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Abstract. A one dimensional infinite quantum spin lattice with a finite range inter-
action is studied. The Gibbs state in the infinite volume limit is shown to exist as a primary
state of a UHF algebra. The expectation value of any local observables in the state as well
as the mean free energy depend analytically on the potential, showing no phase transition.
The Gibbs state is an extremal KMS state.

§ 1. Introduction

A one dimensional infinite classical spin lattice system has been
studied in [12] and shown to be without any phase transition for a large
class of interactions. We show an analogous result for the quantum case
with any finite range interaction.

We first show that the power series for the time displacement auto-
morphism of the algebra of observables has an infinite radius of con-
vergence for local observables in one dimensional lattice. This enables
us to use the Tomonaga-Schwinger-Dyson perturbation type formula
and pull out each potential from e~βH as a factor. The transfer matrix
technique for the classical one dimensional Ising model is then applicable
in a fashion analogous to [12] and we obtain a formula for the infinite
volume Gibbs state in terms of an eigen state of a certain linear bounded
operator acting on observables.

A standard pertubation theory of bounded linear operators on a
Banach space enables us to find an analytic continuation of the Gibbs
state with respect to the interaction potential and to prove the analy-
ticity of the expectation value of local observables in the Gibbs state as
well as the analyticity of the mean free energy.

This technique is applicable also to the classical case, provided that
the interaction potential decreases exponentially at large separation.

The Gibbs state is shown to be invariant under time and lattice
translation, satisfies the KMS boundary condition and has the exponen-
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tial, uniform clustering property. The last property implies, by a general
theorem, that the state is primary (a factor state) and is an extremal KMS
state.

§ 2. Notation and Results

We represent a one dimensional lattice by the set of integers
Z = {0, + 1, ...}. For each lattice point j, we have a d-dimensional
Hubert space J^ where d is finite and independent of 7. For each finite
subset / of Z, we consider a finite dimensional full matrix algebra

&(!)= 0^fj. For ICΓ, βeSl(7) is identified with

β®lj '\/ i*1 $ICO where /'\/ denotes the complement o f / in /' and lrvί

is the identity in 9I(/'\/) The collection of 21(7) for all finite subsets /
of Z together with this identification defines a normed *-algebra 9I0

(the algebra of local observables). Its completion 2Ϊ is taken as the
C*-algebra of quasi local observables. The closed *-subalgebra of 91
generated by all 9I(/), I CΓ will be denoted by 2I(/') for an infinite subset
/' of Z (as well as for a finite subset /').

For any two lattice points j and /, we fix a unitary mapping w(/,/)
from Jίfj, onto J^ such that w(/j") w(/"J") = w(/,/')> w(/,/)* = w(/"J) and
w(/'J) = I- Let 7 + 0 denote the set {/ + α;y'e/}. Let w(/ + α,/) = (X)w(

which is a unitary map of JΊ?(I) onto Jf (/ + α). The *-automorphism
of 9ί, which is induced by a *-isomorphism βe9I(/)->w(/ + α, /)
βw(/ + <z, /)*, is denoted by τs(a) and is called a lattice translation.
We also need the *-isomorphism of 9I(Z\[1 — n, n]) onto 91, which is
induced by the *-isomorphisms τs(n) ® τs(— n) of 9l([rc + l, N~\)
(χ)9I([l-AΓ, -n]) onto 9I([l,ΛΓ-n])®9ϊ([l -N + n,0]), JV = w + l ,
π + 2, — It is denoted by τc(rc). Here [α, b~] denotes the set of integers j
satisfying a ̂ j ^ b.

Let Φ(I) be the interaction potential among lattice sites in /. Φ(/)*
= Φ(/), Φ(I) 6 ?((/). We require Φ(I) = 0 if / is not within some interval
of length r. We also require Φ(I + a) = τs(d) Φ(I\ The Hamiltonian for
a finite interval [Λ^ , N2~\ is

The Gibbs state φ^fe of 8I([α, fe]) is

Φ«,5(β) = Z(α, fe)" J trβft[β exp - [/(α, fe)] , (2.2)

)], (2.3)

where trαb is the trace of a full matrix algebra 9ί([α, fo]).
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Theorem 2.1. (i) The following limit exists and is finite:

P(Φ) = lim (b-aΓίlogZ(a,b). (2.4)
b — α-*oo

It is holomorphic in Φ.
(ίi) For every QeA0, the following limit exists and defines a state

o/2l:

φφ(Q)= lim 9

G

ab(Q). (2.5)
α-> — oo,6-> +00

For each Q e 2I0, iί is holomorphic in Φ.
The holomorphy in Φ means the real holomorphy in C = (C l 5 ..., Q

when each Φ(/) = Φ(/, ξ) is a restriction of an 2I(/) valued holomorphic
function Φ ( I , ζ ) t o ζ = ξe some real domain.

The analyticity statement can be proved for the following class of
quasilocal observables with exponential tail.

Definition 2.2. Let β e 21.

\\QL= inf lie-βJ (2.6)
Qne9ί ([-«,«])

(2-7)

For x > 1, 2ί(x) is ί/ie seί o/ β e 2ϊ swc/z ί/zαί ||βL jX < oo.
φφ(Q) is holomorphic in Φ if β e 2l(x) for some x > 1.
The limit

τr(ί)β - lim eitu(a,b)Qe-itv(a,b) (2.9)
α^ — oo,fe-» oo

exists in 9Ϊ for all Q e 21 and defines a continuous one parameter group
of * automorphisms of 21, which we denote by ττ(t) and call a time
translation. (The unit of time is (βh)'1.) A state φ of 21 is time and lattice
translation invariant if φ(ττ(t)τs(a) Q) = φ(Q), for any ί, a and βe2I.
It satisfies the KMS boundary condition if φ(Q1Q2(fo)) = ψ(Q2(A) βi)
for all β1 ?β2e2I and / e ® where β2(/J = Jτr(ί) β2/α(ί)dt, fΛ(t)

OO

= J e~ίsί+αs/(5) ds. Let S1 be a convex subset of set of states of 21. A state
— 00

.φeSί is extremal in Si if φ = λφ^ +(1 — /I) φ29 ψi, φ2

e^ι ? 0</1<1
imply φι = φ2 = Ψ If ^i is the set of translation invariant states, φ is
an extremal translation invariant state and if Si is the set of time trans-
lation invariant states satisfying the KMS boundary condition, then φ
is an extremal KMS state.
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A state φ has an exponential clustering property if there exists ρ > 0
such that

lim e*™ [φ(eιτ5(H) β2) - φ(Qi) φ(τ,(n) Q2J] = 0 (2.10)
H— » oo

for any fixed β1? β2 e 9ί0. Φ nas a uniform clustering property if there
exists N for any given ε > 0 and Q1 e 91 such that

lφ(βιβ2)-?(βιMβ2)l<β|lβ2ll (2.11)

for all β2e9I(Z\[ — N, N]). A state φ is primary (or a factor state) if
the cyclic representation πφ of 91 associated with φ through the GNS
construction is such that 7 (̂91)" is a factor (i.e. the center of π^(Sί)"
consists of multiples of the identity).

Theorem 2.3. The Gibbs state φφ for the infinite system is invariant
under time and lattice translation, satisfies the KMS boundary condition,
has exponential and uniform clustering properties, is primary, is an extremal
KMS state, and is an extremal lattice translation invariant state.

In the following discussion, we use the following combination of

(2.12)
/C[0 f r]

where nr(I) is the number of the translates / + α of / which is still in
[0,r]. We denote

τs(n)Φ, (2.13)
[n, r + n] C I

H(a,b} = H(\_a,b-}). (2.14)

H(a, b) and U(a, b) differs only near the two ends:

U(a,b}-H(a,b} = Δ~+Δ^ (2.15)

A+ E A([b - r, fe]), A' E Ada, a + r]) , (2.16)

IIΛΊ^ Σ 11*0)11, (2-17)
/C[0 f r]

iμ i l ^ Σ ||Φ(/)||. (2.18)
/C[0,r]

§3. The Spaces 21 (M, *)

Lemma 3.1. |||β|||n>JC is a norm of linear space 91 (x). 9ί(x) equipped with
the norm \\\ \\\ΛfX (denoted as 91 (n, x)) is a * Banach algebra.

Proof. There always exists β(M)E9I([-π,π]) such that \\Q-Q(rί)\\ = \\Q\\ n

due to the compactness of a bounded closed subset of A(\_— n, nj). Let
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l l f l i - β?'!! = H β i l L , \\Q2 -em = \\Q2\\n- Then

Similarly, ||C<2||Π^|C| ||β||B. At the same time, Hf l lL^ICΓ 1 ! ||Cβ||π.
Therefore ||Cβ||. = |C| ||β||,.

Obviously ||ie*||U = |lieiL,*. Further, \\QίQ2\\n^\\QίQ2-Q(ΐ)Q(f\\
^ i i f l i i i H δ a L + i i δ ϊ Ί i i i δ i L ^ i i δ i L i i δ a L + i i δ x i i H δ 2 L + ι i δ ι L i i δ 2 ι ι .
Hence Illβ^J^lllβJ^lllβJ,,.,.

Any Caiichy sequence Qt with respect to || ||Π;X is a Cauchy sequence
with respect to the norm in 91 and has a limit Q in 21: lim \\Qk — Q\\ = 0.

This implies ||β||n ^ lip H6JB ^hm ||6,L ̂  II6L and hence ||β||,

= lim||βk||π. Hence

I I Q I I + Σχl\\Q\\,=™\\Qk\\ + Σ ^ l l β Λ i u p l l l β * . ^ 0 0 - (3 2)-

Thus \\\Q\\\n,x < oo and Q e 9l(n, x). Given ε > 0. There exists K such that
\\Qκ- QkLx<£/4 for k^K. There exists N such that \\Qκ\\Nx<ε/4

N~l

and ||β||N,x<ε/4. There exists K' such that \\Q-Qk\\ + Σ *Ίlβ-β*llz

<ε/4 for fc^X'. Then || |β-βJB Λ<fi for k ̂  max(^, K"). Therefore
β|||l,, = 0. Q.E.D.

k

Lemma 3.2. The set ΣN(y) of Q e 91 such that

| |β | |gy 0> \\Q\\ι^7ι, l = N,N+l,... (3.3)

is convex and compact provided that γQ < oo, \imγl = 0.
ί-»oo

Proof. The convexity is straight forward from the triangular inequality.
By setting Qn = 0 in (2.6), we obtain || β||B g || β|| ^ y0. Let β(n) e 9ί([ — n,n])
be such that ||β-β(π)|| - ||βlL Then ||β(n)|| ̂  ||β|| + ||β||,,^2y0.

Let QkεΣN(y). Let k(i,j), j= 1,2,... be a subsequence of /φ'-lj),
7 = 1,2,... such that β^ j) is convergent in norm as 7'->oo, where
n(AΓ — 1, /c) = k and f = AT, N + 1,.... Such choice is inductively possible
because HβJpH ^2y0 for all / and k.

We can show that Qk(jj) is a Cauchy sequence in 91. Let ε > 0 be given.
There exist K such that γt<ε/3 for l^K and K'>K such that
Wκ.j>-Q$κ.n\\<*β f o Γ Λ / ^ K ' . Since k(j,j) = k(K9v) with v £ / if

7 ̂  K, we have Hβlf),j} - βlf},n\\ < ε/3 if7,7" ̂  K'. Hence

Λ7 J ,7 — 7,7 7»7 (3.4)

i fΛ/ ^ K'. Hence Qk has a convergent subsequence Qk(jj)-
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Since 21 is a separable Banach space, its sequentially compact subset
is compact. Q.E.D.

Lemma 3.3. Let x2>xί>l. The closure of a bounded subset of
21 (rc, x2) with respect to the norm in 21 is in 21 (n, x2) and is a compact
subset of 2I(w, xj (with respect to ||| \\\ΛtXJ.

and lim x2

 la = 0. Hence Qk has a subsequence which converges with
i-*oo

respect to the norm in 21. Let now Qk be a sequence such that lim || Q — Qk\\
fc->oo

= 0. By the latter half of the proof of Lemma 3.1, 11611,, = lim ||βfc||M and
N-l

hence ||β|| + £ ||β||^α. Therefore IHβHU^α. Since

l^n, we have \\Qk\\NtXl^a(xί/x2f(l-(x1/x2))~ί, which tend to 0 as
N -> oo. This is true also when Qk is replaced by Q. Since lim || Q — Qk\\ t = 0
for each /, we have lim \\\Q - Qk\\\ΛtXl = 0. Q.E.D.

In the above discussion 2I(/t, x) for given x and varying n are topolo-
gically equivalent. We introduced ||| |||n x merely for the convenience in
later computation.

Definition 3.4. 2ίx and 2X2 are sets of Q e 21 satisfying the following
conditions (i) and (ii), respectively.

(ii) supra'1 [log || 6 1| n + (n/r) logw] < oo.
n

Lemma 3.5. ^ and 2ί2 are *-subalgebra of 2ί 5ίαfo/^ under τs(a).
contains 212.

Proo/. (i) Let β1? Q2 e 21. Then

||π) + (n/r)logn] (3.6)

Hence ̂  and 212 are linear subset of 2ϊ. Next

iiβiβίL^iiδiβz-ewmej ιiβ2L+ιiβ (2π )ιι i i G i i i .
(3.7)
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Hence

sup n - 1 [log || Sj β2 1| „ + (n/r) log n]

gmax supfΓ'pogHβjL + ίπ/rJlogn] +log(||β1|| +2||β2||). (3.9)
.7 = 1,2 (. n J

Therefore 9^ and 9I2 are algebras. Since | | Q * l l / = I I 6 I I *, ^i and 9ί2 are
*-algebras. ||τs(α) Q| |/^ I lβ | | /+ f l Therefore 9^ and 9I2 are stable under
τ

s(
β) 2Ϊ2 C 91 ! is obvious. Q.E.D.

Definition 3.6. Let Q e 91. De/foie || g ~ x || to be oo z/ β ~ 1 # 91.

α ( β ) = l l β | | | i e " Ί l , (3.10)
^(0= inf Hβ-βJllβ,- 1 ! ! . (3.11)

Qne 31 ([-«,«])

Lemma 3.7. Lei β > 0. Then

(3.12)
) (3.13)

"where sup 15 ίαfc^n oi βr all states φ' and φ" of 91.

. ||β || is the l.u.b. of the spectrum of Q and Hβ" 1 ! ! is the l.u.b.
of the spectrum of Q~ 1, which is the inverse of the g.l.b. of the spectrum
of β. Hence (3.12) follows. Since sup<p(β)= ||β||, infφ(β)= Hβ" 1 ! ! ' 1

φ φ

for β>0, we have (3.13).

Lemma 3.8. // X and Y are elements of a Banach algebra, X~l

exists and \\Y\\ \\X~1\\=δ<l9 then X+Y has an inverse \\(X + YΓ*\\
^H^-^Kl-ί)"1, and

\\(χ+ y)-ι _χ-i| | ̂  HA:-I | | {(1-δΓ1 ~ 1} . (3.14)

Proof. Consider the series
00 / 00 \

f = χ-*Σ(-YX-iγ = ( Yj(-χ-ίY)n)χ-1 (3.15)
n=0 \n=0 /

which is absolutely convergent due to || YX~l \\ ̂  || Y \\ \\ X ~l \\ = δ < 1. It sat-
isfies (X+ Y) f = f(X+ Y) = land hence/ = (X+ Y)'1. Further \\f-X~l\\

Lemma 3.9. Let Q > 0, Q

(1) αi(0^(α(0-l)(α(β) + l )- 1 <l . (3.16)

(2) α/(β)^Mβ) i/ / ' ^ / . (3-17)
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(3) There exists β(;) e 9I([- /, /])> such that

H - l M l δ ' l ^ δ ) a n d

(4) i iδii^diδii-iiδ-' iΓ 1 )^. (3.19)
(5) i i δ i i ^ i i δ i i r y i'^i (3.20)
(6) α I (e)^ ι ιe ι ι ί ι ιe~ 1 ι i ( i - ι iβ i ι« ι iβ~ 1 ι i )~ 1 (3.21)
(7) ||β||l^||β-1ir1«I(β)(l-«ί(β)Γ1. (3-22)

(8) α(Aβ) = α(βX α,(Aβ) = α,(β) if 1>0. (3.23)

(9) lie + x||, = 11611,. (3.24)

(10) // A||β-1 | |(l+««(β))<l, ίfcen
, 1>0. (3.25)

1. (3.26)

Proo/. (1) If we set β<0) = {||β|| + llδ'ΊΓ1}^ then

αίίflJ^llfl-^IIIKfl^)" 1 ! !

=(iiβiι-ι iβ"Ίr 1 )/(i iβiι + ιi f i 1ιr1)=(«(β)-i)(α(β)+ιr1. '
(4) follows from ||β| i^ ||β-β(0)|| =(||β|| - IIS'1!!"1)/^ (2) and (5) are
obvious. (3). Since Hβf 1 ! ! =sup \ψ\\ \\n(Qt) ιp\\~ l ̂  HβjlΓ 1 where the
sup is over all non zero vectors in a faithful representation π of <Ά. Hence
a s l i a i l - K X j J f i - a i l H β Γ ' l l ^ . l i a i l l l β Γ Ί K l - l l β l l / l i a i l ) becomes ^1.
By (3.16), if ||β-ai| Hβf 1 ! ! <αi(β) + ε with e<(l-α/(β))/2,.then ||Q,||
is bounded by a constant. Hence there exists β(J) e 21 ([— /, /]) such that
II Q — δ(o II l lδα/l l =α;(δ) by the compactness of a bounded closed set
in 2l([ -/,/]). We have

wΊl^«»(β) (3.28)

Hence 1 - «,(β) g ||ββf J || ̂  1 + α,(β) and

(3-29)

From (3.28) and Lemma 3.8, Hδωδ'Ίl = 11(1 + (ββω1 - I))"1 II
1- Therefore

(3.30)
By Lemma 3.8, we have

'ΊKi- i iδ-δ^ ' i i i iδ^Ίi)" 1 . (3.31)
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Hence we have

α/(β);g||β-β(/)ll IKβ^ΓΊ^IIβ-Ίl l lβl l^-l lβlUlβ" 1 ! ! )" 1 (3.32)

where β(0e9I([- /,/]), \\Q -Q(l)\\ = \\Q\\t. This proves (6). (7) follows
from (3).

(8) and (9) are immediate from definitions. To obtain (10), we note
that if Q(ί) is given by (3), then, by Lemma 3.8,

IKβω-^'Ίl^l lβωΊKi-μi l lβωΊl)- 1

and hence
^(Q-λ)ύ\\Q-Q(l)\\\\(Qm-λΓl\\

l lΓ 1 (3-33)

where we have used (3.29).

Hence we have (3.26).

Lemma 3.10. Let v be a state of 91, α>0, l<α<oo, limα( = 0,

5Ξ α,, / = N, N + 1, ..... Then Σ is a convex, compact subset of 91.

Proof. First we prove the convexity. Let β = Aβj + (1 — λ) Q2, Q\ e Σ,
Q2eΣ, Q^λ^ί. v(Q)=λv(Q1)+(ί-λ) v(Q2)=a. Since β^O, β2^0, we
haveβ^O.

\\Q\\ ίλ\\Qί\\+(l-λ)\\Q2\\^a{λ\\Qϊί\\-ί + (l-λ)\\Qϊί\\-1}. (3.34)

(3.35)
2 | | β Γ 1 | Γ 1 + ( l - l ) l | β 2 - Ί Γ 1 .

Hence α(β) ̂ α. Similarly,

1ir1). (3.36)

Hence llβyβ-lgα,.
Next we prove the compactness. From v(β) = a 2: || β ~ 1 1| ~ 1 ̂  α ~ 1 \\ Q \\ ,

we have ||β|| ^αα. Similarly l lβl l j^αjlβ" 1 ! ! " 1 =ata. Therefore I1 is a
subset of a compact set. We now prove that Σ is closed. Let βπ e Σ,
lim||β-βj|=0. We have v(β) = limv(βπ) = α. From Qn*\\Qϊ

n— > oo

^oΓ^lβJ ^α"1^ we have Q^α"1^. Hence by Lemma 3.8, lim

= | ie~Ίl Hence Mlimα(ρM) - α(β) ^ α, lim || β J|J β; 1 1|

^ α f. Q.E.D.

ί 1
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Corollary 3.11. Let v be a state of SI, x> 1, l<α<oo, α>0. The
set of QeSI, β^O such that v(Q) = a> |||β|||M,Jlβ~Ίl ^« is a convex
compact subset of 3ί.

Proo/. From IliρilU.JIβ-^l^α, we have αίeί^α.l lβl l ί l lβ ' l l ^ x 'α,
l=M,M+l, ____ The set is closed and hence compact. From (3.34) ~ (3.36),
Piδi H-^QJ^IK^Q! + A2β2Γ

1 | |^α if β! and β2 are in the set,
A! + A2 = 1, A! ̂  0, /12 = O Hence it is convex.

Corollary 3.12. The set of Q e 21, Q ̂  0 sticΛ that v(Q) = a, α(β) g α,
ocj(β) ̂  aί? / = N, A/" + 1, ... fs a subset of a compact convex set, if lima/ = 0.

Proof. This follows from (3.22) and Lemma 3.10.
Remark. In [12], quantities of the form βι(Q)= sup φ®φ'(Q)lφ®φ"(Q]

φφ'φ"

has been used instead of our α/(Q), where φ runs over states of St([ — n, ri])
and φ', φ" runs over states of 2I(Z\[ — n, π]). β^λQ^ +(1 — Λ) Q2)
^max{j?z(61),j8ί(Q2)} for QuQi^^O^^^l- Hence the condition
βl(Q)^βl is stable under convex combination of Q. ^^ is a Frechet
Montel space.

§ 4. Time Translation

For any two elements Q and # in 9Ϊ, define

We extend this definition to R = H(I)

δ(H(I))Q= X [τs(/)Φ,β]- (4.3)
7:[Λ7 + » ]C/

If β e 9ί0, the sum terminates at finite/

Lemma 4.1. Lei C^(n) be numbers such that

CT+1(n) = (l-r+ΐ) CT(n) + 2 ̂  C^k(n) (4.4)
Λ = l

C/°(w) = 3/ϊl(i.e. = l if / = n,=0 if / Φ π ) (4.5)

^O,n^r-L Then C?(n) ^ 0, 0nd

) = 0 if /<« or l>n + mr. (4.6)

Σ CΓW χ'--y«"+»-Vm!. (4.7)
m,Z
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Then, (4.7) is absolutely convergent for all x and y, and is given by

fn(x, y) = exp[(n - r + 1) / + 2 £ k~\x/yf {exp/c/ - 1}] . (4.8)
Jk = l

Let

F I I(x)=ΣCΓ(n)xw/m!, (4.9)
m,l

Fn

L(x) = Σ Σ <T(n) xm/m \ (L*n.) (4.10)
m 1>L

Then

-l}], (4.11)

^̂ ) (x>0), (4.12)
* = 1

where L ̂  0.
Proo/. C^(n)^0 and (4.6) are immediate from (4.4) and (4.5) by

induction on m. By (4.4) and (4.6), we have

+2r} sup|C»| . (4.13)

By repetition, we have sup\Cf(n)\^Y[(n + l+kr). Therefore (4.7) is
1 k = l

absolutely convergent near x = y — 0 and defines a holomorphic function.
Due to (4.4), fn(x9 y) satisfies within the polycircle of convergence

the following partial differential equation

= (x(d/dx) + n - r + 1} /„ + 2 £ (x/y)k /„. (414)

From (4.5), we have the initial condition

/(0,0) = 1. (4.15)

After the change of variables

s = logx, t = logy — yr, u = (s + t)/2, v = (s — t)/2, (4.16)

we have

(d/du) fn(x, y) = g(x/y) (df/du) fn(x, y ) , (4.17)

g(x/y) = (n-r+l) + 2 Σ ( x / y f , (4.18)
fc = l
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where (d/du) is for fixed v. Since x/y = exp(2υ — yr), we have

log MX, y) + k(v) = J <7(exp [2v - /]) d(/)

k = l

where the unknown function k(v) can be determined from (4.15) by
taking the limit j;-»0 with x/y fixed at e2ρ:

(4.20)
k = l

Therefore we have (4.8). By definition, Fn(x)=fn(xllr,xllf) and we have
(4.11).

To obtain (4.12), we consider

fn(x, y) = exp [(n - r + 1) / + 2(x/yY Σ^1 {expfe/ - 1}] (4.21)
k = l

- X Cr(n)x/-"/ l l r + I I-Vw! (4.22)
m,l

By the power series expansion of exponentials in (4.11) as well as in (4.21),
we obtain expressions for Of(n) and Cf(n) as sums of positive terms. The
change of (x/y)k in (4.11) to (x/yY = (x/y)k(x/yY~k increases the power
of x by r — k ̂  0 while keeping the total degree in x and y as well as the
numerical coefficient of each term. Therefore all terms in the expression
for C7(n) moves into expressions for C™(n) with the same m and higher
/' ̂  /. Hence

0 £ Fn

L(x) £ Fn

L(x) = Σ Σ CΓ(«) **/«!, (* > 0) . (4.23)
n 1>L

By Tailor's expansion theorem, we have

Fϊ'+n(x) = Ln(x9 x)-Σ (xk/k\) (d/dξ)kφn(ξ, x) j
(. k = 0 J ξ = 0

>ϊl(ί,x)|δ=sβjc (4.24)

where 0 < θ < 1 and

(4'25)

The main point of introducing Fn is that (4.24) is easier to calculate for
F than for F. From (4.23), (4.24) and (4.25), we obtain (4.12).



132 H. Araki:

Theorem 4.2. (i) {exp<5(/?H(/))} Q converges absolutely in the norm
for any complex β; βe2ί1? and ICZ. (ii) εxpδ(βH(I)) is a group of
automorphisms of ^(/^nSΪ! and 5ϊ(/')n5ί2

 wzί^ one complex parameter
β for any / 'D/. (expδ(βH(I))} Q is analytic in β for each Qe^.
(iii) τI

τ(t) = Qxpδ(ίt H(I)) for real t has a unique extention to a continuous
one parameter group of * -automorphisms of 91, commuting with τs(a).
τf = τr.

(iv) // Q e 9I([0, n]), then for any N ̂  0

{expδ(βH(l))} Q = QNJ(β) + δQNJ(β) , (4.26)

Qu(β) = πpδ[βH(Inί-N,n + N]ϊ]QeVί(l-N,n + NJ), (4.27)

\\δQNJ(β)\\ ^(l + [iV/r])!-1α(^)w' 1+1Fn(2|)9| ||Φ||) ||g|| , (4.28)

l), (4.29)

where [AΓ/r] denotes the largest integer not exceeding N/r, and n^r—1.
Proof. By definition, if β e 9ί([0, n\)

βmΣ[τs(jm) Φ, [..., [τβ(/ι) Φ, β] .-]] , (4.30)

where the sum is over all jί...jmEZ such that [/fc,Λ + r] has a non
empty intersection with the interval

/(/i ...Λ-ι) = [0,n] U U DWi + r] (4.31),n] U((U

for each fc = 1, 2, ... m. Let C^rc) be the number of terms in (4.30) for
which the length of the interval /(/Ί .. 7m) is /. It satisfies (4.4) and (4.5),
where the first term of (4.4) represents the case in which [/m+1, jm+ί + r]
falls in I(jί ...jm) and the rest represents cases in which [jm+ί9jm+ί -fr]
has still non empty intersection with /(/Ί ...jj and sticks out to either
side of /(/Ί .. 7m). We now have two inequalities

n φ i i r i i e i i ΣCΓW, (4.32)

Σ cr(»)
Note that the change oΐ Z to I CZ only decreases the number of terms
in (4.30).

oo

We are now ready to prove (i) and (iv). If we write Q = £ Qk,

Qk = Qw - Q(k- υ e «([-*, fc]λ llβ - β(fc)ll = llβllΛ* ̂  U β*°- «= 0, we
have l l β j g l l β l l t + l l β l l t - i where H f i l l t o - i is to be replaced by ||Q||.
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Hence if Q E 911? then Σxk ||βk|| < oo for any x > 0. From our discussion,
we have

Γ'I/T Σ ll[τ,(/JΦ,[...,[τ,0 ι)*,β] ...]]ll
ji. .jm

Σ(«o~ 1 (2i/ίiι iΦiιrΣcr(2*)(iiβiι*+ιιeιit-ι) (4.34)

By Lemma 4.1, F2k(x) = (e2x)kF0(x). Hence (4.34) is finite and we have (i).
Similarly, for Q e 51 [0, n],

(4.35)

By substituting (4.12) into (4.35), we obtain (4.28).
To obtain (ii), we first show that 51 x and 9I2

 are mapped into them-
selves.

where ||β|| fco_ι is to be replaced by ||β||. We have for n^k0

yn=\\eχpδ(βH(I))Q\\n

n oo

\\Qk\\-
k = k0 k = n+ί

Hence, for x > 1,

00

Σ (
= ko /

(4.37)

which is finite if β e 2lx . Next, if β e 212, we have

M + l

log γn ̂  log Σ Jnk ^ log {π + 2 - /c0) max yπfc}
k=k° (4.38)

- log(n + 2 - /c0) + max
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where γnk = δj,_kδt for k = fc0 . . . n,

4 = (1 + [tf/r]) ! - l a(β)lN" ] + 1 , (4.39)

δϊ=F2k(2\\βΦ\\)\\Qk\\, (4.40)

Ύn,n+1= Σ F2k(2\\βΦ\\)\\Qk\\^(ί-e-1Γ1F2n(2\\βΦ\\)γ'nιn+1, (4.41)
fc = / ι+l

ϊn,n+1 = sup[e(1+4"'iφ")]>ί||ρB+,|| . (4.42)
fc^l

We have, forfc0 ^k^n and n ̂  /c0,

/r)log/c-[(n-/c)/r]log(n-/c)]^r-1log2, (4.43)

4|| j8Φ|| + logF0(2|| jSΦ||), (4.44)

ίn-feVr) log(π -fc)}

^ sup N- 1 {(N/r) log JV - logΓ(N/r + 1)} + (1 + 1/r) logα(^) < oo , (4.45)

l +(k/r)logk} ^supΓ^logliail +(//r)log/} <oo, (4.46)

^ sup {(1 + (k/rif) sup {/- Mlog I I β; I I + (//r) log/)} (4.47)

Therefore sup n ~ 1 (yn + (n/r) log n) < oo .
n

The isomorphism property of Qxpδ(βH(I)) follows from the Leibnitz
formula:

m /m\
δ(βH(l)Γ(Ql Q2) = Σ J WWQi) (δ(βH(l)r-kQ2) (4-48)

fc = o V V

To see the group property, we first note that

m, n

Hence we can change the order of summation to obtain

Since expδ(βH(I)) Q has a power series expansion in β which converges
absolutely for all β, it is analytic in β. This completes the proof of (ii).

The ^-isomorphism property of τ^(ί) follows from

(4.49)
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Any ^-isomorphism of 9Ϊ0 into 91 can be uniquely extended to a ^iso-
morphism of 91 into 91. The uniqueness guarantees that the extension

to 91 of the restriction to 9I0 of expδ(itH(I)) is the extension of
Qxpδ(it H(I)). The group property and the continuity in β is preserved
in the extension. Hence each expδ(ίt H(I)) has an inverse exp<5( — it H(I))
and therefore must be a ^-automorphism. The commutativity with
τs(ά) is immediate. This proves (iii). Q.E.D.

Corollary 4.3. // |ί| ^(2r||Φ||)-1log|α|, then

lim eW°\\lQl9τs(a)τT(t)Q2 ]\\ = 0 (4.50)
a—*• co

for any Qί9 Q2 e 9I0 and ρ > 0.
The proof is immediate from Theorem 4.2 (iv).

Remark 4.4. The convergence of expδ(βH(Zv))Q for v dimensional
lattice has been proved for \β\ < [2r(r- 1) H Φ H ] " 1 . ([11, 13].) In this
case, a weaker commutativity can be proven in a region where |ί| can
grow to infinity as \a\ -> oo.

§ 5. Expansionals

Definition 5.1. (cf. [5]). Let Qe9I0, Q(β'J) = expδ(βH(I))Q. Then

£r(Q;H(/))= £ \dβ1

βjdβ2...
βnϊ1dβn

nγ[Q(βj'J), (5.1)
π==0 0 0 0 j

oo 1 βί βn-ι !->«

£/«2;H(/))= Σ l ^ β i l W2- ί άβn Π βί-ft;/), (5.2)
n = 0 0 0 0 j

where

ίf[Aj = Al...An,
 nflAj = An...Ai. (5.3)

j j

By a change of integration variables, we also have, for real /?,

oo y? 0! 0n-ι n-»l

Er(βQ;βH(I))= Σ lάβ^dβ,... J d^ Π 6(^;/), (5-4)
« = 0 0 0 0 j

ao β βι βn-ι l-» n

E,(βQ;βH(I))= X Jd^ ί dj82... ί d/ίn Π β(-^;/) (5-5)
n = 0 0 0 0 j

For β e 5I([0, n]), the sums and integrals are absolutely and uniformly
(for bounded | |/?Φ||, ||Q|| and n) convergent because \\Q(βj', I)\\
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^ F,(2 I I I Φ H ) I I Q I I for \β,\ ^ \β\ and hence

Σ ίd/ί/ί'd^../!' d&π \\Q(β}\r)\\
n = 0 0 0 0 7=1

For bounded operators g and ft,

{expδ(j8R)} Q = tfΛQe-'R , (5.7)

(5.8)

(5.9)

These formulas can be easily proved by noting that they are 1 for β = 0
and each side of 3 equations satisfy differential equations (d/dβ) S = [/?, S]
(d/dβ)S = S(Q + R), and (d/d β) S = (Q + R) S, respectively. ((5.7) is used
in the proof of (5.8) and (5.9).)

From (5.8) and (5.9), the following formulas follow immediately.
Er(Q1 + Q2;R) = Er(Q1;Q2 + R)Er(Q2;R), (5.10)

Er(Q;R) = El(Q;-R-Q), Et(Q; R) = Er(Q; - Q - R) , (5.11)

Er(Q;R)Et(-Q;-R) = El(-Q;-R)Er(Q;R)=l, (5.12)

Er(Q; R) {exp«5(K)} β' = [{exp«5«2 + R)} QΊ Er(Q R) , (5.13)

ί{expδ(-R)}QΊEl(Q;R) = E,(Q;R){expδ(-R-Q)}Q'. (5.14)

Lemma 5.2. (i) IfQe 9I([0, n]), ί/zen

r(/,ΛO, (5.15)

(5.16)

(5.17)

where Cn depends on n, \\λΦ\\ and ||β|| ί»wί is independent of N and I.
(ii) Γ/ie same equation holds when the suffix r is replaced by I.

(iii) IfQe SI0, ίfeen £r(β; λ ff(/))e 512, £,(β; lH(/))e 9I2.
(iv) Formulas (5.10)^(5.14) AoW w/ze« .R is replaced by λH(I) and

Proof. We have \\Q(β' l ) \ \ ^ F n ( 2 \ \ λ Φ \ \ ] \\Q\\ and ||βw>/(jίr)||
for \β'\ ̂  1. Since
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we have (5.16) where, for n ̂  r — 1,

Cn = FH(2\\λΦ\\) \\Q\\ πp{FH(2\\λΦ\\) ||β||} . (5.19)

(ii) follows in exactly the same manner. By the Sterling formula, we
obtain (iii). The formulas (5.10)^(5.14) hold when R is replaced by
λH(In[- N, n + N~]). By taking the limit N-> oo, we obtain (5. 10) ~ (5. 14)

Q.E.D.

§ 6. The Mapping £

Definition 6.1. Let I be a finite subset of Z, φ be a state of 21(7),
Q = ΣulQl, UjeSK/), Ql^(Z\I). Then φ(β) = 2:̂ (11,) β,e«ί(ZV)C9ϊ.

It is easily proved that φ(Q) does not depend on a particular decom-
position Q = ΣulQl.

Definition 6.2. Let Q e 91.

£>(Q) = τc(l)d-2tr[OΛ](K*QK), (6.1)

K = K+K_, (6.2)

K+ = EΓ[- (1/2) τs(l) Φ; - (1/2) H(2, oo)] , (6.3)

X_=£Γ[-(l/2)τ 5(-r)Φ;-(l/2)ίϊ(-oo,-l)]. (6.4)

Lemma 6.3. (i) // Q e 9l l5 ίAen J^β e 91^ // β ε 9I2, ί/zen ^β e 9ί2.
(ii) // β^O, ίΛew ^β^O. // β^O and βφO, ίΛen ^fβφO. // β^O

β~ 1 exists, then (^QΓ1 e 91. (iii) Ifn>r, then
, (6.5)

Kn = Kn+ Kn_, Kn+ E 9I([1, oo)), Xn_ e 9I(( - o o , ] ) (6.6)

Xn+=£X-(l/2)τ>)!P; -(1/2) {H(l,n) + H(ιι + l,oo)}), (6.7)

n_ = Er(-(l/2)τs(-n)Ψ; -(l/2){H(-oo, -n) + H(l-w,0)}), (6.8)

«*= Σ τβ(/)Φe9I([l-r,r]), (6.9)
j = l - r

(6.10)

H(ί - n, 0)}) . (6.11)

Proof. Since J£± e 9X2 by (5.2) (iii), K*QKε ̂  or 9T2 according as

then K*QK^Q and hence <p(J^β) = (τc(l)*φ)(x)(<Γ2 tr[0>1]) (
for any state φ of 91, where τc(ί)*φ is the state of 9l(Z\[0, 1]) such that
τc(l)*^(6") = φ(τc(l)6//) for all β" e 9I(Z\[0, 1]). Hence J^fβ^O. If
10 Commun. math. Phys., Vol. 14
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= Q in addition, then φc(SfQ) = φc(K*QK) = Q for the central state
φc of 91. Since φc is faithful on the non negative elements of 9Ϊ, we have
K*QK = 0. Since K+ has the inverses

K~+

 1 = £,(!,(!) Φ/2; tf (2, oo)/2) , (6.12)

(6.13)

we have β - 0. If β~ 1 exists, then K*QK ^ ||β" ί | |~ * || X" 1 1|~2 and hence
l lδ~ΊΓΊl^~ΊΓ 2 Therefore ĵ (βΓ * e 91.

To obtain (iii), we use (5.10):

Since H(l, N) commutes with every τs(j) Φ in H(N + 1, oo), the second
factor of (6.14) is exp - (1/2) H (1, N). Similar equation holds for K_.
Therefore

;.)}, (6.15)

Π ( / - 1 ) K + , (6.16)
j

(6.17)

This proves (iii).

Lemma 6.4. (i) Let Q e 91, Q > 0, α(β) < oo.

β), (6.19)

where ^(||Φ||/2) is defined in (5.17) and fe'(||Φ||) is another constant.
(ii) Let |||β|||M,Jlβ"Ίl ̂  0<α, x>l. Then there exists N(a, M, x, ||Φ||)
SMC/Z ί/ιαί

(6-20)

/or απ); n ̂  AΓ(α, M, x, ||Φ||) uniformly in β.

Proof. From (5.12) and estimates in Theorem 4.2 (i), we have

TO (6.21)

US- 1 ! ! ^exp{(r/2)F2r.1(||Φ||) ||Φ||} (6.22)
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for S = Kn+, £„_, K%?', K™' where r g N < w , ΛT ^r, ΛT may become
+ oo and

(6.23)
- {H([n - N, π]) + H([n + 1, n + 1 + ΛΓ])}/2) ,

- n, 1 - " + ΛΓ])}/2) .

Hence

α(K*βiς)£α(β) IK**)-1!! UK;1!! ||KJ| ||K*|| :gα(β)&(l|Φ||), (6.25)

where
fr(||Φ||) = exp{4rF2 p_1(| |Φ||)| |Φ||}. (6.26)

Since b2^Q"^bl implies b2^φn(Q")^b^ and since α(pπτc(n) Q//;)
= α(6'")» we have (6.18) for n > r.

If n ̂  r, £Γ(1, w) in (6.7) and //(I - n, 0) in (6.8) are absent and Ψ is
o

replaced by Ψn = Σ τs(/) Φ> which satisfies HΪPJI ^r||Φ||. Hence we
j = l - n

have the same result.
Since α(jR) ̂  α^(^) for any R by (3.16), the Eq. (6.19) for /^ r follows

from (6.18). The modification for the case rcrgr is the same as above.
Hence we consider the case n>r,l>r.

Now we prove (6.19). Let Q(n+t) be such that

Let

Let

and compute llβ'-βίll IKQίΓ1!! where Q = τc(n)φn(K^QKn\ From
Lemma 5.2 (i) and (6.21), we have

ί - τc(n) φn(K?n,l}Q(n+l)K(nJ)) e 9l([- /,

(6.28)

Hence we have

' - 2 Z > Φ 1 / 2 - ^ ' Φ - Φ 2
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where

fe/(||Φ||) = 6(l |Φ| l){4r | |Φ| |F 2 r _ 1 ( | |Φ| | )} . (6.30)

On the other hand,

^* ^ *
n n, (631)

^fliΛlΓ1-
By Lemma 3.9 (3) and (1), we may assume

llβ<;+θll ^ l l f l ' Ί l (1 +αz(β))^2||β-1|| . (6.32)

Hence

β /

ίέfe(l |Φ| |)" 1 / 2llfi (;ioir 1^2- 16(| |Φ| |)- 1/ 2 | |β- 1 | |-ι. (6.33)

Therefore

^ 6(11 Φ l l ) αΛ + /(β) + δ ' ( I I Φ I I ) α(β) ̂ -Γ

Since <*&„&) = αj(β'), we have (6.19).
We now prove (ii). In the previous computation, we consider β(fc)

instead of β(II+/) and K'n = K^f K^L™ instead of K(II /}. We then have
bound (6.29) and (6.31) for KΪQKn-(K'n)*Q(k)K'n 'and (1Q* β(k) X;
where / — r is to be replaced by N — r -f 1 and (n + /) by (/c). Hence for any
state φ' and φ" of 9ϊ, we have

φ' (τc(n) (?„(£* β XJ) ̂  φ' \τc(n) φn((K'J* Q(k} K'nJ] (ί+Δ). (6.35)

φ"(τc(n)φn(K*QKJ) ^ φ"lτc(n)φn((K'nrQ(k}K'n)l (ί-A), (6.36)

(6.37)

From |||β|||M,Jlβ"Ίl^^ we have Hβ- 1 ! ! \\Q\\k^x~ka for k^
By Lemma 3.9 (6), we have

-kaΓ1 (6.38)

Let L be an integer such that L ̂  M,

. (6.39)

For fc^L, we have αfc(β)^ {46(||Φ||)}-1. Since ||β|| ̂ |||β|||M,, we have
α(β) ̂  α. Let N be an integer such that N > r and

!. (6.40)
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We then have A ̂  1/2 and hence by (6.5) and (3.13) we have

) ̂  3 sup φ' [τ» φn((K'J* Q(k}K'n}\/ φ" [τ» φn((K'n)* Q(k}K'n}\ .

(6.41)

Now we set N(a,M,x,\\Φ\\) = L + N + 2. For n^N(a,M,x,\\Φ\\), we
have Qk e Sl([ - k, fc]), K'n ε 2I(Z\[ - k, fc]). Let

be a state on 2ϊ(Z\[-fc, fe]) (aβ") induced by ψ1 = φ' and φ". Then
we have

'((K;)*K;)/φ"((ίC;)*K;) g 3b(||Φ||) . (6.42)
<p

Lemma 6.5. $£ maps 9I(M, x) continuously into itself where x>ί.

Proof. By Lemma 6.3 (i), JSf 1 e 2^ C 9I(M, x). Now consider β such
that HlβllU^l, Q = Q*. Let β' = 2 + Q. Then 3^β'^l and hence
α(β')g3. By (6.19),

α,(̂ β') ̂  ft(HΦH) α,+ !(β') + 3&'(||Φ||) δ,_r(\\Φ\\/2) . (6.43)

'llkx^ 1, we have ||β'||π^χ-". By (3.21) we have

(6.44)

where we have used ||(β')~ 1 II ̂  1- Let L be such that yL < 1 where

Λ = &(||Φ||) χ-(i+ υ(l - x-(i+ υ) + 3i'(|| Φ||) S,-r(||Φ||/2) . (6.45)

From (6.1), we have

. (6.46)

^!-^-1. (6-47)

Thus

(6.48)

Therefore IH^QHlM,* = \\\^Q'\\\M,X + 2|||j£?l|||M>JC is uniformly bounded.
Let Q = Qί + ΐβ 2, Ql = Q^Qί = Q2 Then

φ φ

Similarly \\Q2\\£\\Q\\. Further, let β(ί) be such that ||β-β(i)|| = ||β||,,
β(ί) = βf + iQH\ (βf)* = βf, (βf)* = βf, βf e «([-/, /]), βf 6 «ί ([ - /, /]).
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Then by the same argument as (6.49), we have

(6.50)

Similarly \\Q2l ̂  \\Q\\t. Therefore \\\Q,\\\MtX ^ \\\Q\\\MtX9 \\\Q2\\\M,X £ |||β|||Mf ,.
By using the uniform boundedness for selfadjoint β, we have the uniform
boundedness of |||JS?β|||M. , £ Hl^βJU,* + \

§ 7. Convergence Proof

Lemma 7.1. There exists a state v of 21 αra/ Λ > 0 swcft that v(&Q)
= λv(Q)forallQe<iί.

Proof. Let & be the mapping of states of 91 into themselves defined
by

(j£φ)(β) = φ(^lΓWβ) (7.1)

Since

=^ is weakly continuous. The set of states is convex and weakly compact.
Hence & has a fixed point v due to the Schauder-Tychonov theorem.
It satisfies

A = v(JSPl)>0. (7.3)

Definition 7.2. Lei Q e 9ί, Lβ = λ~ ̂ β. £(β) denotes ίΛe c/oswre o/
the convex hull of{LnQ\n = 0, 1, 2, ...}.

Lemma 7.3. Lei β > 0, α(β) < oo. Σ(Q) is a compact subset of 21,
convex and invariant under L. L is continuous on 21. // βe2l2, then
Γ(β)c2I2.

Proof. Σ(Q) is convex because it is the closure of a convex set. Since
\\L(Q)\\ ^/Γ2 | |K||2 | |β||,L is continuous. Since the convex hull of
{L"β;rc = 0, 1,2, ...} is invariant under L, its closure is also invariant
due to the boundedness of L. We now show that Σ(Q) is compact.

From (6.18) and (6.19), we have

α(L"β) = α(^"β) rg 6(|| Φ||) α(β) ,

(β), (7.5)

where we have used α/+n(β)^αί(β) (Eq. (3.17)). Since limαfc(β) = 0 for
fc-»oo

any β e 21, lim bt = 0. Further v(L"β) = v(β). Therefore Σ(Q) is compact
J-»00

due to Corollary 3.12.
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Now assume QE 9I2. Then sup/'^logα^ζ^ + ̂ /^log/} < + oo and
hence

I-*oo

+ (//r)log/}<oo.

From (3.22) and || R ~ 1 \\~ 1 ̂  || R \\ , we have

H^ρi l^ l lL-βl l fe j ί l- f t , )- 1 , (7.7)

where v(L"Q) = v(Q) and (7.4) implies

(7.7) and (7.8) give a uniform bound for LnQ, which is preserved in taking
convex hull and closure. Thus Q' e Σ(Q) satisfies

feϊΓ1. (7.9)
By (7.6), we see that Q e 9ί2. Q.E.D.

Remark 7.4. Σ(Q) is compact for any Q. This is because

β = 61-62 + ''(63-64) (7.10)

where 61 =(6 + 6*)/2 + 2| |6ll ^ 11611,63 = ̂ 6* -6)/2+2||6ll ^11611 and
ρ2 = ρ4 = 2 ||ρ||. The estimates like (7.7) and (7.8) hold for each Qj and
hence Σ(Q) is compact by Lemma 3.2.

Lemma 7.5. There exists h e 9I2

 sucn tnat

(7-11)

Proof. Γ(l) has a fixed point /z under the mapping L by Lemma 7.3
and the Schauder-Tychonov theorem, and Λe3ί 2 Since α(l) = l, (7.4)
implies α(Λ)^fe(| |Φ||). Q.E.D.

Lemma 7.6. L^ί
EQ = v(Q)h. (7.12)

(7.13)
«— • CO

for any x > 1 and some QX>1.

Proof. Note that E2 = E. Since L and E are linear operators on
9IM x, it is enough to prove the convergence of

limρ;|||L»ρ||| lfJC = 0 (7.14)
~ *

uniformly in Q such that |||ρ|||1>je^l and (1-E)Q = Q. The latter
condition is the same as v(β) = 0. Any Q can be decomposed as Q = Qι
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+ ϊQ2> 8* = 6ι> 62 = 62 and by the proof of Lemma 6.5, we have
\\\Qι\\\M,x = Ilieilk, = I \\\Q2\\\M,X ^ \\\Q\\\M,X = I- Further v(β) - vίβj
+ ^(62) = 0 implies v^) = v(Q2) = 0. Therefore it suffices to prove the
uniform convergence of (7.14) for Q such that β* = β, v(β) = 0, |||β||| 1>JC <; 1.
We already know by Lemma 6.5 that L is a continuous map of 2IM x

into 2lM>;c. Let β' = β + 2, Λ0(β') = β' and

N^-iίδ')), (7.15)

n = 1, 2, .... We fix an N such that

N^N(a,M,x,\\Φ\\)9 N^M, (7.16)

where N(a, M, x, | |Φ||) is given in Lemma 6.4 (ii),

α = 2(6fc(| |Φ| |)-l), (7.17)

and M is chosen so as to satisfy

(7.18)

(7.19)
ί = M

We now prove the following properties of Λn(Q') and Λn(2).

(7.20)

(7.21)

(7-22)

(7.23)

(7.24)

(7-25)

(7.26)

First consider « = 0. Since v(β') = 2 = v(2) due to v(β) = 0, we have
(7.23). Since ||β|| ^|||β|||M,»^l, we have l^β'^3. Hence (7.20) (7.21)
holds. (7.22) is obvious. Since \\\Q'\\\M X^2 + \\\Q\\\M x<>?>^a, we have
(7.25). Plll^p-1!) = l g α

Next assume (7.20) ~ (7.26) for n = fc- 1 and consider (7.20) ~ (7.26)
for n = k. By definition (7.15), (7.22) holds, where we use (7.23) for n =k — 1.
Further, from (7.15),

1}v(Λ-1(β')) = 2ρ;'civ (7.27)

and the same holds when Q' is replaced by 2. This proves (7.23) for n = k.



Gibbs States of a One Dimensional Quantum Lattice 145

From (7.16), (7.25) and Lemma 6.4 (ii), we have

Λ(LNΛk^(Qf))^3b(\\Φ\\). (7.28)

Therefore

-
-1v(Λ-1(δ')).

From (7.29) and (7.15), we have

ΛίβO^v^.Λβ'HδiKIIΦII)]-1. (7.30)

Then same holds when Q' is replaced by 2. Hence we have (7.20) and
(7.21) for n = k.

From (7.29), we have

ί^-ι(β')}~1ll^l/2. (7.31)

Therefore, by (3.26) and (7.28), we have

α(Λ(β'))^2α(LΛ'Λ-1(β/))-1^6fc(l|Φ||)-l (7.32)

From Lemma 6.4 (i),

(7-33)

+N(Λ-ι(e')). (7-34)

From (7.18) and (7.25) with n = k - 1, we have

M t_ι(β')ll ί + wM*-ι(e'Γ 1ll^x~Mα^l/2 (7.35)

for / ^ A f . By (3.21) and (7.35),

(βr1ll (7.36)
Hence

Σ x ία ί+ίV(Λ-1(β'))^2χ-ΛΊ|/lt-ι(β')llM+iv,JIΛ-ι(δr Ml (7-37)
l = M

From (7.18), we have 2b(\\Φ\\) x~ M ̂  a~ l b(\\Φ\\) ̂  10"1. Therefore, by
(7.19), (7.34), (7.37) and (7.25), we have

(7.38)
Ϊ = M

From (7.38), it follows for / ̂  M
1. (7.39)
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From (3.25), (7.31) and (7.39),

αz(A(β')) ̂  &, {1 - (1 + 6,)/2} ~* ̂  (40/19) b,. (7.40)

From (7.40), (7.39) and (3.22), we have

IIA(δ')yA(β'ΓΊl ^(40/19)^(l-(40/19)fo/)~1 ^(40/17)6,. (7.41)

By (7.38), (7.41), and (7.32), we have

\\\Λk(Q')\\\M)X\\Λk(QTl\\^a. (7.42)

This proves (7.25) for n = k. The same calculation with Q replaced by
2 yields (7.26). This completes the inductive proof of (7.20) ~ (7.26).

From (7.25) and (7.28), we have

III A(β')lllM,;c^a\\Λn(QT lII ^flv^ie'))^2αρ;«N. (7.43)

Similarly,

\\\Λn(2)\\\M^2aρ;»N. (7.44)

From (7.22), (7.43) and (7.44), we have

\\\L"NQ\\\M,x^4aρ;"N. (7.45)

Hence

lim |||L«"ρ|||M,xρf = 0 (7.46)
n~* oo

for any ρx < ρx. This then implies, due to the boundedness of each L
(Lemma 6.5),

lim|||L^+feβ|||M>Jcρf+fc^O (7.47)
H—> 00

for k = 0,1,..., N — 1. Hence we have

lim|||L»ρ|||Mι^ = 0. (7.48)
n—>• oo

Since H Q I I , ̂  ||β|| ^ |||β|||M>;c for / = 1,..., M - 1, we have

l l ie i l l i . x^Af l l lQIH*, , . (7.49)

Therefore we have (7.13). Q.E.D.

§ 8. Gibbs States

Lemma 8.1. Let Q e ̂  x for some x. Let φc be the central state of 91.
Let

-1, (8.1)

(8.2)
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Then
]ϊmφϊ ">(Q) = v(Q)9 (8.3)

n ~~* oo

lLrn^logZB=|logA. (8.4)

Proof. By (5.8), we have

eχp(ί/2){Λ^+A^-U(ί,n + nι)-U(ί-n-n2,0)}

= K'Nexp - (1/2) {H(ί, N) + H(l - N, 0) + H'} ,

H' = H'+ + H'_ , (8.6)

H'+=H(N + l,n + nι) + A;+Hl, (8.7)

H'_=H(l-n-n2,-N) + ΔI^Π2, (8.8)

K'N = K'N+Kf

N_ , (8.9)

K'N+ = Er(- τ,(ΛO Ψ/2; - (H(ί, N) + H'+}/2) , (8.10)

K'N_=Er(-τs(-N)Ψ/2;-{H(ί-N,0) + H'.}/2), (8.11)

where n > N + r. Let

Γ 1 , (8.12)

We then have

(8.14)

where pn and <;»„ are defined in Lemma 6.3 (iii).
We prove (8.3) for positive Q such that 2 S: g ϊ; 1. (8.3) for a general

β will immediately follow from this case by linearity.
Let β be a constant such that

(8.15)

Given ε, there exists Lt(β) such that for n-N>L1(ε)

H^-KjvlKε. (8.16)

We then have

\\φN((K'N)*QK'N)-φN(K*QKN)\\ ^(K^QK^1^^3 ε . (8.17)

There also exists L2(ε) such that for N > L2(ε)

- v(β) h\\ < ε . (8.18)
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Similarly

\\λ-Nτc(N)pNφN((K'N)*K'N)-h\\ H/T 1 ! !

£{2B3(l+e\\h-1\\)+\\h-1\\}e =

For any state φί9 we have

\φι(λ-NpNτc(N) φ

Therefore for n ̂  Lj (ε) + L2(ε),

IΦrα(β) W2(l) v(β)] - l -

Since φ^'"2(l) = 1 for all n, we have

(8.21)

(8.22)

(8.23)

(8.24)

We note that the convergence is uniform in n^ and n2

Next we prove (8.4). In (8.14), we set Q = 1, n — N = L. Given ε, we
choose L > L^ε), and for this L we choose L3(ε) such that L3(ε)~ 1L < ε,
L3(ε)~1|logZ^| <ε. We then have, for n — N = L and N>max(L3(ε),

pjvφ]V(^*^)]|

3(ε)~1 |logφi.(Λ)| + L3(ε)~1 max {log(l +ε2), -log(l -e2)}.

Since |logφi,(ft)| ^max{|log| |Λ| | |, l l o g H / z ' 1 ! ! |}, we have (8.4). Q.E.D.

Lemma 8.2. Let Q e $Ϊ0 αnrf

F = Er(-Ψ/2; -{H(-ao,0) + H ( ί , a o ) } / 2 ) . (8.26)

lim
a— * — oo, b~* co

lim (b-aΓ

(8.27)

(8.28)

ab and Z(α, fo) are given by (2.2) am/ (2.3).
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Proof. Let a < — r,b>r and

Fab = £,(- ψ/2; {Δ+ + AΪ- V(a, 0) - [7(1, ί>)}/2) (8.29)

Then

ΨaM = φnn>n2(F*bQFab)/φ"n^(F*bFab) (8.30)

where α = 1 — (n + n2\ b = n + nί. By a variance of Lemma 5.2,

lim| |Fβ 6-F| |=0 (8.31)
n-* oo

uniformly in n1 and rc2 Furthermore HF" 1 ! ! < oo and hence v(F*F)-1

<Ξ ||F"1 | |2< oo. By Lemma 8.1, we obtain (8.27).
To prove (8.28), we note the formula

, b) = Znφ"n

lH2(F*bFab) <H2n+n> + n2) , (8.32)

if a= 1 — n — n2,b = n + nί. Since q%ιn2(F*Fn) converges to a non zero
constant v(F*F), we have

lim — - logZ(- (n + n^, n + n2)w~*°° 2n

1 _ i (833)

= lim — - logZπ + logd = — logλ + logrf .π~>°° 2n 2

Since Z(α, )̂ depends only on b — a, we have (8.28). Q.E.D.
This lemma proves Theorem 2.1 except for the analyticity.

Lemma 8.3. φΦ(Q) is lattice translation invariant.

Proof. The following two quantities coincide for n > 0.

Um^-(β), (8.34)
ΛΓ->oo

(n) Q) = lim ^°(τ,(n) β) . (8.35)
N->oo

Hence ^φ(β) = <pφ(τs(π) β). Q.E.D.

Lemma 8.4. <pφ(β) is time translation invariant.

Proof. We have

Φ£b([t/(α9fc),β]) = 0. (8.36)

Hence

0. (8.37)

Hence ^φ(τr(ί) β) = 0. Q.E.D.
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Lemma 8.5. φφ(Q] satisfies the KMS condition.

Proof. Let Q^ e S10, Q2 e SI0.
 We have

Qί)=φlb(Q1Q2) . (8.38)

Hence we have

φΦ({expδ(U(Z))Q2} Q1) = φΦ(Q1Q2). (8.39)

By continuity, it holds for any Q2

By Lemma 4.2, expc>(— sC/(Z))τΓ(ί)β2 is holomorphic in t + is.
Hence

f exp5(l/(Z)) (τr(ί) β2) /0(ί) dt - f τr(ί) β2 Λ(ί) dt (8.40)

where /α(ί) = §e ist+*s f ( s ) d s is holomorphic in ί + ία. Note that
— oo

MOβaeSΪ!. Hence we have φΦ(Q,Q2(f0)) = φΦ(Q2(A)Qι) for β1?β2

e SI0. By continuity, this equation holds for any β l 5 β2 e SI. Hence φφ

satisfies the KMS condition.

Lemma 8.6. φφ(Q) has a uniform exponential clustering property.

Proof. Let Q1 e SI^ Given ε>0, we prove the existence of Nε such
that for N > Nε and β2 e SI(Z\[ - N, N]), we have

lφφ(6ι62) - Φφ(6ι) <PΦ(Q2)\ e*N < ^ I I 6 2 I I (8.41)

where ρ is some positive constant.
We first prove the corresponding property for v. Let β e SI1? v(β) = 0.

Let x > 1 and ρ < (logρx)/2, ρ < logx, ρ > 0.
Since v(β') = v(Lπβ') and α(Lnβ') = α(^"β')^α(β')fo(||Φ||) by (6.18),

we have ||L"β'|| ^a(Q')b(\\Φ\\) v(β') if β'>0. If Q is selfajoint and
l l f l ' H ^ l , then ||2 + β'|| ̂ 3,α(2 + β')^3. Hence HL^ + β')!! ^9fc(||Φ||).
Similarly ||Lnl|| g&(||Φ||). Hence ||L"β'|| ^ l l f e ( I I Φ I I ) - For general β',
Q' = Qί + iQ2, βί = βι, Q* = Q2ι l l β i l l ^HβΊI, l l β a l l ^ l l β Ί I - Hence

βΊ| (8.42)

for any βx e SI.

.6̂There exists L^ε) such that for / ̂  Lx(ε)

e^HK^K-^ίll^ε, (8.43)

due to IIX^X.Γ'-lll^ll^.o-XJIlA:." 1 ! ! and Lemma 5.2. Since
β e SI1? there exists L2(ε) such that for / ̂  L2(ε)

/,/]). (8.44)
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By Lemma 7.6, there exists L3(ε) such that for / ̂  L3(ε)

e2el\\LlQ\\^e2"\\\LlQ\\\ltX<ε (8.45)

due to v(β) = 0.
We now have the following series of estimates. Let N^L(ε)

^e), L2(ε), L3(ε)) and Q2 e 2l(Z\[ - IN, 2JV]). By (8.43) and (8.44),

^K <ε', (8.46)

ΰ l \ \ <ε'\\Q\\ , (8.47)

. (8.48)

By (8.45), (8.46) and (8.42), we have

e-
2^(ε + 22fc(HΦH)ε')>||LiV{(^)-1K(Vwβ(2Λ')K(N,iv)^

1}||. (8.49)

By (6.5) and K(NjΛO e 2l([- 2JV, 2N]), we have

LN{(K*NΓ ^fr^Q^K^Kΰ '} τc(N) Q2

= LN{(K*NΓlK*NιN,QWQ2K{NtN)K^}.

By (8.49), (8.50), (8.47) and (8.42), we have

ll^ίββz)!! *2βN< \\Q2\\ {e + 44fc(l|Φ||)e'} . (8.51)

Hence, for ΛΓ>L([1+ 44fc(||Φ||) {4 + 3 ||β||}]-1e),ε<l, we have

\\Q2\\ (8.52)

for any Q2 e 2I(Z\[ -2N, 2N]).
For general Q, apply (8.52) for Q — v(Q) and we obtain

^||<22|| . (8.53)

We now apply (8.53) for F*QQ2F, and F*QF. Although one F is on
the right of Q2, the same formula (8.53) holds for sufficiently large N
because ||[62> P]II nas a similar bound due to Lemma 5.2. Therefore

\v(F*QQ2F)-v(F*QF)V(Q2)\<εe~2°N\\Q2\\ , (8.54)

\v(F*Q2F)-v(F*F)v(Q2)\<εe-2eN \\Q\\ . (8.55)

By (8.27), we have

e2eN\φΦ(QQ2)-φφ(Q)φφ(Q2)\<εv(F*FΓi(l + \\Q\\) \\Q2\\ . (8.56)

This proves the uniform exponential clustering property of ψφ. Q.E.D.
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§ 9. Analyticίty

Lemma 9.1. If Φe 2I([0, r]) and Q e 2I([0, N]) are holomorphίc func-
tion of ζ = (ζί ... ζn) in a domain D where r and N are fixed, then Er(Q H(I))
is holomorphic in ζ in D with respect to \\\ \ \ \ ί f X , x > 1 and \\ \\.

Proof. Let C(0) e D and Φ = ΣΦm(ζ - C(0)Γ, Q - ΣQm(ζ - C(0)Γ,
m = (m1...mn\ (f - C(0)Γ = Π (C; - CΓΓ'- Then ^IIΦJ IC~ C(0)Γ^Φ,

£| |βmll 1C - C(0)Γ ̂  αQ uniformly in ζ in a neighbourhood of C(0).
We substitute these expansions into estimates in Theorem 4.2 and

Lemma 5.2. The estimate there only uses the property ge2I([0, r])
and their norms. Hence all estimates holds when ||Φ|| and \\Q\\ are
replaced by aφ and aQ. In particular, Er(Q\ H(I)} = Σ Em(ζ - ζ(0})m and

Σ IIEJI |C - C(T ̂  exp{FN(2a*) αβ} , (9.1)

- ί(T ̂  Q^M , (9.2)
m

where C^ now depends on aφ,aQ and N. Therefore Er(Q;H(I)) has a
convergent power series expansion at ζ(0) and is holomorphic in ζ.

Lemma 9.2. Let 33 be a Banach space with a norm \\\Q\\\ for βe23.
Let^(ζ) be a bounded linear operator on 93, holomorphic in C = (Cι ... Q
m a neighbourhood D of a real point ξ0,^(ξ)h(ξ) = λ(ξ)h(ξ) for real ξ
in D,h(ξ)e<B,λ(ξ)>0. Let vξ be in the dual 23* of 93, EξQ = vξ(Q)h(ξ),

Vξ(h(ξ))=l, vξ(&(ξ)Q) = λ ( ξ ) v ξ ( Q ) for real ξ in D and ge93. Assume
that there exists μξ < λ(ξ) satisfying

Jim μf »\\\&(ξ? (1 - Eξ)\\\ = 0 . (9.3)

Let Q0 E 93 be fixed and Vξ(Q0) = 1. Then there exist extensions h(ζ\ λ(ζ)
and Vζfor ζ in some neighbourhood D' of ξQ, such that λ(ζ) is a holomorphic
function of ζ, h(ζ) is a 33 valued holomorphic function of ζ and vζ is a
93* valued holomorphic function of ζ.

Proof. The series

(Z-£'(ξ))-1=(Z-λ(ξ))-1Eξ+ Σ Z-»2?(ξΓl(l-Eξ) (9.4)

is convergent for |Z| > μξ, Z Φ λ(ξ)9 by (9.3) and is the inverse of Z —
Let μί > μξo, λ(ξ0) -μ1>0. If |Z| ̂  μ1 , we have
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Let δ = Σ μϊn\\\ίe(ξ0)
n-l(i -£ίo)|||. By Lemma 3.7, we have

-^ -'ίz-^o))-1 (9.6)
Λ = l

provided that

(δ + δ'Γ \ \Z - λ(ξ0)\ > \\\Eξo\\\ (δ'Γ' (9.7)

If A is a holomorphic function of ζ, (9.6) is holomorphic in ζ if
<(δ + δ')~1. (The uniform limit of a holomorphic function is holomor-
phic.) Let S(δr) be the circle of radius 2|||EJ|| (δ')~l with the center λ(ξ0).
Let zl=J^(0-^(£0) Define

-zl)- 1dZ. (9.8)
S(<5')

Provided that

we have from (9.4) and (9.8)

E'ζ = Eo if C = Co (9.10)

Since (Z— J2?(£0) — A)'1 is holomorphic in £ as long as ZeS(<5') and
(9.9) holds, Eζ is holomorphic in ζ.

As is easily seen the dimension of ££23 is continuous in £: If dimE'a$$
<dim£^33, dim£^S < oo then by an orthogonalization procedure there
exists \p e £^33, ψ Φ 0 such that E^φ = 0, which contradict the continuity.
Therefore dim ££23 = dim £^23 = 1 as long as ££ is holomorphic.

This then implies &(ζ) E'ζ = λ'(ζ) Eζ because ^(ζ) commutes with E'ζ.
Since λ'(ζ) = vξo(^(ζ) E'ζh(ξ0)) vξo(E'ζh(ξ0)Γ\ λ'(ζ) is holomorphic in ζ as
long as Eς is holomorphic and v^0(££/ι(^0))φO. The latter is guaranteed
in a neighbourhood of ζ = ξ0 because v^0(£^0Λ(<^0)) = 1. Let h'(ζ) = E'ζQ0.
It is holomorphic and h'(ζ) = h(ξQ) when ζ = ξ0. Finally, let v£(β)
= vξo(E'l>Q)vξQ(hf(ζ))~1. It is holomorphic as long as vξo(/z'(Q)φO, and
Vζ(0 = v&(β) when ζ = ξ0. Since vξo(h(ξ0))=l, vξo(h'(ζ))*0 in some
neighbourhood of ζ = ξQ.

By (9.4), λ(ξ) is the only singularity of (Z-^(ξ))'1 outside of a
circle of radius μξ. If ζ is in sufficiently small neighbourhood of ξQ so
that || J || is small, then λ'(ζ) is the only singularity of (Z - JSf(Q)~ 1 outside
of a circle of radius μί. Hence λ'(ξ) = λ(ξ) for real ξ in a neighbourhood
of ξ0. The expansion (9.4) then proves Ef

ξ = Eξ, h'(ξ} = h(ξ) and v^ = vξ.
Q.E.D.

^(OE^ = A'(0^ implies ^(C)ft/(0 = λ'(C)Λ /(0 and
11 Commun. math Phys., Vol 14
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Lemma 9.3. φφ(Q\ Q e 9ΪM x, x > 1 and P(Φ) is holomorphic in Φ.

Proof. Let Φ be holomorphic in ζ and hermitian when ζ is real. Let

(9.11)

where K(ζ) is defined by (6.2) ~ (6.4) where Φ is now a holomorphic
function of ζ. K(ζ) e 9IM>JC f°

r anY x > 1 and is holomorphic with respect
to III I U M . X by Lemma 9.1. Since 9IM>Λ. is a *-Banach algebra, this implies
that K(ζ)*QK(ζ) is holomorphic in ζ with respect to ||| |||M x. Since
HK(l) a'2 tr [θ5l ]β||| l5X^ |||β|||lf3C, £>(ζ) is also holomorphic in £

Now Lemma 9.2 is applicable for 93 = 2IM>JC and JS?(ί). We see that
/I, v and h are holomorphic in £. Fe9IM > A. is also holomorphic in f.
Hence P(Φ) and φφ are also holomorphic in ζ. Q.E.D.

Remark 9.4. The present proof of analyticity is applicable to the one
dimensional classical spin lattice with an exponentially decreasing
potentials. For higher dimensional quantum lattice, the analyticity for
low activity is proved in [6, 7, 8].

§ 10. Factor States and Extremal KMS States

Lemma 10.1. Let 91 be a C*-algebra, 3lnc2l, w e Z , 9ί(/) be the
C*-algebra generated by 9IΠ, w e / , 9I(Z) = 9ί, βe^ commutes with
Q' E tyin, for n^ri and π be a representation of 9ϊ swc/z ίftαί π (?!(/)) z'5 α
/αcίor o/ ίyp^ / for any finite I. Then π(&(/))'nπ(a)" = π(9l(Z\/))''
/or αwy /iwzίe /.

Proof. Let 9ί0(/) be the ^-algebra generated by 5ln, w e / . Let M f < / be
the matrix unit of π[9I(/)]. Then βeπ(9I)" is written as Q = ΣuijQίj,
Qίj = Σ Mki6M jk e π(9I(/))'. Since π(SI)/7 is the σ-weak closure of π(9ί0(^))

/c

and β;'eπ(2I0(Z\/)) for β'eπ^oίZ)), we have βί</e2ί(Z\/). If βeπ(2l(/))',
thenβ0 -(50.β. Q.E.D.

This is essentially Lemma 2.3 of [10]. This lemma for somewhat
more general case follows from Lemma 3.2 of [4].

A state φ of A in Lemma 10.1 is said to be uniformly clustering if
there exists finite / for given ε > 0 and β e $1 such that

for every βt E 91 (Z\/). This condition may be replaced by a number of
equivalent conditions. We may require (2.1) for any given βe9ί0(Z)
and for any Q1 e 9Ϊ0(Z\/). If we denote the representation of 91 associated
with the state φ by πφ, then another equivalent condition is

\(Ψl,πφ(Qί)Ψ2)-(Ψί,Ψ2)φ(QJ\<s\\Q1\\ (2.2)
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for any given Ψ l 9 Ψ2. In fact (2.1) is a special case of (2.2) with
*Ί=Mδ*)Ωφ» Ψ2 = Ωφ' On the other hand, (2.2) for a dense set of
vectors ψ^ = πφ(Q%) Ωφ, π2 = πφ(Qb) Ωφ, Qa, Qb e 9I0(Z) follows from (2.1)
for sufficiently big / such that Qa9 Qbe 91(7). Hence (2.2) holds for every
given Ψί and Ψ2 for sufficiently large N. The condition (2.2) is equivalent
to (2.2) with the specialization Ψl = Ψ2

Lemma 10.2. Let 91 be as in Lemma 10.1 where n — πφ is canonically
associated with a given state φ. Then nφ(A)" is a factor if and only if φ
is uniformly clustering.

Proof. The only if part is in Lemma 4.12 of [1]. For the if part, any
central element S of πφ(9I)" is in πφ(2l(Z\/))" for any /. Given ε, we
choose / satisfying (2.2) and then Qλ e 9X(Z\7) such that

\(ψι,(πφ(Qι)-S)Ψ2)\<ε, \ ( Ψ ι , Ψ 2 ) { φ ( Q l ) - ( Ω φ , S Ω φ ) } \ < e .

Then we have \(Ψί9SΨ2) - ( Ψ l 9 Ψ2) (Ωφ9 SΩφ)\ < 3ε. Since ε is arbitrary,
S = (Ωφ9SΩφ)l. Q.E.D.

This is essentially Theorem 2.5 of [10]. It is used under slightly
more general circumstances around Eq. (3.6) of [4]. Lemma 10.2 and
Lemma 10.1 are also derived in [9] in connection with a characterization
of pure phase in both classical and quantum statistical mechanics.

The central decomposition of states into factor states always exists
and is unique [14]. If the state is a KMS state, then the factor states are
KMS states at least if A is separable (Corollary 3.7 [2]). Further Theorem
4.1 in [2] essentially implies, though not explicitly stated, the following
theorem.

Theorem 10.3. A KMS state is a factor state if and only if it is an
extremal KMS state.

Proof. Let the representation πφ of a C*-algebra 91 and a cyclic
vector Ωφ in the representation space ξ>φ of πφ be canonically associated
with a KMS state <p(i.e. φ(Q) = (Ωφ,πφ(Q)Ωφ)). It is shown in [3] that
the center of πφ(9ί)" is elementwise invariant under time translation.
For any central projection F φ 0, φF(Q) = (FΩφ9 πφ(Q) FΩφ) \\FΩφ\\ ~2 is
a KMS state (\\FΩφ\\ Φ0 always) and is different from φ(Q) unless F = 1.
Hence iΐφ is not a factor state, φ = λφF + (l—λ)φl_F9Q<λ = \\FΩφ\\2 < 1
and φ is not an extremal KMS state.

Conversely, let φ = λφί+(l—λ)φ290<λ<l where φ1 and φ2 are
ΊCMS states. There exists an operator F^ΰ in πφ(9I)' such that λφ^Q)
= (Ωφ,πφ(Q)FΩφ). Since φl(ττ(t)Q) = φl(Q) by assumption, (πφ(QJΩφ9

Fπφ(Q2) Ωφ) = ( π φ ( τ τ ( t ) Q,) Ωφ, Fπφ(ττ(t) Q2) Ωφ), from which we have
F=Uφ(t)*FUφ(t). Namely F <= R\ in the notation of [1]. By the KMS
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condition on φl9 we have (Ωφ9Q1Q2(f0)FΩφ) = (Ωφ,Qj(f1)Q1FΩφ).
This is assumed for gi eπφ(?l) and hence it holds for Q1 eπφ(2ί)" by
the weak closure. Rewriting the equation as (Ωφ, Qι(/ι) 62 ̂ Ώφ)
= (Oφ9Q2Qι(fό)Ωφ) with fό(t) = A(-t\ we see that it also holds for
62 e π<? W> if it is assumed for Q2 e πφ(9I). Now we restrict our attention
to EO£V of t invariant vectors in ξ>φ. φ is a cyclic and separating trace
of £0πφ(2I)"£0, where φ(Q) = (Ωφ, QΩφ) for βeΛ(S,). This property
should also holds for φ similarly defined from φ±. Namely φ1 is a cyclic
and separating trace of FE0πφ(9l)" FE0 in FE0ξ>φ. This implies that
FE0 must be in the center of EQU^^'EQ by an easy calculation. The
argument in the proof of Theorem 4.1 of [2] then shows that there must
be a central element ί\ of πφ(Sl)" such that FE0 = F^Q- sίnce #1 -»#Ί£0

is an isomorphism, F = Fΐ and F is a non trivial central element of
πφ(2l)". Namely πφ(2I)" is not a factor if φ is not an extremal KMS
state. Q.E.D.

The decomposition of a KMS states into extremal KMS states
coincides with the decomposition into extremal time translation in-
variant states if and only if πφ is η abelian where η is taken as the mean

(2TΓ1 f dTas T-+oo. ([2].)
Ύ

For the one dimensional quantum spin lattice, Lemma 10.2 and
Theorem 10.3 are applicable and φφ is a factor state and is an extremal
KMS state because it is uniformly clustering. The asymptotic abelaian
property relative to the lattice translation also implies that the factor
state φφ is an extremal lattice translation invariant state.
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