢ between P and @ increases
from 0 to 7, the principal angle 6, increases from 0
to m/2 and then falls to 0, and is nondifferentiable
at m/2, as illustrated in Figure 1.

61
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FIGURE1. Principal angle #; between two lines as
the angle between them increases from 0 to .

Although one might expect this nondifferentia-
bility to be a mere technicality, it causes many dif-
ficulties in practice. Our optimizer software does
not handle it well, especially in higher dimensions
in cases when many distances fall in the neighbor-
hood of singular points of d,.

An alternative measure of distance, which we
call the chordal distance for reasons to be made
clear later, is given by

d.(P,Q) = V/sin? 6y + - - - + sin’6, .

This approximates the geodesic distance when the
planes are close, has the property that its square is
differentiable everywhere, and, as we shall attempt
to demonstrate, has a number of other desirable
features.

A third definition has been used [Asimov 1985;
Golub and Van Loan 1989, p. 584], namely

dm(P,Q) =6, = _max 0;.
It shares the vices of the geodesic distance.

Of course, for n = 1 all three definitions are
equivalent, in the sense that they lead to the same
optimal packings.

We can now state the packing problem: given
N,n,m, find a set of n-planes P, ..., Py € G(m,n)
such that min, ; d(P;, P;) is as large as possible,
where d is either geodesic or chordal distance. That
there is such a set follows from the compactness
of G(m,n). Since G(m,n) and G(m, m — n) can
be identified by the correspondence induced by or-
thogonal complementation, we will usually assume
that n < m/2.

A generator matriz for an n-plane P € G(m,n)
is an n X m matrix whose rows span P. The orthog-
onal group O(m) acts on G(m,n) by right mul-
tiplication of generator matrices. The automor-
phism group of a subset {Py,..., Py} C G(m,n) is
the subset of O(m) which fixes or permutes these
planes.

Applying a suitable element of O(m) and choos-
ing appropriate basis vectors for the planes, we can
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reduce the generator matrices of any given pair of
n-planes P, @ with n < m/2 to the forms

10 --- 000 ---0

01 --- 000 ---0
L S S S R (2.1)

00 ---1 00 ---0

and

cos§y;y 0 --- 0 sin¢#y 0 --- 0 0---0
0 cosfy --- O 0 sinfy --- 0 0---0
0 0 - cosh, 0 0 -sinf, 0---0
(2.2)

respectively, where 604, ...,0, are the principal an-
gles between P and @ [Wong 1967, Theorem 2].

3. PACKING LINES THROUGH THE ORIGIN IN THREE
DIMENSIONS

Our initial work on this problem was prompted by
a question raised by Julian Rosenman [1992], an on-
cologist at the University of North Carolina School
of Medicine and Computer Science, in connection
with the treatment of tumors using high energy
laser beams. Rosenman asked for the best way to
separate N lines through a given point in R3, or in
other words for the best packings in G(3,1).

Together with W. D. Smith, we had been carry-
ing out an extensive search for the best packings of
a given number of points on S?, that is, spherical
codes [Hardin et al. 1993-95; a|, and we therefore
modified our programs to search instead for pack-
ings of lines; packing N points in G(m,1) is the
same as packing 2N points in S™"! with the con-
dition that all points form antipodal pairs. We
omit the details of this search, since we later redid
the calculations using the more general methods
described in Section 4.

Table 1 lists, for each value of N from 2 to 55, the
minimum distance 6; for the best antipodal pack-
ing of 2N points on S? that we have found. For
comparison, the table also shows the minimal angle
for the best known packing of 2NV points without

the antipodal condition. We see that requiring a
packing on S? to be antipodal is a definite hand-
icap: only in the cases N = 3 and N = 6 do the
antipodal and unrestricted packings coincide.

The table also gives the automorphism group of
the antipodal packing, that is, the subgroup of
O(3) that leaves the set of points invariant. The
groups are given in orbifold notation [Conway and
Sloane a] and as the double cover of a rotation
group. The symbol £+§ indicates that the group
consists of the matrices =M for M € G, where G is
a cyclic (€), dihedral (D), tetrahedral (T'), octahe-
dral (O) or icosahedral (J) group. In each case the
subscript gives the order of the rotation group, so
the order of the automorphism group is twice this
subscript.

We turn to some noteworthy features of certain
entries of Table 1.

N=5
The five lines are five of the six diameters of a
regular icosahedron.

N=28

The putative solution forms an unpleasant-looking
configuration of 16 antipodal points on S2%, with
no further symmetry. The convex hull is shown
on the left in Figure 2. In contrast, the putatively
best packing of 16 points, shown on the right in
the same figure, has a group of order 16.

FIGURE2. N = 8: Best antipodal packing known
(left) and best unrestricted packing known (right)
of 16 points on the sphere.
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N minb, min 6] group polyhedron N  min6, min 6] group
2 90.0000 109.4712 %224 = +Dg square 29 27.5244 27.5564  2x7 = 1Dy
3 90.0000 90.0000 %432 = 4054 octahedron 30 26.9983 27.1928 2x5 = 1D
4 70.5288 74.8585 %432 = +0s4 cube 31 26.4987 26.6840 5x = +Cx
5% 63.4349 66.1468 2x5 = +D;9 pentagonal antiprism 32 25.9497 26.2350 2% = +Cy
6 63.4349 63.4349 %532 = 4Jg9  icosahedron 33 255748 259474  3%2 = +Tqo
7 54.7356 55.6706 %432 = +054 rhombic dodecahedron 34  25.2567 25.4638 3x = +C3
8% 49.6399 52.2444 X = 36 35 24.8702 25.1709 X = +C;
9% 47.9821 49.5567 3x = +C3 36 24.5758 24.9265 3x = +C3
9% 47.9821 49.5567 2% = +C5 37 24.2859 24.4209 X = 3G
10* 46.6746 47.4310 %226 = +D;» hexakis bi-antiprism 38 24.0886 24.1282 X = 3G
11  44.4031 44.7402  2x5 = £D;y 39 23.8433 23.9310 3x = +C5
12 41.8820 43.6908 %432 = 094 rhombicuboctahedron 40 23.3293 23.5531 x = £C;
13 39.8131 41.0377 2% = £Cy 41 22,9915 23.1946 X = xC;
14 38.6824 39.3551 x = +C; 42 22.7075 23.0517 3x = +C3
15% 38.1349 38.5971  2x5 = 1Dy, 43 225383 22.6744 2%3 = 1Dg
16 37.3774 37.4752 %532 = +IJg pentakis dodecahedron 44 22.2012 22.4679 X = 3G
17 35.2353 35.8078 X =46 45 22.0481 22.1540 2% = £Cq
18 34.4088 35.1897 3x = +C3 46 21.8426 22.0276 X = +C;
19 33.2115 34.2507 x = +C; 47 21.6609 21.7221 X = +C4
20 32.7071 33.1584 %222 = 4D, 48 21.4663 21.5206 3x = +C3
21 32.2161 32.5064 5x = +Cs 49 21.1610 21.3711 X = 3G
22 31.8963 31.9834 2x3 = 4Dq 50 20.8922 21.0312 X = 3G
23 30.5062 30.9592 X ==+£6; 51 20.6903 20.8556 X = +C;
24 30.1628 30.7628  3%2 = +To 52 20.4914 20.6566 X = +C4
25 29.2486 29.7530 3x = +C3 53  20.2685 20.4394 X = +C4
26 28.7126 29.1948 2% = +Cy 54  20.1555 20.3044 3x = +C3
27 28.2495 28.7169 X =46 55% 20.1034 20.1110 %532 = £Jg
28 27.8473 28.1480 X = 36
TABLE 1. Summary of results about packings in G(3,1). For each N we give, rounded to four decimal places,

the minimal angle 6; of the best packing we could find of N points in G(3,1) (that is, the best packing of N
lines through the origin in R3, or the best antipodal packing of 2N points on S?), and the minimal angle 6}
of the best known unconstrained packing of 2N points on S?, taken from [Hardin et al. 1993-95]. The fourth
column shows the automorphism group for the best antipodal packing, both in orbifold notation and as a double
cover of a rotation group (see text for notation). When the packing corresponds to the diameters of a known
polyhedron, this is also indicated. An asterisk next to the value of N refers to notes and figures starting on
page 141.

The entries for N < 6 were shown to be optimal by Fejes T6th [1965]; see also [Rosenfeld 1994]. The case
N = 7 will be proved in Section 5. The solutions for N > 8 are the best found with over 15000 random starts
with our optimizer. There is no guarantee that they are optimal, but experience with similar problems suggests
that they will be hard to beat and in any case will be not far from optimal.

For N = 1,2,3,6 the solutions are known to be unique, for N = 4 there are precisely two solutions [Fejes
T6th 1965; Rosenfeld 1993; Rosenfeld 1994), and for N = 5,7, 8 the solutions appear to be unique. For larger
values of NV, however, the solutions are often not unique. For N =9 lines there are two different solutions, and
in the range N < 30 the solutions for 10, 22, 25, 27, 29 lines (and possibly others) contain lines that “rattle”,
that is, lines that can be moved freely over a small range of angles without affecting the minimal angle.

Remark: Entries in all tables are approximated by rounding, rather than truncation.
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N=9
There appear to be two inequivalent solutions. The
nicer one has an order-6 symmetry group, 3%, or
[2F,67] in Coxeter’s notation [Coxeter and Moser
1980]; see Figure 3, top. The points lie in six par-
allel layers of equilateral triangles.

The second solution has group 2x*, of order 4; see
Figure 3, bottom.

FIGURE 4. N = 10, 15: Best antipodal packing
found for 20 points (left) and for 30 points (right).

N =15

Combinatorially, this arrangement is obtained from
a pentakis dodecahedron (the solution for N = 16)
by omitting two opposite vertices, as shown in Fig-
ure 4, right. However, the angular separation is
slightly greater than for N = 16.

N = 55

The 110 antipodal points can be taken to be the
union of the vertex sets of a dodecahedron (20),
an icosidodecahedron (30) and a truncated icosa-
hedron (60), as shown in Figure 5. The 15 lines
through the icosidodecahedral points rattle. This
arrangement can be obtained from a geodesic dome
or 12-fold reticulated icosahedron [Coxeter 1974]
by omitting its twelve pentagonal vertices. Inci-

FIGURE3. N = 9: Antipodal packings of 18 points
with group of order 6 (top) and order 4 (bottom).
In the order-6 arrangement, half the points can be
located by wrapping a pinwheel of seven equilat-
eral triangles (top right) onto the sphere, so that
the edges of the spherical triangles have length
47.98213264°.

N =10

This is a hexakis bi-antiprism, since it consists of
a bi-(hexagonal antiprism) together with an axial
line that can rattle, giving infinitely many solu-

tions. The axis appears horizontally in Figure 4,
left. FIGURE5. Best antipodal packing found of 110 points.
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dentally, our best solution for 61 lines has a sym-
metry group of order 6, and is not found by placing
points at the centers of the pentagonal faces of Fig-
ure 5.

Packings of lines in higher dimensional spaces
will be discussed in Section 6.

4. PACKING PLANES IN FOUR DIMENSIONS

Asimov [1985] has proposed a technique called the
grand tour for displaying multi-dimensional data
on a two-dimensional computer screen. His idea
was to choose a finite sequence, or tour, of two-
dimensional planes that are in some sense represen-
tative of all planes, and to project the data onto
each plane in turn, in the hope that the viewer
will be able to notice any pattern or structure that
is present. This technique has been implemented
in the XGobi program [Buja and Asimov 1986;
Swayne et al. 1991].

In 1993 Dianne Cook asked us if we could modify
our algorithm for finding spherical codes in order to
search for packings in G(m, 2) for m > 4. Further-
more, for the grand tour application, there should
be a Hamiltonian circuit through the planes, in
which edges indicate neighboring planes. We ac-
complished this in the following way.

Following the methods we had used to find pack-
ings in S and experimental designs in different
spaces [Hardin and Sloane 1992, Section 4.11; 1993;
Hardin et al. a], corresponding to a set of planes

S ={P,...,Py} C G(m,n) we define a potential
1
P.(S) = -
( ) ; -dC(Pian)_A

1<]J

where A is a suitably chosen constant. There is a
similar definition for ®, involving d,. Initially A is
set to 0 and S is a randomly chosen set of planes.
We invoke the Hooke—Jeeves pattern search op-
timization algorithm to modify S, attempting to
minimize ®.(5). After a fixed time (we used 100
steps of the optimizer), A is advanced halfway to
the current minimal distance between the P;, and

the process is repeated, terminating when no fur-
ther improvement is obtained to the accuracy of
the machine. The whole process is repeated with
several thousand random starts—and also with ini-
tial configurations taken from other sources, such
as subsets or supersets of other arrangements—and
the best final configuration is recorded.

The partial derivatives of ®.(S) were found ana-
lytically, but for ®,(S) we calculated them by nu-
merical differentiation.

We began by computing a table of packings of
N planes in G(4,2), for N < 50, with respect to
both d. and d,. The results for packings of N < 24
planes are summarized in Table 2.

Our understanding of these results was hindered
by the fact that planes are, well, plain, with no

dc.-optimal dg-optimal
N mind?> min dg mind? min df,
2 2.0000 4.9348 2.0000  4.9348
3 1.5000 2.1932 1.2500 2.7416
4 1.3333  1.8253 1.2000 2.6824
5 1.2500 1.9739 1.2000 2.6824
6 1.2000 2.6824 1.2000 2.6824
7 1.1667  1.6440 0.9875  2.1281
8 1.1429  1.5818 0.9700  1.9235
9 1.1231  1.5175 0.9501  1.8087
10 1.1111  1.5725 0.9764  1.7886
11 1.0000 1.2715 0.9247  1.6711
12 1.0000 1.3413 0.9204 1.6416
13 1.0000 1.2348 0.9133  1.5600
14 1.0000 1.2337 0.8933  1.5327
15 1.0000 1.2337 0.8923  1.5284
16 1.0000 1.2337 0.8904 1.5210
17 1.0000 1.2337 0.8549  1.3925
18 1.0000 1.2337 0.8504 1.3768
19 0.9091 1.1666 0.8412  1.3477
20 0.9091 1.1666 0.8351  1.3284
21 0.8684 1.0352 0.8225  1.2834
22 0.8629  1.0592 0.8046  1.2385
23 0.8451  1.0081 0.7910 1.2012
24 0.8372  0.9901 0.7812  1.1707

TABLE 2. Putatively best packings of IV planes in
G(4,2) with respect to the chordal (d.) and geo-
desic (dy) metrics.
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distinguishing features, and when produced by the
computer appear as random generator matrices re-
ferred to a random coordinate frame. However,
we found that the set of principal vectors in the
planes could often be used to find a coordinate sys-
tem that would reveal some of the structure of the
planes.

For two planes the best packing is the same for
both metrics, and consists of two mutually orthog-
onal planes with principal angles 6, = 6, = 7/2, so
d? =2 and d} = /2.

For three planes the two answers are different.
The best packing for chordal distance has genera-
tor matrices

10 1 0
01 0 1
-
10—&5’
3 1
0 1 =% —
v
0 3 ¢
3 1
01 %5 —3

so the principal angles are ; = 6, = 7/3 between
each pair of planes, and d? = 3, d> = 2n*>. The
best packing for geodesic distance has generator
matrices

O oo O

1

V2

o O OH§|HO

Srygpo oo
She Skhe Ske

so the principal angles are 6; = 7/6, 0, = /2, and
P2=3 &= 5q

Postponing discussion of N = 4 and 5 for the
moment, we consider the case of six planes, where
we discovered that the answer for both metrics
formed a regular simplex (although not an isoclinic
configuration; compare [Wong 1961], which consid-
ers a related problem). The principal angles be-
tween every pair of planes were #; = arcsinl1/ V5
and 6, = w/2. This set of planes is conveniently

described using simplicial coordinates. Let A, B,
C, D, E be the vectors from the center of a reg-
ular simplex in R?* to its vertices, with A + B +
C+ D+ E = 0, and write [a,b,c,d, €] for aA +
bB + cC 4+ dD + eE. Then one of the six planes is
spanned by [1,7,1,0,0] and its cyclic shifts, where
T = 1(1+4 V/5), and the other five planes are ob-
tained from it by taking even permutations of these
coordinates. (We later found an equally good pack-
ing with respect to chordal distance that was not
a simplex with respect to geodesic distance. This
is described below.)

The six planes intersect the surface of the unit
ball of R* in a remarkable link, the hezalink. It
can be shown that, apart from the n-component
unlinks and Hopf links, which exist for all n, the
hexalink is the only link of circular rings in which
there are orientation-preserving symmetries taking
any two links to any other two. (Details will be
given elsewhere.)

The discovery of this 6-vertex simplex was ini-
tially somewhat of a surprise, since G(4,2) is only
a 4-dimensional manifold. It did suggest that the
answer should somehow be related to the six equi-
angular diameters of the icosahedron, and led to
the following reformulation of the problem.

We remind the reader that any element « of
SO(4) may be represented as « : x — lzr, where
T = xo + T19 + T2j + w3k represents a point on S*
and [, r are unit quaternions [Du Val 1964]|. The
pair —I, —r represent the same a. The correspon-
dence between « and +(I,r) is one-to-one.

Given a plane P € G(4,2), let a be the element
of SO(4) that fixes P and negates the points of the
orthogonal plane Pt. Then a2 = 1, and for this «,
it is easy to see that | = lyi+1sj+ 13k and r = ryi+
roj + r3k are purely imaginary unit quaternions.
This establishes the following result, which can be
found in [Leichtweiss 1961], for example.

Theorem 4.1. A plane P € G(4,2) is represented by
a pair (I,r) € S% x 82, with (-1, —r) representing
the same P.
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There are simple formulas relating P and (I,7),
pointed out to us by Simon Kochen. Given (I,7),
if [ # —r then P is spanned by the vectors corre-
sponding to the quaternions v = 1 —lr and v =
[ 4+ r. The special case when [ = r is even sim-
pler: take u = 1, v = [. If [ = —r, take u and
v to be purely imaginary unit quaternions such
that [, u, v correspond to a coordinate frame. Con-
versely, if P is spanned by two orthogonal unit vec-
tors represented by quaternions u, v, then +(I,7) =
+(uv — va, vu — ).

Given two planes P, Q € G(4,2), represented by
+(l,r) and £(',r"), the principal angles 6;, 65 be-
tween them may be found as follows. Let ¢ be the
angle between [ and [I', and let 1 be the angle be-
tween r and 7', with 0 < p <wmand 0 <o <. If
@+ > m, replace ¢ by m — ¢ and 9 by ™ — 1, so
that 0 < ¢+ < 7, with ¢ < (say). Then

01:
02:

(1/]_90)7
(¥ + o),

dy(P,Q) = 3(¥° + ¢%),
d*>(P,Q) =1 — cos cos .
(4.1)

D= N=

We omit the elementary proof.

A set S = {Py,...,Py} C G(4,2) is thus rep-
resented by a binocular code consisting of a set of
pairs +(l;,r;) € S x S?. We call the list of 2N
points +I; (which need not be distinct) the left
code corresponding to S, and the points +r; the
right code. Conversely, given two multisets L C S?
and R C S?, each of size 2N and closed under
negation, and a bijection or matching f between
them that satisfies f(—1) = —f(l) for | € L, we
obtain a set of N planes in G(4, 2).

The binocular codes for the d.-optimal packings
of 2 to 5 planes are shown in Figure 6; they can all
be made to lie in the equatorial planes. Except for
N = 3, the left and right codes are identical. For
N < 4 there are repeated points.

For N = 6 the left and right codes consist of
the twelve vertices of an icosahedron (Figure 7).
Setting A = 1/4/7 + 2 we can take the points to be

A0, £1,£7), A(£7,0,£1), A(£l,£7,0). (4.2)

i
Sy
e

FIGURE6. Equatorial planes showing the binocu-
lar codes describing best packings of 2 to 5 planes
for chordal distance. Matching points are labeled
with the same symbol. The points for N = 3 and
N = 5 are vertices of the obvious regular poly-
gons, but for N = 4 the coordinates are (1,0) and

ﬁ:%(l,i\/ﬁ).

FIGURE 7. Best packing of six planes in G(4,2)
with respect to both metrics. Left and right codes
comprise vertices of icosahedron. Adjacent ver-
tices in one code are matched with nonadjacent
vertices in the other code.
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The matching is obtained by mapping each point
to its algebraic conjugate (that is, replacing v/5 by
—+/5), and rescaling so the points again lie on a
unit sphere. As already mentioned, the principal
angles between each pair of these planes are 6; =
arcsin1/v/5 and 6, = m/2, so d> = ¢ and d2 =
2.6824.

There is a second set of six planes with d? = g,
but with d; only equal to 2.0030. Here the left and
right codes form the vertices of what we shall call
the antiicosahedron, consisting of the points

X0, +1,47), A(&7,0,41), A(£r, +1,0)

(compare (4.2)), and shown in Figure 8. Topo-
logically this is a “parallel bi-slit cuboctahedron”,
obtained by dividing two opposite square faces of a
cuboctahedron into two triangles by parallel lines.
The matching is this:

A0,+1,7) < A(0,£7,1),
A(7,0,£1) < A(1,0, £7),
A(£7,1,0) < A(£1,7,0).

FIGURE 8. Top and side views of antiicosahedron.

Also worth mentioning are four larger putatively
d.-optimal packings found by the computer, and
having 10, 18, 48 and 50 planes.

N =10

For the 10-plane packing the left and right codes
consist of the vertices of a decagonal prism with
coordinates

:I:(\/gcos 6, \/gsinre, \/g>,

where § = 7/5 and r = 0,...,9. A typical point

(v/2/3cos r8,4/2/3sin r6,1/1/3) in the left code

is matched with

(-1)" (\/g cos 3r0, \/gsin 3ro, \/%)

in the right code. Then d? = 3} and d2 = 1.5725.
The most interesting property of this configura-
tion is that, although three sets of canonical angles
occur, the chordal distance between every pair of
planes is the same—this is a regular simplex!

We find it surprising that this is superior to the
packing of ten planes obtained by matching the
vertices of a dodecahedron to their algebraic con-

jugates, as shown in Figure 9.

N=18

Let O denote the set of vertices of a regular octa-
hedron. The binocular code for the 18-plane pack-
ing is O x O := {(I,r) : I,r € O}. Projectively,
the 18 two-spaces are the edges of a desmic triple
of tetrahedra [Stephanos 1879; Hudson 1905; Cox-
eter 1950]. (Two tetrahedra are called desmic if
they are in perspective from four distinct points;
these points then form a third tetrahedron desmic
with either of the first two. The 18 edges of such a
desmic triple are also the edges of a unique other
desmic triple.) We were pleased to see this config-
uration appear, since it was already familiar in the
context of quantum logic [Conway and Kochen].
This set of planes can be constructed directly by
taking the planes spanned by all pairs of mutu-
ally perpendicular minimal vectors of the D, lat-
tice (compare [Conway and Sloane 1996]). In this
form the planes have generator matrices such as

[—(i)_ —(i)_ 0 E] (12 planes),
[1 i_ 8 g] (6 planes).

Three different sets of principal angles occur:
(0,7/2), (w/4,7/4), and (7w/2,7/2). Thus d2 =1
and d, = 1.2337. The automorphism group of
this packing has structure [3, 4, 3].2 and order 2304.



148  Experimental Mathematics, Vol. 5 (1996), No. 2

FIGURE 9.

These 18 planes can also be described as the set of
planes that meet the 24-cell in one of its equatorial
squares.

N =48 and N = 50

Let C denote the set of vertices of a cube. Then the
binocular codes for the 48- and 50-plane packings
are respectively (O x ) U (€ x O) and (O x O) U
(€ x €). For both arrangements we have d? = 2
and d; = 0.7576. Both are believed to be optimal.
(We mention the 48-plane packing because of its

greater symmetry.)

The Matching Problem

In order to maximize the minimal chordal distance
between the planes, the matching between the left
and right codes should (from (4.1)) be chosen so
as to minimize the maximal value of cos cos .
Stated informally, the matching should be such
that if two points are close together on one of the
spheres then the points to which they are matched
should be far apart on the other sphere. In the case
of the icosahedron, for example (see Figure 12), the
matching sends adjacent vertices to nonadjacent
vertices. There is a unique way to do this.

At this point we were tempted to see if any new
record packings in G(4,2) could be obtained by
taking the 2N antipodal points corresponding to a
good N-line packing in G(3,1), and matching them
with themselves in an optimal way. However, it

Matching of vertices of dodecahedron.

was not easy to see how to solve the matching prob-
lem. Fortunately David Applegate (personal com-
munication) found that it could be reformulated as
an integer programming problem, as follows.

Given an antipodal set S = {Py,..., Pox} C S?,
we wish to find a permutation o of S with the
property that o(—P;) = —oP; for all 7, and such
that the minimal value of 1—(P;- P;)(0 P;-0 P;) over
1 # j is maximized. If we do the maximization by
binary search, we may define 7(P;, P;) = 1if o P, =
P;, or 0 otherwise, with the constraints 7 (P;, P;) =
7r(_Pia —P, j)7

2N

> w(P,P)=1 for1<i<2N,
j=1
2N
> w(P,P)=1 for1<j<2N,
=1

and 7(P;, P;) + m(Py, P) <1foralll <4, j,k,1<
2N such that 1 — (P, - P,)(P; - P,) < M. There is
a feasible solution if and only if d> > M.

Applegate kindly implemented this procedure,
and used it to solve the matching problem for our
best packings in G(3, 1) and for various polyhedra.
Unfortunately no new records have yet been ob-
tained by this method.

Best Packings for the Geodesic Metric

So far we have mostly discussed packings that at-
tempt to maximize the minimal chordal distance
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between planes. We also computed packings for
the geodesic distance, and we shall now describe
some of them. In general, however, they are much
less symmetric than the chordal-distance packings,
especially for more than 16 planes.

For N = 4,5 the solutions are subsets of the 6-
plane packing. For N = 7 the left code is a heptag-
onal antiprism and the right code is an equatorial
14-gon.

For N = 12 the binocular code is given by the
set {£(l,7)}, where [ runs through the vertices of
a regular tetrahedron and r through those of an
equatorial equilateral triangle.

For N = 16 the left and right codes are the union
of two similarly oriented square prisms. For larger
N the geodesic packings do not seem so interesting.
For N = 18, for example, the best packing has no
nontrivial symmetries.

Hamiltonian Paths

One further question remains to be discussed, that
of arranging the planes in a circuit in such a way
that adjacent planes are close together, for the
grand tour application. This turned out to be a
much easier problem than finding the packings. We
handled it in two different ways. For configurations
such as the 48-plane arrangement, where there was
an obvious notion of adjacency—in this case, defin-
ing two planes to be adjacent if the principal angles
are w/4, w/4—we represent the packing by a graph
with nodes representing the planes, and look for a
Hamiltonian cycle. In less regular cases, we con-
vert the packing into a traveling salesman prob-
lem using chordal distance to define the distance
between nodes, and look for a minimal length cir-
cuit. In both cases we were able to make use of the
travelling salesman programs described in [Apple-
gate et al. 1995], which can handle 100-node graphs
without difficulty. In the public archive containing
our results (see Electronic Availability before the
references), the files with suffix . ham have been ar-
ranged in cycles in this way.

The above reformulation in terms of binocular
codes applies only to G(4,2); we knew from the

beginning that this case would be special, since
G(4,2) is the only Grassmannian where the Rie-
mannian metric is not unique [Leichtweiss 1961].
In the next section we describe a second reformu-
lation that applies to the general case.

5. PACKING n-PLANES IN HIGHER DIMENSIONS

Three observations contributed to the second re-
formulation.

First, as can be seen in Table 2, for several ex-
amples of N-plane packings in G(4,2) the largest
value of d? that we could attain was N/(N —1), and
in every case this was an upper bound. Further ex-
perimentation with other packings in G(m,n) for
m < 8 led us to guess an upper bound of

d2<n(m—n) N

5.1
¢ - m N-1’ 1)

which again we could achieve for some small val-
ues of N. The form of (5.1) was suggestive of
the Rankin bound for spherical codes [Conway and
Sloane 1996] or the Plotkin bound for binary codes
[MacWilliams and Sloane 1977].

Secondly, investigation of the 18-plane chordal-
distance packing revealed that, with respect to d.,
this packing has the structure of a regular ortho-
plex (or generalized octahedron) with 18 vertices.
Combining this with the fact that the 10-plane
packing formed a regular simplex, we had strong
evidence that G(4,2) should have an isometric em-
bedding (with respect to d.) into R?.

Finally, a computer program was therefore writ-
ten to determine the lowest dimensions into which
our library of packings in G(m,n) could be isomet-
rically embedded. More precisely, for a given set
of N planes in G(m,n), we searched for the small-
est dimension D such that there are N points in
RP whose Euclidean distances coincide with the
chordal distances between our planes.

The results were a surprise: it appeared that
G(m,n) with chordal distance could be isometri-
cally embedded into R?, for D = (™/") — 1, inde-
pendent of n. Furthermore, the points representing
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elements of G(m, n) were observed to lie on a sphere
of radius \/n(m —n)/2m in RP.

Aided by discussions with Colin Mallows, we
soon found an explanation: just associate to each
P € G(m,n) the orthogonal projection map from
R™ to P. If A is a generator matrix for P whose
rows are orthogonal unit vectors, then the projec-
tion is represented by the matrix P = A*A, where
¢ denotes transposition. P is an m X m symmet-
ric idempotent matrix, which is independent of the
particular orthonormal generator matrix used to
define it. Changing to a different coordinate frame
in R™ has the effect of conjugating P by an element
of O(m). With the help of (2.1), we see that

trace P = n.

Thus P lies in a space of dimension (m;' 1) —1.

Let || - || denote the Ly-norm of a matrix, that is,

Em:zszfj = Vtrace Mt M.

i=1 j=1

M| =

if M = (M) with 1 < i,j < m. For P,Q €
G(m,n), with orthonormal generator matrices A,

B, and principal angles 64,...,60,, an elementary
calculation using (2.1) and (2.2) shows that

d*(P,Q) =n — (cos?0; + --- + cos6,,)
=n —trace A'AB'B = L||P — Q|)?,

2

where P, Q are the corresponding projection ma-
trices.

Defining the traceless part of P as P = P —
(n/m)I,,, we have ||P||? = n(m — n)/m. We have

thus established the following theorem.

Theorem 5.1. Let D = (m;rl) — 1. The represen-
tation of n-planes P € G(m,n) by their projec-
tion matrices P gives an isometric embedding of
G(m,n) into a sphere of radius \/n(m —n)/m in
RP | with d.(P,Q) = %=||P — QJ|.

2

Thus chordal distance between planes is % times
the straight-line distance between the projection
matrices (which explains our name for this met-
ric). The geodesic distance between the planes is
% times the geodesic distance between the projec-
tion matrices, measured along the sphere in RP.
Figure 10 attempts to display the embeddings

of G(m,0), G(m,1), ..., G(m,m) in RP*!. Since

trace=m —n

trace =n

race = 0

FIGURE 10. Embedding of G(m,0),...,G(m,m) into large sphere of radius ,/m in Euclidean space of dimen-
sion 2m(m+1). The space G(m,n) lies on sphere of radius y/n(m — n)/m in R, where D = 1(m—1)(m+2).

2
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|P — 3L.||> = $m, all the planes lie on the large
sphere, centered at %Im, of radius %ﬁ The mem-
bers of G(m,n) lie on the intersection of the large
sphere with the plane trace P = n, which intersec-
tion is itself a sphere in R? of radius y/n(m — n)/m
centered at ™ I,,. A plane and its orthogonal com-
plement are represented by antipodal points on the
large sphere.

In contrast to this result, we briefly remark, with-
out giving details, that there is no way to embed
G(m,n) into Euclidean space of any dimension so
that the geodesic distance d, on G(m,n) is rep-
resented by Euclidean distance in that space. Of
course the Pliicker embedding, in which members
of G(m,n) are represented by points in projective
space of dimension (’:) — 1, also does not give a
way to realize either d. or d, as Euclidean dis-
tance. (Nor does the Nash embedding theorem
[Nash 1956].) Note also that the dimension of the
Plicker embedding is in general much larger than
the dimension of our embedding.

Since we have embedded G(m,n) into a sphere
of radius \/n(m —n)/m in R we can apply the
Rankin bounds for spherical codes [Rankin 1955],
and deduce:

Corollary 5.2 (The simplex bound). For a packing of
N planes in G(m,n),

n(m—-n) N
m N-1

d> <

c

(5.2)

Equality requires N < D+ 1 = (m;' 1), and occurs
if and only if the N points in RP corresponding to

the planes form a regular “equatorial” simplez.

Corollary 5.3 (The orthoplex bound). For N > (m;'l),

@ <™Mm=n)

[+

(5.3)
m

Equality requires N < 2D = (m — 1)(m + 2), and
occurs if the N points form a subset of the 2D ver-

tices of a regular orthoplex. If N = 2D this condi-
tion is also mecessary.

Lemmons and Seidel ([Lemmens and Seidel 1973b],
Theorem 3.6) give a bound for equi-isoclinic pack-
ings in G(m,n) which agrees with (5.2); of course
our bound is more general. The case n =1 of (5.2)
is given in Theorem 3 of [Rosenfeld a).

We were happy to obtain confirmation of (5.1).
Since d? can never exceed n, we can also write

n(m—n) N
SN R

Corollaries 5.2 and 5.3 allow us to establish the
optimality of many of our packings. In the range
m < 16, n < 3, N < 55, there are over 750 cases
which appear to meet (5.4) or (5.3), in the sense
that the ratio of d? to the bound is greater than
0.9999999. Table 3 lists these cases for n = 2 and
4 <m <10.

However, this is not as meaningful as it at first
seems. Consider Table 4, which gives the ratio
of d? to the simplex bound for packings of N =
21,...,33 planes in G(10,2). From this table it
seems very likely that there exists a 27-plane pack-

d?> < min {n,

m  (5.4) (5.3) m (5.4) (5.3)

4 2-810 11-18 8 4-21,28 3744
5 411 16,17 9 6-25

6 3-14 22, 23 10 5-28

7 6-18 29

TABLE 3. Values of N for which the packings of

N planes in G(m, 2) appear to achieve the bounds
(5.4) or (5.3).

N ratio N ratio

21 0.99999999999999 28 0.99999999921354
22 1.00000000000000 29 0.99999470290071
23 0.99999999999999 30 0.99998661084736
24 0.99999999999999 31 0.99961159256647
25 1.00000000000000 32 0.99909699728979
26 0.99999999999999 33 0.99854979246655
27 1.00000000000000

TABLE4. Ratio of d? to the bound of Corollary 5.2
for N planes in G(10,2), rounded to 14 decimal
places.
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ing meeting the simplex bound, but certainly fur-
ther investigation is needed to determine if there
is a 28-plane simplex packing in the neighborhood
of the computer’s approximate solution. We have
carried out such analyses in all the putative cases
of equality for packing lines (see Sect. 6), for planes
in G(4,2) (as already discussed) and for 70 planes
in G(8,4) (see below). The other cases remain to
be investigated.

In principle there is no difficulty in settling these
questions. All the chordal distances between the
planes are specified. So we could simply set up a
(large) system of quartic equations with integer co-
efficients for the entries in the generator matrices,
and ask if there is a real solution.

The chief difficulty in attempting to understand
the computer-generated packings is that there are
usually very large numbers of equally good solu-
tions. The case of 18 planes in G(4,2) is typical in
this regard. There is one exceptionally pleasing so-
lution (described in Section 4), in which only three
different pairs of principal angles occur. However,
it seems that there is a roughly 29-dimensional
manifold of solutions, in which a typical solution,
although still having d> = 1, has an apparently
random set of principal angles. Our investigation
of this question is not yet completed.

The case of subspaces of dimension n in R** or
R2n*! jig especially interesting. Table 5 summa-
rizes the possible cases where the bounds can be
achieved. It is known that the orthoplex bound
cannot be achieved by 10 planes in G(3,2), while
the other cases are undecided. Our computer ex-

m n (54) (5.3) m n (54) (5.3)
2 1 3* 4* 6 3 21 40
3 1 6* 10 7 3 28* 54
4 2 10* 18* 8 4 36 70*
5 2 15 28

TABLE 5. Largest values of N for which the pack-
ings of N planes in G(m, n) can achieve the bounds
(5.4) or (5.3). An asterisk means the bound is
achieved.

periments strongly suggest that no set of 15 planes
meets the simplex bound in G(5, 2).

On the other hand, it is possible to find packings
of 70 planes in G(8,4) meeting the bound (5.3).
With a considerable amount of effort (a long story,
not told here), we determined several examples, of
which the following is the most symmetrical. Let
the coordinates be labeled 00,0,1,...,6, and take
the two 4-planes generated by the vectors

{10000000, 01000000, 00100000, 00001000},

{11000000, 00101000, 00010001, 00000110}. (5:5)

From them we get 70 planes by negating any even
number of coordinates, and by applying the coor-
dinate permutations (0123456), (c00)(16)(23)(45),
and (124)(365). The principal angles are given by
(0,0,7/2,7w/2), (w/4,7/4,7/4,7/4), or (7/2,7/2,
7/2,m/2), so d2 = 2 and d? = w”/4 (this is not
even a local optimum with respect to geodesic dis-
tance). The full group, which is transitive on the
planes, is generated by the above operations and
by the 8 x 8 Hadamard matrix

— -+ — 4+
—— =+ 4+
1 =4
VB —+—+++—|’
——t++——+
—+++——+—J
[—++-—+—+

where — means —1 and + means +1. It has shape
28 Ag and order 5160960 (A,, denotes an alternating
group of degree n).

A set of 28 planes in G(7,3) meeting the sim-
plex bound can be obtained as follows. Label the
coordinates 0,...,6, and let v* have components
1 at 2" mod 7, +1/2 at 3-2" mod 7, and 0’s else-
where, for r = 0,1,2. Then the vectors vy, vi,
vy (where the product of signs is even) span four
planes, and the full set of 28 is found by cycling
the seven coordinates.

(Note added April 1996. P. W. Shor and Sloane
have recently discovered that the packing of 70
planes in G(8,4) can be generalized to a packing
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of m? +m — 2 planes in G(m, m) meeting the or-
thoplex bound, whenever m > 2 is a power of 2;
and that the packing of 28 planes in G(7,3) can
be generalized to a packing of %p(p + 1) planes in
G(p, 3(p — 1)) meeting the simplex bound, when-
ever p is a prime which is either 3 or congruent
to —1 modulo 8. These constructions will be de-
scribed elsewhere.)

On the other hand, in spite of much effort, we
have not been able to find a set of 40 planes in
G(6,3) that meet the bound. If this were possi-
ble, we would obtain d?> = 1.5, whereas the best
we have been able to achieve is 1.49977. We can
get 1.5 with N = 34 planes, and 1.49977 with
35 < N < 40, but only 1.4297 with 41 planes,
which suggests that 1.5 might be possible with 40
planes. The discussion given earlier shows that this
question could in principle be settled by seeing if a
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certain set of quartic equations with integer coef-
ficients has a real solution. One formulation leads
to 500 quartic equations in 360 unknowns, so this
approach seems hopeless at the present time.

It is not difficult to invent ways to construct sets
of subspaces. Several examples are given below.
However, many promising ideas have proved use-
less when confronted with the results found by our
program. For this reason we have included two
extensive tables of the best chordal distances that
we have found. Table 6 gives d? for packings in
G(m,2), with m < 10. This will serve as a stan-
dard against which readers can test their own con-
structions.

General Constructions

We now proceed to
constructions.

list some promising general

N m=4 m=5m=6m=7"m=8 m=9 m=10

N

m=4

m=5m==56

m=7Tm=8 m=9 m=10

1.5000 1.7500 2.0000 2.0000 2.0000 2.0000 2.0000
1.3333 1.6000 1.7778 1.8889 2.0000 2.0000 2.0000
1.2500 1.5000 1.6667 1.7854 1.8750 1.9375 2.0000
1.2000 1.4400 1.6000 1.7143 1.8000 1.8667 1.9200
1.1667 1.4000 1.5556 1.6667 1.7500 1.8148 1.8667
1.1429 1.3714 1.5238 1.6327 1.7143 1.7778 1.8286
9 1.1231 1.3500 1.5000 1.6071 1.6875 1.7500 1.8000
10 1.1111 1.3333 1.4815 1.5873 1.6667 1.7284 1.7778
1.0000 1.3200 1.4667 1.5714 1.6500 1.7111 1.7600
1.0000 1.3064 1.4545 1.5584 1.6364 1.6970 1.7455
1.0000 1.2942 1.4444 1.5476 1.6250 1.6852 1.7333
1.0000 1.2790 1.4359 1.5385 1.6154 1.6752 1.7231
1.0000 1.2707 1.4286 1.5306 1.6071 1.6667 1.7143
1.0000 1.2000 1.4210 1.5238 1.6000 1.6593 1.7067
1.0000 1.2000 1.4127 1.5179 1.5937 1.6528 1.7000
1.0000 1.1909 1.4048 1.5126 1.5882 1.6471 1.6941
0.9091 1.1761 1.3948 1.5078 1.5833 1.6420 1.6889
0.9091 1.1619 1.3888 1.5026 1.5789 1.6374 1.6842
0.8684 1.1543 1.3821 1.4987 1.5750 1.6333 1.6800
0.8629 1.1419 1.3333 1.4912 1.5714 1.6296 1.6762
0.8451 1.1332 1.3333 1.4859 1.5680 1.6263 1.6727
0.8372 1.1251 1.3326 1.4790 1.5638 1.6232 1.6696
0.8275 1.1178 1.3229 1.4725 1.5594 1.6204 1.6667
0.8144 1.1113 1.3151 1.4666 1.5556 1.6177 1.6640

0 O O W

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0.8056
0.8005
0.7889
0.7809
0.7760
0.7691
0.7592
0.7549
0.7489
0.7477
0.7286
0.7198
0.7095
0.7066
0.6992
0.6948
0.6844
0.6831
0.6809
0.6793
0.6732
0.6667
0.6667
0.6667

1.1045 1.3071
1.0989 1.2987
1.0937 1.2887
1.0875 1.2804
1.0822 1.2675
1.0766 1.2588
1.0722 1.2526
1.0671 1.2447
1.0640 1.2430
1.0596 1.2345
1.0519 1.2272
1.0462 1.2239
1.0404 1.2206
1.0355 1.2149
1.0302 1.2115
1.0256 1.2079
1.0207 1.2037
1.0159 1.2007
1.0122 1.1969
1.0078 1.1941
1.0042 1.1924
1.0001 1.1907
0.9960 1.1873
0.9910 1.1841

1.4606
1.4531
1.4286
1.4234
1.4167
1.4106
1.4038
1.3978
1.3915
1.3843
1.3784
1.3722
1.3663
1.3606
1.3575
1.3550
1.3449
1.3407
1.3354
1.3321
1.3265
1.3232
1.3209
1.3150

1.5556 1.6154
1.5556 1.6118
1.5455 1.6083
1.5398 1.6049
1.5342 1.6011
1.5304 1.5978
1.5244 1.5935
1.5216 1.5911
1.5158 1.5893
1.5086 1.5885
1.5000 1.5816
1.5000 1.5768
1.5000 1.5730
1.5000 1.5695
1.5000 1.5665
1.5000 1.5639
1.5000 1.5616
1.5000 1.5588
1.4839 1.5570
1.4821 1.5480
1.4574 1.5412
1.4490 1.5353
1.4430 1.5304
1.4370 1.5257

1.6615
1.6593
1.6571
1.6552
1.6527
1.6501
1.6476
1.6448
1.6431
1.6414
1.6364
1.6334
1.6305
1.6289
1.6242
1.6213
1.6192
1.6174
1.6160
1.6099
1.6072
1.6045
1.6019
1.6003

TABLE 6.

Values of d? for best packings found of N < 50 planes in G(m,2).
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(i) A skew-symmetric conference matrix of order
4a yields a set of 4a unit vectors in C?>* with Her-
mitean inner products +i/v/4a — 1 [Delsarte et al.
1975, Example 5.8], hence a set of 4a planes in
G(4a,2) with d? = 4(2a — 1)/(4a — 1) that meet
the simplex bound. (For a list of the known orders
of such matrices, see [Seberry and Yamada 1992,
Table 7.1].)

(ii) Use the planes defined by the n-faces of a regular
m-dimensional polytope, or the Voronoi or Delau-
nay cells of a lattice, etc. The initial results from
this idea have been disappointing. For example,
the 96 two-dimensional faces of the 24-cell in R*
define 16 different planes, forming a packing with
d? = %, inferior to the best such packing as seen in
Table 6.

(iii) Use the minimal vectors in a complex or quater-
nionic lattice in order to obtain packings in G(2a, 2)
or G(4a,4). For example, the 54 minimal vectors
of the lattice Ej, regarded as a three-dimensional
lattice over the Eisenstein integers [Conway and
Sloane 1996, p. 127], produce a packing of nine
planes in G(6,2) that meets the simplex bound.

(iv) Restrict the search to generator matrices of 0’s
and 1’s (as in (5.5)) or +1” and —1’s, or even to
rows that are blocks in some combinatorial design,
or vectors in some error-correcting code (see the
example in Section 6).

(v) Let C be an error-correcting code of length m
over GF(2"), for example a Reed—Solomon code
[MacWilliams and Sloane 1977]. If we see GF(2")
as a vector space of dimension n over GF(2), each
codeword yields an n X m matrix whose elements
we may take to be +1’s and —1’s. After discarding
those of rank less than n, and weeding out dupli-
cates, we obtain a packing in G(m,n). For exam-
ple, the hexacode [Conway and Sloane 1996, p. 82],
a code of length 6 over GF(4) containing 64 code-
words, produces 28 distinct planes in G(6,2) with
d? = 3/4. Unfortunately Table 7 shows that the
record is 1.2973.

(vi) Choose a group G with an m-dimensional repre-
sentation, and a subgroup H of index N with an n-
dimensional irreducible representation. Find an n-
dimensional subspace V' C R™ invariant under H,
and take its orbit under G. Many of the conference
matrix constructions of line-packings described in
Section 6 are of this type (using G = La(q)).

In some cases we have also used the optimizer
to search for packings with a specified group. The
following is a packing of 28 planes in G(8,2) meet-
ing the simplex bound that is an abstraction of a
configuration found by the computer when search-
ing for packings in R® invariant under the permu-
tation (0)(1,2,3,4,5,6,7). Let R: C* — R® map
(v1,vq,v3,v4) to (Revy, Imvy, Rews, ..., Imuv,), and
let o = e*™/7. The 28 planes are spanned by the
following pairs of vectors, where k ranges from 0
to 6:

R(0,a*, o a*),  R(0,ia*,ia?* ia**),
R(1,0,a? 4k) R(i,0,ia%* za4k)
R(1,a* 0 a**),  R(i,—ia* 0 ia**),

R(1,a*,a%%,0),  R(i,ia*, —ia®*,0).

The pattern of zeros and signs here suggests the
tetracode [Conway and Sloane 1996, p. 81].

An Application: Apportioning Randomness

Here is a potential application of packings in Grass-
manian spaces for use in apportioning randomness,
in the sense of producing large numbers of ap-
proximately random points from a few genuinely
random numbers. We illustrate using the exam-
ple of 70 planes in G(8,4) described above. Let
Ay, ..., Az be generator matrices for them. Sup-
pose an exclusive resort wishes to distribute ran-
dom points in R?* to its 70 guests, perhaps for use
as garage door keys. Let z = (z1,...,z5) be a
vector of eight independent Gaussian random vari-
ates. Then the hotel would assign y; = A;z* to
its ¢-th guest. By maximizing the chordal distance
between the planes we have minimized the corre-
lation between the y;.
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m=3 m=4 m=5 m=6 m=7 m=8 m=9

N

m=3

m=4

m=5 m=6 m=7 m=8 m=9

3 90.0000 90.0000 90.0000 90.0000 90.0000 90.0000
4 70.5288>90.0000 90.0000 90.0000 90.0000 90.0000
5 634349 75.5225490.0000 90.0000 90.0000 90.0000
6 63.4349° 70.5288> 78.4630 90.0000 90.0000 90.0000
7 54.7356f 67.0213 73.3689 80.4059<90.0000 90.0000
8 49.6399f 65.5302 70.8039 76.0578

9 47.9821f 64.2619 70.5288 73.8437
46.6746 64.2619 70.5288> 73.6935
444031 60.0000 67.2543 71.5651
41.8820f 60.0000° 67.0213 71.5651

39.8131
38.6824

35.2353
34.4088
33.2115
32.7071
322161
31.8963
30.5062
30.1628
29.2486
28.7126

38.1349f 52.5016
37.3774f 51.8273

55.4646
53.8376

65.7319
65.7241
65.5302

50.8870
504577
49.7106
49.2329
48.5479
47.7596
46.5104
46.0478
449471
44.3536

61.2551
61.0531
60.0000

57.2025
56.3558
55.5881
55.2279
54.8891
542116

63.4349° 70.5288 70.9861

60.0000f 67.0996 70.5288

70.5288
70.5288
70.5288 715678
68.1088 70.5926
67.3744 70.5527
67.3700 70.5288

67.0213 70.5288
65.9052° 70.5288
63.6744 70.5288
63.6122 70.5288
62.4240 70.5288
61.7377 70.5288

81.7868490.0000
784630 82.8192990.0000
76.3454 79.4704
750179 77.8695
741734 76.6050
738979 76.1645
73.8979¢ 75.0349
74.3318
74.1005
73.1371
72.7464
720756
71.6706
71.3521
71.0983
70.7720
70.6027
70.5490
70.5432

90.0000
90.0000
90.0000
90.0000
90.0000
90.0000

83.6206¢
80.6204
79.4704
77.9422
77.2382
76.5006
75.9638
75.9638
75.9638°¢
744577
74.2278
73.7518
73.1894
72.7488
72.6547
72.3124
72.1763

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

28.2495
27.8473
275244
26.9983
26.4987
25.9497
25.5748
25.2567
248702
245758
24.2859
24.0886
23.8433
23.3293
229915
22.7075
225383
222012
22,0481
21.8426
21.6609
21.4663
21.1610
20.8922

43.5530
43.1566
42,6675
422651
42.0188
41.9554
414577
40.9427
40.7337
40.6325
40.4486
40.4419 50.3677
39.6797 50.0611
39.0236° 49.5978
38.5346 49.2600
38.3094 48.6946
37.7833 48.4030
37.3474 48.0955
371198 47.7723
36.9997 47.3753
36.5952 47.0323
36.3585 46.7105
36.1369 46.4345
36.0754 46.1609

53.5402
53.2602
53.0180
52.7812
52.4120
52.3389
52.2465
51.8537
51.8273
51.8273
51.8273

61.4053
60.5276
60.1344
60.0213
60.0000
60.0000
60.0000
60.0000
60.0000
60.0000*
57.6885
57.1057
56.8357
56.0495
55.8202
55.6160
55.3981
55.1259
54.9980
54.9858
54.7356
54.5940
54.5031
54.3191

70.5288 70.5392
70.5288P 70.5322
66.7780 70.5288
65.7563 70.5288
65.1991 70.5288
64.7219 70.5288
64.6231 69.3203
64.6231 69.1688
64.6231 69.0752
64.6231 69.0752¢
62.3797 67.7827
62.1435 67.3835
61.7057 67.1387
613792 66.3815
61.1630 65.9282
60.8232 65.8166
60.5193 65.2885
60.3623 65.2422
60.2282 64.7476
60.1101 64.4007
60.0433 64.1542
60.0116 63.8846
60.0000 63.4849
60.0000% 63.1527

71.6650
715794
715175
715175
70.8508
70.7437
70.6940
70.6512
70.6337
70.5864
70.5695
70.5571
70.5443
70.5288
70.5288
70.5288
70.5288
70.5288
70.5288
70.5288
70.5288
70.5288P
68.0498
67.7426

TABLE?Z.
constructions from sphere packings,

[IPR]
C

Maximal angular separation found for N < 50 lines in G(m, 1). Superscript key: “a” and “b” indicate

from conference matrices, and “d” from diplo-simplices; “e” indicates
a packing described below, and “f” one described in Section 3.

6. PACKING LINES IN HIGHER DIMENSIONS

As mentioned in Section 3, the best packing of 5

Table 7 shows the maximal angular separation we
have found for packings of N < 50 lines in G(m, 1)
for m <9.

Table 8 shows the packings of N lines in G(m, 1),
for m < 10, that achieve either the simplex or or-
thoplex bounds. Most of them are described below.

m N m N
3 3,46,7 7T 7,8,14,28
4 4,5,11,12 8 89
5 5,6, 10, 16 9 9,10, 18, 46-48
6 6,7, 16,22 10 10, 11, 16
TABLE 8. Values of N for which the packings of

N planes in G(m, 1) appear to achieve either the
simplex or orthoplex bounds.

lines in G(3,1) is a subset of the best packing of 6
lines. Table 4 shows similar phenomena in higher
dimensions. For example, the putatively best pack-
ing of 48 lines in G(9, 1) is so good that we cannot
do better even when up through 8 lines are omitted
from it.

In the rest of this section we discuss some of the
entries in Table 7 that have the largest symmetry
groups.

Constructions from Lattices

Let Py,..., P, be mutually touching spheres in a
d-dimensional lattice packing. If there are 2N fur-
ther spheres in the packing, each of which touches
all of P,...,P,, their centers form a (d — a + 1)-
dimensional antipodal spherical code with angular
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separation arcsec(a+ 1) [Conway and Sloane 1996,
p. 340, Theorem 1].

In particular, the entries with a superscript “a”
in Table 7 are obtained from the centers of spheres
that touch one sphere in the lattices Dy, D5, Fg
and E;. The entries with a superscript “b” are ob-
tained from spheres that touch two spheres in the
lattices Dy, Ds, Fg, E7, Eg, Ay and the nonlattice
packing Py, [Conway and Sloane 1996, Chapter 1,
Table 1.2]. We remark the set of 28 lines in G(7,1)
with angle arccos% obtained in this way from Fg
is known to be unique: see [Conway and Sloane
1996, Chapter 14, Theorem 12|. This configura-
tion of lines is derived in a different way in [Lint
and Seidel 1966].

It is interesting to compare Table 7 with the ta-
ble of maximal sets of equiangular lines given in
Lemmens and Seidel [Lemmens and Seidel 1973a]
and Seidel [Seidel 1994]. Some arrangements ap-
pear in both tables, for example the set of 28 lines
in G(7,1) just mentioned. On the other hand the
difference between the tables can be seen in dimen-
sion 8. The maximal set of equiangular lines that
exists in G(8,1) has size 28, with angle arcsec3
([Lemmens and Seidel 1973a], Theorem 4.6). How-
ever, Table 7 shows that there is a set of 28 lines
(not equiangular) in G(8,1) with minimal angle
arcsec 3.000511 .. .. In view of the Lemmons—Seidel
result (which uses the fact that in an m-dimen-
sional equiangular arrangement of N lines with
N > 2m the secant must be an odd integer) our set
of 28 lines cannot be perturbed to give an equian-
gular set without decreasing the minimal angle.

Constructions from Conference Matrices

It follows from [Lint and Seidel 1966, Theorem 6.3]
that if a symmetric conference matrix of order g+ 1
= 2 (mod 4) exists then there is an arrangement
of ¢ + 1 equiangular lines in R™, m = 1(¢ + 1),
with d? = (¢ — 1)/q, meeting the simplex bound.
The corresponding entries have the superscript “c”
in the table. Our program was able to find these
packings for every prime power g of this form below
100 except for 49 and 81.

Constructions from Diplo-Simplices

The entries with a superscript “d” are obtained by
using all the vectors of shape +¢(n', (—1)™), where
c=1/y/n(n+1). In the notation of [Conway and
Sloane 1996, Chap. 4], they are the minimal vectors
in the translates of the root lattice A, by the glue
vectors [1] and [—1]. They form the vertices of a
diplo-simplex [Conway and Sloane 1991], and have
automorphism group 2x.A,, 1. These packings also
meet the simplex bound.

Constructions from Codes

Let C be a binary code of length m, size M and
minimal distance d which is closed under comple-
mentation. Writing the codewords as vectors of
+1’s, we obtain a packing of $M lines in G(m, 1)
with d?> = 4d(m — d)/m?. For example, a short-
ened Hamming code of length 10 with M = 32,
d = 4 gives a packing of 16 lines in G(10, 1) meet-
ing the simplex bound. This construction provides
a rich supply of good packings. The Nordstrom—
Robinson code [Forney et al. 1993; Hammons et al.
1994], for example, yields a packing of 128 lines in
G(16,1) with d? = %.

40 lines in G(4,1)

The 80 antipodal points are given by (£#+1/20),
(0, §u+1/2), (a§2,u, b£2u+1), (a£2p+1, bé‘ZV)’ (b£2p., a§2u),
(b€2rF1 &2 +1) where & = *™/8 p,v = 0,...,3,
a =24 b =+/1-a2 The group of these 80
points is the group 3(Dis + Dig) - 2 of order 256
(see [Conway and Sloane al]). Here D,, denotes a
dihedral group of order m.

22 lines in G(6, 1)
We use the vertices of a hemi-cube (an alternative

way to describe the 16-line packing) together with
the six coordinate axes.

63 and 64 lines in G(7,1)

The putatively best packing of 63 lines in G(7,1)
(just beyond the range of Table 7) has angular sep-
aration 60°, and is formed from the 126 minimal
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vectors of the lattice E7. The automorphism group
of this set of 126 points is the Weyl group W(E»),
of order 2'°-3*.5.7. Compare [Conway and Sloane
1996, Chapter 4, §8.3].

The best packing found of 64 lines in G(7,1) also
has an unusually large group, of order 2 |W(Eg)| =
28.3%.5. This packing can be obtained as follows.
The largest gaps between the packing of 63 lines
occur in the directions of the minimal vectors of
the dual lattice E7. Let u be such a vector, with
U = %vﬁ, ve € Ey, vg - vg = 6. Taking a coordi-
nate frame in which the last coordinate is in the
vg direction, we obtain the minimal vectors of E;
in the form (w,0), w € Eg, w-w = 2 (72 vec-
tors), and (z,4/2/3), z € B}, 2 -x = 2 (54 vec-
tors). We now adjoin #+/6 and rescale by multi-
plying the last coordinate by \/m, obtaining our
final configuration of vectors (0,43/v2), (w,0),
(x,£1/+/2), which is isomorphic to what the com-
puter found. The rescaling has compressed the E;
lattice in the vg direction until the angle between wvg
and the (z,1/4/2) vectors is the same as the min-
imal angle between the (z,1/+/2) and (w,0) vec-
tors. This angle, the minimal angle in the packing,

is arccos 1/3/11 = 58.5178°.

36 lines in G(8, 1)
The 72 antipodal points consist of all permutations
of the two vectors ¢(7?, —27) and ¢(—77,2°), where
c=1/ v/126. These are the minimal vectors in the
translates of the Ag lattice by the glue vectors [2]
and [—2].

The configuration of 16 lines in G(5,1) is simi-
larly obtained from the translates of A5 by [1], [3]
and [5].

39 lines in G(12,1)

Take the 13 lines of a projective plane of order 3,
described by vectors of four 1’s and nine 0’s, and re-
place two of the 1’s by —1’s in all possible ways, ob-

taining 78 vectors in R'? with angle arcsec4. The
group is 2 x L3(3), of order 2°3%13.

If instead we replace any odd number of the 1’s
by —1’s, we obtain a putatively optimal packing of
52 lines in G(13, 1), with angle arcsec 4 and group
2 x L3(3)-2 of order 263%13.

As in all these examples, we were amazed that
the program was able to discover such beautiful
configurations.
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