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Abstract. It is frequently explicitly or implicitly assumed that if a variational
principle is invariant under some symmetry group G, then to test whether a
symmetric field configuration φ is an extremal, it suffices to check the
vanishing of the first variation of the action corresponding to variations φ + δφ
that are also symmetric. We show by example that this is not valid in complete
generality (and in certain cases its meaning may not even be clear), and on the
other hand prove some theorems which validate its use under fairly general
circumstances (in particular if G is a group of Riemannian isometries, or if it is
compact, or with some restrictions if it is semi-simple).

0. Introduction

What we call the Principle of Symmetric Criticality, abbreviated herein to "the
Principle", states in brief that critical symmetric points are symmetric critical points.

In more detail, let M be a smooth (i.e., C00) manifold on which a group G acts
by diffeomorphisms (a "smooth G-manifold") and let / : M - > R be a smooth
G-invariant function on M (that is, /is constant on the orbits of G). Then a critical
point (of/) is a point p of M where dfp9 the differential of/ at p vanishes. And a
symmetric point (of M) is an element of the set Σ = {peM\gp = p for all geG} of
points fixed under the action of G. The Principle states that in order for a
symmetric point p to be a critical point it suffices that it be a critical point of f\Σ,
the restriction of f to Σ in other words if the directional derivatives dfp(X) vanish
for all directions X at p tangent to Σ, then the Principle claims that directional
derivatives in directions transverse to Σ also vanish. In particular, for example, an
isolated point of Σ (where there are no directions tangent to Σ) should automati-
cally be a critical point of /.

In this generality the Principle unfortunately is not valid, as we shall illustrate
below by a number of examples. (We shall in particular give examples where Σ is
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not a submanifold of M, so that the notion of a direction tangent to Σ is ill-
defined and the Principle is ambiguous.)

Since the Principle is such a useful tool, both theoretically and practically for
the location of critical points, it is pleasant to be able to report the good news that,
despite the above, the Principle is both meaningful and valid in a reasonably broad
context. We shall prove theorems that validate its use in most situations that seem
to come up in mathematical physics. In particular we shall show that it is valid if
M is Riemannian and G acts isometrically on M {a fortiori if M is a real or
complex Hubert space on which G acts by orthogonal or unitary transformations),
quite generally if G is compact, and also if G is a semi-simple Lie group and M is a
finite dimensional real analytic manifold on which G acts analytically.

As should be evident from the above, we use the term "manifold" in the
modern extended sense of a possibly infinite dimensional manifold modelled on a
Banach space [9], so that in particular M could be a manifold of sections of some
smooth fiber bundle and / a Lagrangian "action" functional for a classical field
theory (cf. [12], in particular Chaps. 13 and 19). A final notational point; in
general we assume no topology on G, however when G is explicitly assumed to be
a Lie group, then the assumption that M is a smooth G manifold is to be
understood to include the assumption that the map {g, x)\->gx is a smooth map of
G x M into M (rather than merely smooth in x for each geG).

The history of the Principle is somewhat obscure. Frequently there is an
implicit appeal to it in a situation such as the following. One has a field theory with
a rotationally invariant Lagrangian and looks for rotationally symmetric ex-
tremals. One therefore takes as an Λnsatz that the field components are functions
only of the length r of the radius vector x, and computes the variation of the
integral of the Lagrangian with respect to infinitely close field configurations that
also satisfy the Ansatz. Setting the latter to zero gives a system of ordinary
differential equations for the field components, that frequently can be solved
explicitly. (For a particularly easy sample of such a calculation see Example 1.2
below.) Of course these ordinary differential equations are necessary conditions for
a rotationally invariant field configuration to be an extremum, but it is only the
validity of the Principle in this case (because the rotation group is compact) that
assures they are also sufficient conditions. An early and typical example of such an
implicit use of the Principle will be found in WeyΓs derivation of the Schwarzschild
solution of the Einstein field equations (cf. [14, p. 252], or [13, p. 165]). A very
explicit reference to the Principle, with a sketch of a proof, will be found in
Coleman's well-known paper on "Classical Lumps and their Quantum
Descendants" ([2, Appendix 4]). There are however a number of unstated
hypotheses used in Coleman's argument, making it a little unclear just exactly
what it does prove.

1. Examples

1.1. Let X and Y be Banach spaces, M = X x Y, and let G be the two element group
{£, T}, where T:M->M is the linear involution defined by the reflection T(x,y)
= (x, — y), so that the set Σ of symmetric points is just the X-axis {(x,0)\xeX}. Let
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/ : M—>R be any smooth function, even in y, i.e. f(x, —y) = f(x, y). Then the chain
rule gives immediately that the partial differential of / with respect to y satisfies
{d2f)(x, —y)= — (d2f)(x,y) and taking y = 0 gives d2f = 0 at all points (x,0)eΣ. It
follows that iϊσ = (x,0)eΣ is a critical point of f\Σ (i.e., if dίfσ = 0), then dfσ = dίfσ

+ d2fσ = 0, so σ is a critical point of /, verifying the Principle in this case. Take in
particular X = Y = R, so that M is the usual x, y-plane, and let f(x, y) = ± (x2 — y2).
Then f\Σ has only one critical point, the origin, which depending on the choice of
sign is either an absolute maximum or absolute minimum. However, the origin is
clearly a saddle point of /. (Thus the Principle only locates extrema of / from
extrema of f\Σ, not local maxima or local minima of / from those of f\Σ.)

1.2. Our second example is meant to illustrate a typical application of the Principle
in mathematical physics. We shall use it to find all harmonic functions in the
region A={xeR"|r 1 ^x^r2} that are radially symmetric, i.e. invariant under the
rotation group SO(n). Let C2(A) denote the Banach space of all C 2 real valued
functions on A. Then SO(rc) is linearly represented in C2(A) by gU(x)= U(g~1x).
Since the orbits of SO(n) on A are just the spheres concentric with the origin, a
function U(x) in C2(A) is a symmetric point if and only if it has the form ί/(||x||) for
some ί/eC 2 ([r l 5 r 2 ]) . We note that the gradient of such a U is given by

(\U)(x)=U'(\\x\\

Let M denote the submanifold of C2(A) consisting of all U assuming two arbitrary
but fixed values cx and c2 on the boundary spheres | | x | | = r 1 and | | x | | = r 2

respectively, so that Σ, the set of symmetric points of M under the action of SO(n)
is identified with

Let / :M-»R denote the Dirichlet functional:

$\\\U(x)\\2dx.
A

By Dirichlet's principle a harmonic function in A having boundary values ct on
||x|| =r f is just a critical point of /. Now if U{x) = U{\\x\\), then clearly

where Ω is the volume of the unit sphere in R". The Euler-Lagrange equation
satisfied by the extrema U of this latter functional on Σ isjust(2C//(r)r""1)/ = 0 or
rU"+ {n— l)C// = 0, which is easily seen to have the general solution U(r) — a
+ br2~n [except U(r) = a + blog(r) if n = 2].

1.3. There are a number of important and natural ways to generalize the above
example. We can replace SO(n) by a more general compact Lie group G, and A by
a more general G-manifold X. We can replace the Banach space M = C2(A) by a
more general Banach manifold of maps of X into a manifold Y, or by a manifold of
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trivially on Y as well as on X [in the fiber bundle case one should then assume that
the projection 77 : Y->X is equivariant, i.e., satisfies Π(gy) = gΠ(y)']. The action of
G on M is now defined by (gU)(x) = g(U(g~ xx)). Note that the symmetric elements
U of M are no longer the invariant maps, i.e., those satisfying U(gx) = U(x), but
rather the equivariant ones, satisfying U(gx) = gU(x) (of course when the action of
G on M is trivial these are the same). Finally we can replace / by a more general
G-invariant variational functional. When all these generalizations are made the
Principle reduces to the following :

Theorem. Let G be a compact Lie group, X a smooth G-manifold, Π: Y-»X a smooth
G-fiber bundle over X, and M a Banach manifold of sections ofΎ. Let G act on M by
(gU){x) — g{U(g~1x)) and /eί/:M->R be a smooth G-ίnvariantfunction on M. Then
the set Σ ofG-equivariant sections in M is a smooth submanifold o/M, and ifUeΣ is
a critical point of f\Σ then U is in fact a critical point off

If X and Y are Riemannian manifolds and the actions of G are isometric, then
for/we could take the "volume" functional or else the "energy" functional of Fuller
[4] whose critical points are the harmonic maps of X into Y (for which see also [3]
and [10]). A particularly interesting choice for X is one of the form G/Ή, i.e. one on
which G acts transitively. In this case Σ will be finite dimensional and often even
compact, although M itself is infinite dimensional, so the Principle leads to
existence theorems for extremals for appropriate functionals / In the case of the
volume functional we recover by an entirely different method a well-known and
beautiful theorem of Hsiang [7].

In the above generality I believe this application of the Principle is new and
should prove useful in pure differential geometry as well as in mathematical
physics. We shall report on it more fully elsewhere.

2. The Riemannian Case

In this section we assume that M is a Riemannian manifold. That is M is locally
diffeomorphic to a (finite or infinite dimensional) Hubert space and there is an
inner product <, \ on each tangent space TMX, that varies smoothly with x. For
details see [9] or [11]. We also assume that each geG is an isometry of M,
meaning that % : T M ^ T M p preserves inner products. As a special case M
could be a Hubert space (real or complex) and the action of G an orthogonal or
unitary representation.

A first important consequence of the Riemannian hypothesis is the existence of
the geodesic spray or equivalently of the exponential map exp:O->M. Here O is a
neighborhood of the zero section of the tangent bundle TM and exp is character-
ized by the property that for veΎMp and ίeR near zero, {£-»exp(ίz;)} is the unique
geodesic of M parameterized proportionately to arc length emanating from p with
tangent vector v. An obvious but crucial property of this map is that for any
isometry 0:M->M (and in particular for elements of G),
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which is just to say that an isometry maps geodesies to geodesies. Now exp maps a
neighborhood of zero in the Hubert space TM p diffeomorphically onto a
neighborhood of p in M (cf. [9, IV, §4]) and so may be regarded as a chart or
coordinate system at p these of course are just the classical "geodesic normal
coordinates" at p. If pel then the fact that Qxpoβgp = g°exp shows immediately
that in geodesic normal coordinates at p the action of G is just an orthogonal
linear representation. In particular Σ intersects the domain of this coordinate
system in a linear subspace of ΎMp, namely {veΎMp\Dgp(v) = υ for all geG}, so
that clearly Σ is a smooth submanifold of M. In fact we see an important extra
detail: If veΎMp is left fixed by all Dgp then the geodesic starting from p with
tangent v is left pointwise fixed by all geG, and hence lies in Σ it follows that Σ is
totally geodesic in M and that v is tangent to Σ at p.

A second important consequence of the Riemannian structure of M is that if
/:M->R is a smooth function then there is an associated gradient vector field \f
on M related to the differential df of / by dfx{v) = (v,\fx}x for all veΎMx. In
particular \fx = 0 if and only if x is a critical point of/, and more generally if x is in
a smooth submanifold N of M, then x is a critical point of/|N if and only if \fx is
orthogonal to TNX. If/ is G-invariant, then for any g in G we have f°g = f so by
the chain rule dfx = d(f°g)x = dfgx°Dgx, and since Dgx maps ΎMX isometrically onto
T M ^ we see from the characterization of V/that Dg(\fx) = \fgx. In particular if
xeΣ then we have Dg(\fx) = \fx for all geG. We now have all the ingredients for a
geometrically satisfying proof of the Principle in this case.

Theorem. Let G be a group of ίsometήes of a Riemannian manifold M and let
/:M—>R fre a C1 function invariant under G. Then the set Σ of stationary points ofM.
under the action of G is a totally geodesic smooth submanίfold o/M, and ifpeΣ is a
critical point of f\Σ then p is in fact a critical point of f.

Proof. By assumption \fp is orthogonal to ΎΣp and hence it will suffice to show
that also \fpeTΣp. But as we have just seen Dg(\fp) = \fp for all geG and as
remarked above this implies that the geodesic emanating from p in the direction
\fp is pointwise fixed under all g in G, and hence lies inside Σ so that its tangent at
p, V/p, is in ΎΣ. D

We now look at the other side of the coin and see how badly things can go
wrong if no restrictive assumptions are made.

3. Counterexamples

3.1. Let Σ be a non-empty closed subset of a connected, compact, C00 manifold M.
It is well known that there exists a C00 real valued function g on M vanishing
precisely on Σ and a C°° vector field YonM vanishing at only one point, which we
can take in Σ. Then X = gY is a C00 vector field on M whose set of zeroes is exactly
Σ, so that the flow {φt} generated by X is a C00 action of the real line R on M
whose set of symmetric points is exactly Σ. Now Σ can be very far from manifold-
like for example it could be a Cantor set. In particular the tangent space to Σ at
one of its points p will in general not have a well defined meaning, so that if
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/ : M - * R is a smooth invariant function on M, then the meaning of f\Σ having a
critical point at p becomes unclear, and hence the meaning of the Principle also
becomes unclear.

A second, somewhat more formal definition of the Principle restores meaning-
fulness in such cases. Namely at pel there is a natural linear representation of G
on TMp, given by g\->Dgp. We simply define ΎΣp to mean

{veΎMp\Dgp(v) = v for all geG}

and define "f\Σ has a critical point at p" to mean that dfp vanishes on this linear
subspace of TMp. However as we shall see in the next example, when Σ is a smooth
submanifold of M this formal tangent space to Σ at p can be strictly larger than the
actual tangent space to Σ at p and hence leads to quite a different interpretation of
the Principle. In the next section we shall introduce a condition (linearizability of
the action of G at all points of Σ) that will avoid this ambiguity.

3.2. Let {φt} be the action of R on M==R2 generated by the vector field pkd/dq
where fc = 1 or 2. We note that these are Hamiltonian vector fields with
corresponding Hamiltonian function p(/c+1)/(fc+l). The corresponding flow {φt}
on M is φt{q,p) = (g + pkt,p) from which we see that Σ is the g-axis. A smooth
function / :R 2 ->R is invariant if and only if it is of the form f(q, p) = h(p), and such
an / has a critical point at x = (q, 0)e Σ if and only if h'(0) = 0. Now if fc = 1 then the
flow is linear, so (Dφt\^p) = φt for all (q,p), and the two interpretations of the
Principle discussed in 3.1 coincide. Moreover /(p, q) = p is a clear counter-example
to the Principle, since although it has no critical points in R2, restricted to Σ it is
identically zero, and hence every point of Σ is a critical point oϊf\Σ. In case fc = 2,
(Dφt)x(v) = v for all feR, veR2, and x = (q,0)eΣ. Thus the formal tangent space to
Σ at x introduced in 3.1 is two-dimensional, even though Σ is a one-dimensional
manifold! Nevertheless this heroically illogical definition of the tangent space to Σ
at x does have the virtue of making the Principle correct in this instance, whereas
for the customary interpretation f(p, q) = p is a counter-example, just as it was for
both interpretations when we took fc= 1.

3.3. Let S 1 denote the unit circle in the complex plane C = R 2 and define an action
of SL(2,R) on S 1 by defining #eSL(2,R) acting on eiθ to be (geiθ)/\\geiθ\\. If we
identify SO (2) Q SL (2, R) with S 1 acting on itself by translation, then by the
uniqueness of Haar measure, dθ is, up to a constant multiple, the only SO (2)
invariant measure on S1. And since dθ is clearly not SL(2,R) invariant it follows
that there is no SL(2,R) invariant measure h(eίθ)dθ on S 1 except h = 0.

Now let H denote the Hubert space L 2 (S\ R) with respect to the measure dθ, so
that

Define a continuous linear (but not orthogonal) representation A of SL (2, R) in H
by
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and let A* be the contragredient representation, i.e., Ag = A*-u where * denotes
Hubert space adjoint, so that

Now regard H as a Banach SL (2, R)-space with A* as the action. We claim that the
linear functional Z:H-*R defined by:

2π

l(h) = (l,h)=$ h(eiθ)dθ
o

is invariant. Indeed since clearly Agl = l we have:

Since / φ 0 it follows that I has no critical points in H. To show that this gives a
violation of the Principle it will suffice to see that the set Σ of symmetric points of
H consists of the origin alone, for then clearly / \Σ has the origin as a critical point.
Suppose then that hsΣ, or equivalently that At

gh = h for all g in SL(2,R). Then for
all / in H we have:

or equivalently

ff(geίθ)h(eίθ)dθ = f f(eiθ)h(eiθ)dθ
o o

which shows that h(eιθ)dθ is a SL (2, R)-invariant measure on S1, so that as
remarked above h must equal zero, as was to be shown. The point of this example
is that it shows the Principle may fail to be true even for a continuous linear
representation of a semi-simple Lie group in a Hubert space. We shall see below
however that for a finite dimensional representation of a semi-simple Lie group, or
more generally for an analytic action of a semi-simple Lie group on a finite
dimensional real analytic manifold, the Principle is valid.

4. Linearizability

Let p be any symmetric point of a smooth G-manifold M. Associated to p we have
a representation of G in TMp, namely {g\->Dgp}, which we call the linearization of
the action of G at p. As we saw in Example 3.2 this may have very little relation to
the local properties of the action of G on M near p, which can be quite non-trivial
even though the linearization is the trivial representation. We shall say that G
(more properly, the action of G) is linearizable at p if in a suitable coordinate
system about p it looks linear. To be precise, recall that a coordinate system, or
chart, at p is a diffeomorphism φ of an open set Θ of M containing p onto an open
set φ(&) in a Banach space V, and mapping p to the origin. We say that G is
linearizable about p if there exists such a φ that for each geG the map
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is the restriction to φ(Θ) of a linear map g: V—>V. (We also say that φ linearizes G
about p.) Clearly g\->g is a linear representation of G in V, and by the chain rule
Dφp:ΎMp^>Y sets up an equivalence of this representation with the linearization
of G at p. Since the maps g are linear it follows that

V/ = {υeY\gυ = υ for all geG}

is a closed linear subspace of V, and since φ clearly maps ΘΓΛΣ onto φ(Θ)nW, it
follows that Σ is locally a smooth submanifold of M at p. Thus we have:

4.1. Proposition. // M is a smooth G-manifold such that the action of G is
linearizable about each symmetric point, then the set Σ of symmetric points is a
smooth submanifold of M.

Although Example 3.2 shows that Σ may well be a smooth submanifold of M
without the action of G being linearizable about points of Σ, I know of no
reasonably general hypotheses that imply the first property without also implying
the second.

In Sect. 2 we saw that if M is Riemannian and G acts isometrically, then the
action is linearized by geodesic coordinates at a symmetric point, and moreover
that the Principle is valid in this case.

In Sect. 5 we shall see that if a compact Lie group G acts smoothly on a Banach
manifold M, then generalizing slightly an argument of Bochner the action of G can
be linearized about any symmetric point of M. In this case too we shall see that the
Principle is valid.

In Sect. 6 we shall discuss a further case in which linearizability about each
symmetric point is known namely when G is a semi-simple Lie group acting real
analytically on a real analytic manifold. Once again the Principle will easily be seen
to be valid in this case.

However one should not jump to the conclusion that linearizability of the
action at each symmetric point is itself a sufficient condition for the Principle to be
valid. Looking back to Example 3.2 (with fc = l) we have a case of a finite
dimensional linear representation of R where the Principle fails. Even semi-
simplicity of G together with linearizability at all symmetric points is not sufficient
when M is infinite dimensional, for as we saw in Example 3.3 the simplest non-
compact, semi-simple group, SL(2,JR) has a (non-orthogonal) continuous linear
Hubert space representation for which the Principle fails.

In the remainder of this section we shall at least see how to develop a very
simple test for validity of the Principle that works in the presence of linearizability.

Let V be a Banach G-space, i.e., a Banach space in which G is represented
linearly, and let V* be the dual Banach space of continuous linear functionals on V.
Recall that V* is also naturally a Banach G-space, the action of geG on le V* being
given by (gl)(v) = l(g~1v\ so that the subspace Σ^ of V* consisting of symmetric
points is exactly the set of linear functionals /: V-+R invariant under the action of G
on V. If W is a subspace of V then as usual we denote by W° its annihilator subspace
in V*, consisting of all linear functionals vanishing identically on W. Now if /: V->R
is linear then it is a fortiori smooth and dlv = I for all v in V. It follows that /|W has a
critical point if and only if le W° (in which case of course every point of W is a critical
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point of Z|W) and in particular I has no critical points unless 1 = 0. Thus if we apply
the Principle to an element le V* it becomes the statement that if leΣ^ and leΣ°
then 1 = 0, or more succinctly Σ* nΣ° =0. Clearly then this is a necessary condition
condition for the validity of the Principle for arbitrary smooth invariant functions
/ :V->R, and we now show that it is also sufficient.

4.2. Proposition. // V is a Banach G-space then the condition Σ^nΣ° = 0 is both
necessary and sufficient for the Principle to be valid for all smooth invariant
functions / : V->R.

Proof. Let p be a critical point of f\Σ and let l = dfp. We must show that 1 = 0, and
since l\Σ = dfp\Σ = d(f\Σ)p = O, we have leΣ° so it will suffice to show leΣr But
since / is invariant, f = f°g for any geG, so by the chain rule dfgv°g = dfυ for all
ve\. In particular taking v = peΣ gives g~γl = l for all geG, and hence l e l ^ . D

4.3. Definition. A Banach G-space V will be called admissible if it satisfies the
condition Σ^ΓΛΣ0 =0. A smooth G-manifold M will be called admissible if for each
symmetric point p of M the action of G on M is linearizable about p and if the
linearization of G at p is an admissible Banach G-space.

4.4. Theorem. The Principle of Symmetric Criticality is valid for admissible smooth
G-manifolds.

Proof. When the action of G is linearizable about a symmetric point p then locally
the action looks like its linearization at p. Since the question of whether p is a
critical point of a function is a local one, the theorem is immediate from 4.2 and
4.3. D

A hyperplane in a Banach space V is a closed linear subspace H of V of the
form 1° = {veY\l(v) = 0} for some non-zero leV*. If l(vo) = l then each element v of
V can be written uniquely in the form h + ocvo for a scalar α and /zeH [namely
α = l(v) and h = v — 1(V)VQ] that is V is the direct sum of H and the one dimensional
space [VQ] spanned by v0. Conversely if a closed subspace H of V has a
complementary one dimensional subspace [u0] then H is a hyperplane; in fact
H = /° where l(v) is defined by the condition v — l(v)voeH. The following is a simple
but powerful test for admissibility of a Banach G-space.

4.5. Theorem. A Banach G-space V is admissible provided that for each non-zero
invariant linear functional I: V->R the invariant hyperplane H = l° has an invariant
complementary subspace.

Proof. Assuming that Σ^nΣ0 contains a non-zero element I we shall derive a
contradiction. Since leΣ^., by assumption its null space H has an invariant linear
complement, Γ. Now since leΣ° it follows that Γ £ H , hence Γ which is disjoint
from H cannot be included in Σ. We will get our contradiction by showing that
indeed ΓQΣ. For suppose voeΓ. Since Γ is invariant gvo — voeΓ for any geG. But
since / is invariant,
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4.6. Corollary. // V is completely reducible (i.e., every closed, invariant subspace has
a complementary closed, invariant subspace) then V is admissible.

5. The Compact Case

In this section G will be a compact Lie group with normalized Haar measure μ. If
V is a Banach G-space and ve\ then the center of gravity of the orbit of v [that is
§gvdμ(g)~] will be denoted by v or by A(v). The map A : V->V, called "averaging
over the group" has a number of well-known elementary but important properties.
Firstly, it is trivial that v = v when v is in Σ, and by the in variance of μ it follows
that in fact A is a continuous linear projection of V onto the subspace Σ. Secondly,
if ^ is an invariant, closed, convex subset of V then A(^) Q c€. Thirdly, if T is an
equivariant linear map of V into another Banach G-space W then TA — AT (i.e., if
Tv = w then Tv = w) in particular if / : V->R is an invariant linear functional on V
then l{v) = l(v).

5.1. Theorem. If G is a compact Lie group then every Banach G-space is admissible.

Proof. Let /:V—»R be an invariant non-zero linear functional and let
<£ = {veV\l(v)=l}. Then ^ is an invariant, closed, convex subset of V, in fact a
translate of the hyperplane H = {veY\l(v) = 0}. Since / + 0, # is not empty and if we
choose VQGΉ, then ϋo = A(vo)e(£nΣ, so clearly [£0] is an invariant linear
complement for H, and 4.5 completes the proof. D

5.2. Lemma. If M is any smooth G-manifold and p is a symmetric point of M, then p
has arbitrarily small invariant neighborhoods. In fact if Θ is any neighborhood of p
in M then

0= f]gΘ
geG

is an invariant neighborhood of p included in Θ.

Proof. Trivially Θ is invariant and included in Θ. By continuity of the map
(g,x)\->gx of G x M into M and the fact that gp = p, for any geG there is a
neighborhood Ng of g in G and a neighborhood Ug of p in M such that NgUgQΘ.
By compactness a finite number Ngi,..., Ngn of the Ng will cover G, and if U is the
intersection of corresponding Ug then clearly U is a neighborhood of p that is
included in Θ. D

The following is a straightforward generalization to the Banach manifold
setting of a classical theorem of Bochner (cf. [1]).

5.3. Theorem. Let G be a compact Lie group acting C1 on a Banach manifold M.
Then the action of G on M can be linearized about any symmetric point p of M.

Proof. By choosing a chart φ : Θ-+Y at p and using 5.2 there is no loss of generality
in assuming that p is the origin of a Banach space V and that M is a neighborhood
of p in V. Let W be the Banach space of C 1 maps ψ :M->V such that \\ψ\\ < oo
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where \\xp\\ is defined to be the sum of the suprema of \\ψ(v)\\ and of \\Dψυ\\ as v
ranges over M. We define a continuous linear action of G on W by
gψ = Dgp°ψ°g~1. The convex subset ^ of W defined by

c£ = {ψeW\ψ(p) = p and Dψp = identity}

is invariant under G by an easy application of the chain rule. Note that by the
inverse function theorem any element of ^ is a chart at p. If we take some element
of ^, for example the inclusion of M into V, and average it over the group, we get
an element ψ0 oϊΉ, and hence a chart at p, satisfying gψo = ψo for all geG. But the
latter is equivalent to Dgp°ψ0°g~ι =ψ0, or to Dgp°\p0 = ψ0°g, and hence ψ0

linearizes the action of G about p. •

5.4. Theorem. // G is a compact Lie group, then any smooth G-manifold M is
admissible and hence the Principle of Symmetric Criticality is valid for M.

Proof. Immediate from 4.3, 5.1, 5.3, and 4.4. •

6. The Semi-Simple Case

Let G be a connected, semi-simple Lie group. It is a standard result (cf. [8]) that
every finite dimensional linear representation space of G is completely reducible,
hence by 4.6 admissible. In 1965 the author and Smale conjectured that if M were
any smooth G-manifold then the action of G would be linearizable about each
symmetric point of M. While in its full generality this question remains open, a
partial answer has been provided by Hermann and by Guillemin and Sternberg
who showed [5,6] that the conjecture was valid provided M was a real analytic
manifold on which G acted real analytically. Putting this together with 4.3 and 4.4
we have:

Theorem. If G is a connected semi-simple Lie group then the Principle of Symmetric
Criticality is valid for finite dimensional real analytic G-manifolds.
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