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1. Introduction. In the past several years there have been some remarkable 
links forged between two rather distinct areas of research, namely complex 
manifold theory on the one hand, and mathematical physics on the other. 
Complex manifold theory has its roots in the theory of Riemann surfaces and 
in algebraic geometry, and has seen significant progress in this century based 
on the introduction of ideas from algebraic topology, differential geometry, 
partial differential equations, etc. Mathematical physics has been involved in 
this century in the developments of relativity theory, quantum mechanics, 
quantum electrodynamics, and quantum field theory, to mention some major 
developments. Most of these disciplines are formulated in forms of field 
equations, i.e. partial differential equations whose solutions (under some 
boundary conditions) represent physical or measurable quantities. The link 
mentioned above between complex manifold theory and mathematical 
physics is that in many cases, the solutions of a given field equation can be 
represented entirely in terms of complex manifolds, holomorphic vector 
bundles, or cohomology classes on open complex manifolds with coefficients 
in certain holomorphic vector bundles. In simplistic terms the field equations 
can be reduced to the Cauchy-Riemann equations by making suitable 
changes in the geometric background space. 

The purpose of this paper is to survey some of these interactions which 
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have been under intense investigation during the past several years. 
In §2 we give a survey of some of the principal interactions of complex 

manifold theory and mathematical physics that we are familiar with. In the 
remainder of the paper, we pick on one of the themes mentioned in §2 and 
develop it in more detail. Namely, we study the representation of the solution 
of Maxwell's equations (and more generally, but with no more work, the 
zero-rest-mass field equations) in terms of cohomology classes on certain 
open subsets of P3(C) with coefficients in certain holomorphic line bundles. 

In §3 we review the geometry of Minkowski space. In §4 we introduce the 
Penrose correspondence between the space of twistors and Minkowski space. 
This is the "change in background space" referred to above, in which points 
in space-time become complex projective lines in P3 (= projective twistors), 
and points in a specific real hypersurface in P3 become null lines or light rays 
in Minkowski space. The geometry of twistor space is very important, and it 
is studied in some detail in §§4 and 5. In §6 we introduce the language of 
spinors, which enables us to write down certain equations of mathematical 
physics in a compact form, and this is carried out in §7. In §8 we survey 
briefly the basic concepts of holomorphic vector bundles and cohomology on 
complex manifolds. §9 is devoted to showing how certain cohomology classes, 
via the Penrose correspondence, yield solutions of these zero-rest-mass field 
equations (including Maxwell's equations). In §10 we present briefly an 
account of why the zero-rest-mass field equations arise naturally from the 
Penrose correspondence. 

I would like to express my gratitude to Roger Penrose, whose lectures at 
Pittsburgh in the summer of 1976 inspired me to learn more about this 
subject, for his hospitality and long discussions at Oxford University, and for 
commenting on the first draft of this paper. Also, I'd like to thank P. 
Dolbeault, P. Lelong, and P. Malliavin for their invitation to lecture at the 
University of Paris VI, where these notes were first written. Finally, I'd like to 
thank Isadore Singer and Richard Ward who gave me helpful comments on 
my first draft; in particular Singer suggested to me that the zero-rest-mass 
field equations should be a consequence of the "integral geometry" of the 
Penrose correspondence, which I have described briefly in §10. 

2. The interaction of complex manifold theory with mathematical physics: A 
summary. We want to give a brief survey of some of the recent interactions 
between certain areas of mathematical physics and the general theory of 
complex manifolds. This includes, in particular, the relativistic wave equa­
tions for particles of zero-rest-mass and Einstein's equations of general 
relativity. Most of the interactions depend on a correspondence between P3(C) 
and a complexification of compactified Minkowski space due to Roger 
Penrose. This correspondence has the property of transferring problems in 
mathematical physics in Minkowski space into problems of several complex 
variables on (subsets of) P3(Q. There are various levels of interactions and we 
will give a somewhat historical survey. 

The topics in physics we will attempt to describe in terms of holomorphic 
objects include: 

(1) Minkowski space M0 = {R4 equipped with a flat Lorentz metric of 
signature (4-, - , - , - ) } (§3). 
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(2) Solutions of Maxwell's equations in M0 (§7). 
(3) Solutions of the Zero-Rest-Mass Field Equations of spin s in M0: 
s = \ : Dirac-Weyl equation of a neutrino, 
5 = 1 : Maxwell's equations, 
s = 2: Linearized Einstein's gravitational equations corresponding to 

"weak gravitational fields" (see §7). 
(4) Solutions of Einstein's gravitational field equations for curved space-

time. 
(5) Solutions of the Yang-Mills field equations for arbitrary gauge groups. 
The first three topics are discussed in further detail in later sections of the 

paper. The latter two topics are discussed briefly in this introduction. 
All of these equations can be described in various explicit forms using 

certain notations which the mathematical physicists have developed over the 
years, including special coordinate systems, tensors, van der Waerden's 2-
spinor notation, some of which will be developed later in this paper. In this 
section we will suppress the notation of mathematical physics and discuss the 
physical fields of interest in general terms to get an idea of what kind of 
holomorphic objects are useful in their representations. 

A. TWISTOR GEOMETRY. This is the basis for the applications of complex 
manifold theory for mathematical physics. Briefly, 

T = {twistors} = {C4 with an Hermitian form $ of signature (+ H )}. 

Let 

T + = { Z G T : $ ( Z ) > 0}-positivetwistors, 

T° = {Z E T: $ ( Z ) = 0}-null twistors, 

T" = { Z G T : $ ( Z ) < O}-negative twistors. 

By going to the projective space we have the corresponding portions of 
projectivized twistor space P(T) = P3(C) and P3", P3, and P "̂ (having homo­
geneous coordinates in T+ , T°, T~ respectively). We let N = P3, and we see 
that N is a real 5-dimensional hypersurface in P(T) which divides P(T) into 
the two complex-analytically equivalent parts, P3" and P^~. P3" and P^ are in 
particular not Stein manifolds, and admit no nonconstant holomorphic 
functions. The complex manifolds P^, P "̂ and their common topological 
boundary N, which is a real-analytic hypersurface (with Levi form having two 
eigenvalues of opposite sign), is where the holomorphic objects of interest will 
have their domain of definition. The space of twistors is a representation 
space for SU(2, 2) which is a 4-1 covering of the conformai group acting on 
(compactified) Minkowski space which will be discussed in §3. This is 
analogous to spinors which are a representation space for SX(2, Q, a 2-1 
covering of the Lorentz group. The conformai group contains the Lorentz 
group as a proper subgroup (cf. §3), so twistors are generalizations of spinors. 
The field equations of particles which move at the speed of light (zero-rest-
mass), are conformally invariant, and thus amenable to study in terms of 
twistors (neutrinos, photons, etc.). Particles with nonzero rest mass have also 
been studied recently in terms of twistors, but that is less well understood 
(Hughston [13], Penrose [23]). 



COMPLEX MANIFOLDS AND MATHEMATICAL PHYSICS 299 

Let M be compactified Minkowski space, which is a compact 4-
dimensional Lorentzian manifold (= Sl X S3) which has an open dense 
subset conformally equivalent to flat Minkowski space M0 (cf. Kuiper [13], 
Penrose [17]). Heuristically, M = M0 u {light cone at oo}. It can be explicitly 
realized as a quadric in P5(R), where the conformai group is induced by 
projective transformations. 

There is a Penrose correspondence between M and N c P(T) of the form 

{complex lines in N } <-> {points in Af}, 
correspondence 

{points in AT} «* {null lines in Af}. 
correspondence 

Null lines are curves whose tangent vectors are null with respect to the 
Minkowski metric, and it's clear that the set of null lines depends only on the 
conformai structure of M, not on any specific choice of metric. These are the 
paths of motion of zero-rest-mass particles. More generally we can introduce 
a complex manifold Mc of 4 complex dimensions which is a complexification 
of M so that the correspondence above extends: 

{complex lines in P(T)} 

Î 
{complex lines in N } 

«* Mc 

Î 
<-> M 

and Mc turns out to be nothing other than the Grassmanian manifold of 
2-dimensional complex planes in C4, G2A(C), which is clearly equivalent to the 
set of all complex lines in P3(C). This correspondence was developed with 
many applications in [17]-[23]. It will be studied in more detail in §4. 

B. ROBINSON-KERR THEOREM. Consider a null solution of the homogeneous 
Maxwell's equation in A/0, i.e. a 2-form F on M0 satisfying: 

(l)dF=d*F = 0 (Maxwell), 
(2) | |F|| = ||*F|| = 0 (nullity), 

where * is the Hodge duality operator and d* is the adjoint of d with respect 
to the Lorentz metric on Af0. These are a special type of "symmetrie" 
solutions to Maxwell's equation where the electric and magnetic fields have 
equal intensities and are orthogonal. Robinson [26] showed that there is a 
correspondence between (local) null solutions of Maxwell's equations and 
shear-free null congruences (= shear-free null 1-dimensional foliations). Here 
shear-free corresponds to a first order differential equation satisfied by the 
vector field generating the congruence (or foliation). 

circle ^ ^ ^ ^ circle 

twisting, but shear-free flow lines 

FIGURE 2.1 
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This corresponds to the usual notion of "shear" in classical continuum 
mechanics. For our purposes here we won't make that notion precise, but the 
flow lines correspond to the flow of electromagnetic radiation, and it cannot 
flow in an arbitrary manner, but is restricted by the shear-free condition. 
Now any null congruence is locally a 3-dimensional family of light rays (null 
lines), so by the Penrose correspondence in §2A we see that this corresponds 
to a 3-dimensional set of points in N C P(T). Let the congruence be denoted 
by C, and let the corresponding parametrizing submanifold in N be denoted 
by C, then we have the Kerr theorem: If the congruence is real-analytic, then 

C is shear free <=» C = N n Fc , 

where Vc is a locally defined complex-analytic submanifold of 2-complex 
dimensions. 

This is developed in Penrose [17], and there is a new proof in [9]. 

C {null solution of Maxwell's equations} 

FIGURE 2.2 

This was the first time complex analysis objects (the complex submanifold 
Vc) entered into the study of field equations in the twistor context and was 
the motivation for most of the later work. This result has been generalized by 
R. Penrose and D. Lerner (cf. [14]), who noted that if C were only of class C1 

then C is maximally complex in P3 (i.e. in this case, its holomorphic tangent 
space at each point has complex dimension 1). There are still many unresol­
ved global questions concerning this result, in particular, its relationship to 
the recent work of Harvey-Lawson [10]. 

C. CONTOUR INTEGRALS. The Robinson-Kerr Theorem was generalized by 
Penrose's contour integral representation of solutions of Maxwell's equations, 
which no longer had to be null. Let (zv z2, z3) be local coordinates in P(T) 
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and consider an affine mapping 

M 0 x c i P(T), 
(m, \)H> (z1? z2, z2). 

Define 

where ƒ is holomorphic in (z1? z2, z3) except at some singular points, A^ is a 
smoothly varying contour in x({m) x Q (a complex line in P3), and ƒ is 
holomorphic on the contour Km. For a suitable choice of x one obtains that if 
ƒ is homogeneous of degree — 4 in (zl9 z2, z3) then <p0, <p1? <p2 determine local 
solutions to Maxwell's equations. Namely, if 

F= F+ +F~ 

where *F+ = iF+, *F~ = - /F~, then 

F' = F~h dxa /\dxh 

corresponds to (in spinor notation, see §6), 

$ABBA'&> 

where y^ = <p0, <p10 = <pI? q>n = cp2, <pAB is symmetric in ^ , JS, 6^̂ ^ is a 
constant skewsymmetric matrix (see §7). Basically <p0, <pl5 and <p2 given by the 
above contour integral formula determine F~ by algebraic means, and a 
similar representation is possible for F*. Thus we say that solutions of 
Maxwell's equations are obtainable by means of contour integrals. This was 
developed in [19], [20], and extensive expositions of this is given in [25] and 
[21] with many examples worked out in detail. 

REMARKS. (1) All real-analytic solutions are so obtainable. 
(2) If ƒ has no pole or singularity inside the contour then we get the zero 

solution. 
(3) If/has a simple pole inside the contour, then we get null solutions, and 

this is compatible with the "Robinson-Kerr solution" above. The divisor 
defined by the simple pole gives a shear-free congruence which corresponds 
to a null solution to Maxwell's equation, by the Robinson-Kerr theorem. 

(4) This gives only real-analytic solutions, but if we extend to the complex 
domain in Afc, then we'll obtain holomorphic solutions, and general non-
real-analytic solutions can be represented in terms of boundary values of 
holomorphic function, e.g., C°° distributions, or hyperfunction solutions. 

(5) The same procedure works for zero-rest-mass fields of spin s > 0, by 
requiring ƒ to be homogeneous of degree -25 — 2 (see §7). 

D. COHOMOLOGY CLASSES. The above description of solutions of Maxwell's 
equations is not Poincaré or conformally invariant and the function ƒ was not 
determined uniquely by the field. This has been improved by recognizing that 
the function ƒ which was used above is a local representation of a cohomol­
ogy class with coefficients in a certain bundle depending on the homogeneity. 
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FIGURE 2.3 

This led to the correspondence (cf. Penrose [23]) 

H°>l(Ff, H-2s~2) *+ {wave functions of 
helicity s for 
a massless particle} 

where H -» P3 is the hyperplane section bundle of P3. This is described in 
more detail in §§8-10. 

The correspondence above between cohomology and wave functions can 
be carried out explicitly by one of several techniques: 

(a) branched contour integrals (cf. [25]). 
(b) using a Dolbeault representation, <p = / P j . . . a A #> a a 3-closed 

(0, l)-form representing a class in / / ^ ( P ^ , H~2s~2\ and 6 a specific (1,0) 
form ([35], see §8), 

(c) Ward-Sparling "splitting method" [29]. 
This correspondence can be realized formally and invariantly from the point 
of view of integral geometry (cf. §10). 

E. EINSTEIN'S GRAVITATIONAL EQUATIONS. One of the problems of general 
relativity is to find the most general solution to Einstein's equations. Basically 
Einstein's vacuum equation asserts that a 4-dimensional Lorentz manifold 
should have Ricci curvature = 0. This is a nonlinear differential equation for 
the components of the metric tensor. A smooth perturbation of flat Minkow­
ski space which is still Lorentzian, and with nontrivial curvature will not 
necessarily satisfy Einstein's equations. Using the Penrose correspondence 
between Minkowski space and projective twistor space, Penrose uses defor­
mation of the complex structure of open subsets of P3 to generate the most 
general self-dual holomorphic solutions to Einstein's equations. It's not clear 
at present how to get rid of the self-dual restriction (which arises naturally in 
this context) in order to obtain the most general holomorphic solution, or 
how to obtain real solutions from these complex ones. It is however, a large 
class of nontrivial solutions generated in a systematic manner, as opposed to 
many of the special solutions obtained over the last 60 years. 

The idea is, very briefly, as follows. Let p0 be a point in Mc, and W a 
neighborhood of p0. The point p0 corresponds, under the Penrose correspon­
dence, to a complex line L0 c P3. The neighborhood W corresponds to a 
neighborhood U of L0. Let/>i and/?2 be two points in W which are connected 
by a null line in W, then px and p2 correspond to complex lines Lx and L2 

which intersect in U (the point of intersection Q corresponding to the null line 
/ in W, cf. Figures 2.3 and 2.4). 
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FIGURE 2.4 

One knows that, in fact L, intersects L2 if and only if px and p2 are 
connected by a null line in Mc (part of the basic twistor geometry). Now 
deform the complex structure of U in an arbitrary manner (which one can do 
explicitly in examples), getting a "nonlinear" Ü pictured schematically in 
Figure 2.5. 

FIGURE 2.5 

A theorem of Kodaira tells us that there is in the deformation Ü a 
4-dimensional complex-analytic family of holomorphic curves homologous to 
the 4-dimensional family of complex lines in U. Define W to be the parame­
ter space for this family of holomorphic curves, which is a 4-dimensional 
complex manifold. Then W is a neighborhood of some fixed point p0 

corresponding to a fixed holomorphic curve L0. If px and/?2
 a r e two points in 

W, then we will define px and p2 to be null-separated if and only if the 
corresponding curves Z, and L2 intersect. This defines a general self-dual 
conformai structure on W. By additional choices, one can define in this 
conformai class, a holomorphic Lorentz metric on W which satisfies 
Einstein's vacuum equations (generically with nontrivial curvature). Further 
details on this construction are in Penrose [22]. 

F. YANG-MILLS FIELD EQUATIONS. Maxwell's equations describe 
electromagnetic interactions. The Yang-Mills field equations describe a class 
of interactions of particles called weak interactions which occur, for instance, 
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in certain kinds of radioactive decay. The Yang-Mills field equations are 
a nonlinear generalization of Maxwell's equations arising in gauge theory. 
They can be described in terms of connections and curvature on vector 
bundles on space-time. (Cf. Atiyah-Hitchen-Singer [2].) It has been of interest 
for some time to physicists to obtain information about solutions to these 
equations. 

Recently Ward showed how solutions of Maxwell's equations correspond 
to holomorphic line bundles over open subsets of P3 by using the Penrose 
correspondence (the "twisted photon," [28]), and he generalized this 
construction to show how solutions of the Yang-Mills equation corresponds 
to holomorphic vector bundles of rank 2 over open subsets of P3 (Ward [30], 
[31]). Atiyah and Ward [3], and also Atiyah-Hitchen-Singer [2] have used this 
correspondence to obtain various kinds of information about solutions of the 
Yang-Mills field equations as a consequence of numerous recent results 
concerning the classification of holomorphic vector bundles of rank 2 over P3 

(e.g. Barth [4]). We won't go into these matters in any further detail in this 
paper, but refer to the literature cited above. 

ADDED IN PROOF. There has been notable progress in the understanding of 
the solutions to the Yang-Mills equations in an important special case. In a 
recent paper (M. F. Atiyah, N. Hitchen, B. G. Drinfeld, and Yu. I. Manin, 
Construction of instantons, Physics Letters 65A (1978), 185-187) is described a 
complete set of solutions to the self-dual Yang-Mills equations in the 
Euclidean metric on the 4-sphere S4 (the "instanton" case). This solution uses 
the full power of the Ward correspondence of solutions of the equations with 
vector bundles on P3 and reduces the problem of finding solutions of the 
self-dual Yang-Mills equations to a straightforward problem in quaternionic 
linear algebra. 

3. Minkowski space. In this section we summarize briefly the geometry of 
classical Minkowski space. By definition Minkowski space is R4 equipped with 
a flat Lorentz (pseudo) metric of signature - 2 , i.e. in appropriate coordinates 
the metric tensor is diagonal with diagonal entries { + 1, —1, —1, —1}. We 
denote Minkowski space by M0, and we denote the inner product on the 
tangent space at/? G M0 by (, ) , and the norm of a tangent vector by || 1 .̂ A 
tangent vector X E Tp(M0) is said to be null if and only if |\X\\p = 0. The set 
of null vectors at/? is said to be the null cone or light cone at/?. The Poincaré 
group P is the group of isometries of M0, and the Lorentz group at/? E M0 is 
the subgroup Lp of P which leaves/? fixed. It's clear that Lp s 0(1 , 3), and 
that P is isomorphic to the semidirect product of 0(1, 3) with the translations 
in R4. The restricted Lorentz group (suppressing the point/?) L+ = Ot

+(l, 3) 
has determinant +1 and preserves the given space and time orientation 
(= connected component of 0(1 , 3)). 

There is no preferred origin to M0, and M0 is the physicists' basic model of 
special relativity or flat space-time, where there is no preferred choice of 
origin or (Lorentzian) frame of reference. If we choose a particular origin 
O E M0, we can define two classes of transformation at O (which by 
composition with translations will then be defined at any other point of M0). 
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There are the 
dilations: x -* px, p E R, 
inversions: x-> — x/||x||o. 

Here we've identified T0(R
4) with R4. The inversions are well defined outside 

of the null cone at 0, and both the dilations and the inversions have the 
property that they preserve the Lorentz metric up to a scale factor, i.e. 

(P*, px)0 = P2IMIo> 

( r e • ire ) " ri? ̂  x>- (11) 

V IWIo ll*llo ' IWIo 
Thus angles are preserved by such mappings, but not length, and they are 
examples of conformai mappings (with respect to the metric on M0). The 
conformai group C(l, 3) is the composition of the inversions with the Poincaré 
group P. The restricted conformai group CT

+(1, 3) is the subgroup which 
preserves the space and time orientation (the connected component of 
C(l, 3)). The dilations are generated by P and the inversions automatically, 
and the inversion (3.1) above does not belong to Ct

+(1, 3) since it doesn't 
preserve the space orientation. We have for reference 

dimR LT
+ = 6, dimR Pf = 10, dimR Ct

+ = 15. 
We will see later that the conformai group acts naturally on a compact 

manifold M which contains M0 as a dense open subset, and which we will call 
the conformai compactification of A/0. The inversions take the light cone at 
the origin to a "light cone at oo." Since this compactification will arise 
naturally in our study of twistors in the next section, we will not give an 
independent account of the conformai compactification here, but refer to the 
well-written paper of Kuiper [14] for a discussion of this subject. The 
compactification turns out to be a real quadric in P5(R), and the conformai 
group is represented in terms of projective transformations on P5(R). 

Just as in Riemannian geometry it is useful to work with orthonormal 
frames, in Minkowski geometry it is convenient to work with an analogous 
concept, where the basis vectors are null vectors. Let/? E M0, and let X0, Xl9 

X2, X3 be a basis for Tp(M0). If X = xjXp xj G R (summation convention), 
then x = (JC°, JC1, x2

9 x
3) give coordinates for M0, and we can choose the basis 

{Xj} such that (X, Y)p = x°y° - xY - x^y2 - JC^V3, which we denote also 
by (x,y). We write ||JC|| = (x, JC)1/2. This set of coordinates depends on the 
choice of the origin at the point /?, as well as on the particular frame of {Xj}. 
There is no preferred choice of origin, but for computational purposes, it's 
useful to work with this coordinate system, and others related to it. 

Let 

u » ~4r- (*° + xl), f = -7=- (*2 + i*3)> 
V2 V2 

then («, t>, f, f) is a new set of coordinates in Af0, and we see easily that 
IMI = IMI = IIÎII = Il£|| = °> where we extend ( , ) by complex linearity to 
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M0 ®R C, the complexification of M0. Consider the 2 X 2 matrix 

m = " 

Then m is Hermitian, and any Hermitian matrix is of this form for some 
(«, v, £, f )• Moreover, 

detm = m;- f t r =f | | ; c | | 2 . 

So we see that the norm of a vector x corresponds to the determinant of the 
(2 X 2)-matrix m in these new coordinates. For many purposes it is 
convenient to identify H(2\ the set of (2 X 2)-Hermitian matrices with the 
determinant as norm, with Minkowski's space M0 with a choice of origin and 
a choice of basis for T(M0) at that origin. 

The Lorentz mappings at the origin of Minkowski space induce corres­
ponding mappings of the space if (2), and they correspond to: 

induces 

A/0-* M0 (Lorentz) 

H(2)XH(2) 

by l(m) = sms*, where s G SL(2, C) and s* = *s is the Hermitian adjoint. In 
fact SX (2, C) is a 2-1 (simply-connected) covering group of LT

+, which 
follows from the above correspondence, noting that s was not uniquely 
determined by /. 

4. Twistors and the Penrose correspondence. Our object now is to discuss 
twistors and see how MQ in the preceding section arises in a natural manner 
in a certain complex-analytic geometric context. Our main tool will be 
complex flag manifolds, which are natural generalizations of projective spaces 
and Grassmanian manifolds. They are defined as follows. Consider C1, 
n > 2, and let 0 < dx < • • • < dr < n> be integers, and define 

^ , . . . . 4 = {(Ll9 L29 . . . , Lr): Lx C L2 C • • • C Lr C C" 

is a nested sequence of subspaces of 
Cn with dimc L, = dJ9j = 1 , . . . , r}. 

The r-tuple of subspaces (Ll9 L2,..., Lr) is called a flag in C1. If r — 1, 
^ = 1, then we see that 

^ i = P * - i ( C ) , 

the set of complex lines in C1, the usual (n - l)-dimensional complex 
projective space. If r = 1, dx = k, then Fk = Gkn(C\ the Grassmanian mani­
fold of A>dimensional complex subspaces of C\ It is not difficult to see that 
Fdx% , dr i s a compact complex manifold of complex dimension dx(d2 — ^i) + 
^2(̂ 3 ~ ^2) + # # • + 4 - i ( 4 ~" 4-i)> which is moreover homogeneous, with 
a transitive complex Lie group of automorphisms. Namely the action of 
SL(n, C) on Cn induces an effective transitive action on F = Fd{> ^ and 
thus F = SL(n, C)/PF , where PF is the isotropy subgroup at a point of F. 
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Similarly, U(ri) acts transitively, and F is representable as the quotient of 
compact Lie groups. Using the homogeneous coordinates (zl9..., zn) E C1, 
one can find easily affine coordinate systems for F, just as the case for 
projective space, where one maps ( f i , . . . , Çn_x) E C"~l -> {subspace span­
ned by (1, J i , . . . , £w_i)} giving affine coordinates for Pw_j(Ç). For instance, 
if z is a 2 X 2 complex matrix, then the mapping 

z -» | subspace spanned by columns of j 

gives an affine system of coordinates for G2,4(C), a particular Grassmannian 
we will be interested in. For further information on complex flag manifolds 
consult Hirzebruch [11], Wells [32], Wells-Wolf [33] or Wolf [34]. 

We now want to consider 3 particular complex flag manifolds: From now 
on we will consider C4 as our basic complex vector space, and with respect to 
C4 consider the 3 complex flag manifolds F12, Fl9 and F2. Then we have the 
following natural diagram 

with a and /? being natural projections, a(Ll9 L2) = Ll9 P(LV L2) = L2. 
Using a and /? we can define a correspondence r between Fx and F2, which is a 
set-valued mapping, 

a / ^*j3 (4.1) 

Fx A F2 

We define r by r(p) = P(a~\p)\ and r~\p) = a(p-\p)). 

4.2 PROPOSITION. (1) r(p) is a 2-complex-dimensional projective plane 
( s P2(C)) embedded in F2. 

(2) T~x(p) is a h complex-dimensional projective line embedded in Fv 

PROOF. (1) By definition, 

a'\p) = {flags (L?, L2): L? c L2, L?-fixed, L2 variable}. 

Therefore 
P(a-\p)) = {L2 c C4: L2 D L?-fixed}, 

i.e. fi(a~\p)) is the set of all 2-dimensional subspaces of C4 which contain a 
fixed 1-dimensional subspace L?. This is simply an embedding of P2(C) in F2 

since, if we fix one vector eu and let e2 vary in a 3-dimensional subspace 
e,x perpendicular to ^, with respect to some metric on C4, then the span of 
{el9e2} will span all subspaces L2 D L?. But the set of all such e2's span the 
set of all complex lines perpendicular to ei9 which is thus the same as the set 
of all complex lines in ef9 and hence is isomorphic to P2(C). 

(2) This is simpler, since by the same reasoning 

*($~\P)) - {Lx C C4: Lx c L\9 Infixed}. 

] 
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But L2 is 2-complex-dimensional, and hence a( /? ~ l(p)) s P^C). Q.E.D. 
We now want to introduce the twistor structure into C4, and see how this 

affects the correspondence T above. Let O be a given nondegenerate 
Hermitian bilinear form on C4 of signature 0 (i.e. {+, + , - , - }). In 
appropriate coordinate systems the matrix for $ can be represented as 

* 0 = 

$ , = 

$ 2 = 

\h 
[0 • 

[ ° 
\-ih 

0 1 

~h\ 
il2] 
0 j 

0 I2 

U 0 

It is easy to check that the Hermitian forms on C4 defined by these matrices 
are equivalent, and we will write them as quadratic forms in the form 

%{z) = \z«\2 + \z'\2-\z2\2-\z*\2, 
$i(Z) = -iZ°Z2 - iZxZ3 + iZ2Z° + iZ3Z\ 

$2(Z) = Z°Z2 + ZlZ3 + Z2Z° + Z3Z\ 

Here % is the standard form, $x is convenient for certain calculations, and 
$2 is the form which comes in from the spinor interpretation of certain 
physical quantities. We will use different forms at different times, but consi­
der them as C4 with a particular choice of coordinates which gives the above 
matrices as a representation for the abstract form O on C4 (or any fixed 
4-complex-dimensional vector space). 

Let us denote the pair (C4, O) by T, the space of twistors. Let 

T+ = {Z 6C4 :$(Z)>0}, 
T°= {Z eC4:$(Z) = 0}, 
T1 = {Z E C 4 : $ ( Z ) < 0 } . 

We will call these positive, null, and negative twistors, respectively. It's clear 
that T = T + u T° u T", and that T° is a real 7-dimensional cone in C4. 

We now define corresponding subsets of our three basic flag manifolds F12, 
Fx, and F2. We say that $ (subspace) > 0, if and only if $ (nonzero vectors in 
the subspace) > 0, and similarly, $ (subspace) = 0 if and only if $ (vectors in 
the subspace) = 0. We want to introduce different notation for the different 
flag manifolds. Let 

P3 = F1 (=P3(C)), 

MC=F2 (=(?2,4(C)), 
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then our basic diagram (4.1) becomes 

fi 
Mr 

(4-3) 
K3 ~T 1V1C 

Here P3 is our basic complex manifold where complex-analytic objects will be 
studied, Mc will turn out to be a complexification of compactified Minkowski 
space M, and F is the auxiliary flag manifold which defines the correspon­
dence T between P3 and Mc. 

We now let 
P+ 

N 

Pa" 

Similarly, set 

Mr 

M 

Mr 

:= {L, £ P3: $ (£ , )> ( )} , 

:=P°:= {L ,EP 3 : $ (L 1 ) = 0}, 

:={L, G P3: * ( L , ) < 0}, 

= {L2 G Mc: $(L2) > 0}, 

:= M° := {Lz G Mc: $(L2) = 0}, 

:= {L2 E Mc: <&(L2) < 0} 

and 

F + = {(L„ L2) S F: $(L2) > 0}, 

F ° = { ( L 1 , L 2 ) e F : $ ( L 2 ) = 0}, 

r = ( ( L 1 1 L 2 ) £ F : $ ( I , ) < 0 } . 

Here we have N = projective null twistors, and M is the null 4-dimensional 
subspace of C4, which, as we shall see, will turn out to be compactified 
Minkowski space. 

We have induced correspondences 

K ~> Mr P3
+ A / * 

,F° 

N ~* M 

(4.4) 

(4.5) 

(and we omit, by symmetry, any further discussion of F~, etc., since it will be 
the same as the discussion of JF*, etc.). 

We want to describe the geometric nature of each of the spaces above; and 
then we will look at the induced correspondences. We will summarize the 
basic geometric properties of the above spaces in the following proposition. 

4.6 PROPOSITION. (1) P3" contains a 4-complex dimensional family of projec­
tive complex lines parametrized by MQ. 
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(2) MQ is biholomorphically equivalent to the {bounded symmetrie) domain of 
2 x 2 complex matrices whose Hermitian imaginary part is positive definite. 

(3) Let M0 be the Hermitian 2 x 2 matrices, then M0 is a boundary 
component of MQ, and is an open dense subset of M. 

(4) M is a compact ^-dimensional real-analytic submanifold of Mc which is 
diffeomorphic to Sl X S3. 

(5) N is a compact 5-dimensional real-analytic hypersurface in P3 

diffeomorphic to S2 X S3. 
(6) F+ is biholomorphic to Pj X MQ. 

This will not be proved in detail in this paper, but we will discuss the ideas 
of the proof briefly. (1) is clear from the correspondence r. (4) and (5) follow 
most simply from the homogeneous space representation of MQ, M and N in 
§5. We will give an elementary representation of MQ in terms of matrices 
from which (2), (3) and (6) will be simple consequences. Namely, let <3> be 
represented by 

then consider the mapping 

z = (z*)= 

Then A : C4 -* Mc is an affine coordinate system on an open dense subset of 
Mc. We have chosen <£>, so that MQ is contained entirely in MQ = A (C4) C 
MQ, the affine part of Mc. Now, letting » denote positive definite, 

H>{(A(z))>0^[z*,I2] 

<=>- / (z - z * ) » 0 

«=>Imz » 0, where Imz = ( z - z*)/2i, 

and it follows that MQ ^ { 2 X 2 matrices z with lm z » 0}. The Hermitian 
2 x 2 matrices, H (2), can be identified with the set of 2 X 2 matrices 
satisfying lmz = 0, a boundary component of MQ. We denote M0 = 
A (H (2)) under the affine coordinate mapping. Then clearly M0 c M since 
$(A(H(2))) = 0, by the same computation as above. It follows easily that 
MQ n M = M0 is open and dense in M. 

We now look at the correspondences r + and r° in (4.4) and (4.5). 

4.8 PROPOSITION. (1) r+(p) is the intersection of an affine complex 2-plane 
with M£. 

(2) r°(p) is a circle Sl embedded in M. 
(3) ( T + ) ~ \p) and (r°)~ \p) are complex projective lines embedded in Pf and 

N respectively. 

.21 T22 
subspace spanned by (4.7) 

0 
-il2 

+ U-, 
» 0 , 
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PROOF. (1) is just the restriction of r(p) to M£ which is easily seen to be 
the intersection of an affine 2-plane with MQ by using the affine coordinates 
representation C4 -» Mc introduced earlier. Let's look at part (2), and let's 
use the coordinate mapping (4.7) above. But we will use 

* o = 
h 
0 

to represent the Hermitian form $ on C4. Let 

v = 

and we see that %(v) =* Ü*$OÜ 

parametrized by 

span L, c C4, 

0, so <&(L{) = 0. Then {L2: Lx c L2) is 

11 zn' 

z22. 

A 
-» span 

1 0 1 
0 1 
1 z 1 2 

. 0 z22J 
Now we require that $(^2) = 0 also. This implies that if 

*>2 

0 
1 

z'2 

,22 

then 

%(v2) - vl%v2 = 0, 

i.e. that |z12|2 + |z22|2 = 1. But we also have 

$0(ÖÜ, + Pv2) - 0, for all a, j3 e C, 

so this implies easily that z12 = 0, and we have 

[1 
0 
1 

Lo 

0 1 
1 
0 

eif> 

parametrizes all of the 2-planes L2 D Lx with $(L2) = 0. This is a circle, 
completely contained in this particular affine coordinate system. The choice 
of the initial vector v{ is immaterial, by the homogeneity of the null twistors 
with respect to t/(2, 2) (cf. §5). Q.E.D. 

We recall the basic diagram (4.3) 

a 

F 
T 

Mc 
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with the correspondence r, which we will call the Penrose correspondence, 
since almost all of the properties in this paper dealing with this correspon­
dence are due to Penrose, and were developed in a series of papers, origina­
ting in [17]. We have modified Penrose's presentation by introducing the 
auxiliary flag manifold F to facilitate the discussion of the correspondence in 
Penrose's approach to these problems. It will play a more important role later 
when we discuss the cohomology representation of physical fields. 

We state now our final geometric proposition of this section. Let Z and W 
be twistors in T, and so [Z] and [W] are well defined points in P3. Then 
define 

r (Z) = r([Z]) , 

the corresponding 2-plane in Mc. 

4.9 PROPOSITION. (1) T ( Z ) n r(W) = {point} G Mc unless [Z] = [W]; 
(2)r(Z) n r(W) G M if and only /ƒ $(Z) = <P(W) = 0and<l>(Z, W) = 0. 

The proof is not difficult, and is omitted (cf. Penrose [17]). 

5. Homogeneous spaces and group actions. In this section we want to discuss 
the homogeneous space structure of the flag manifolds studied in the previous 
section. The complex Lie group Gc = 5L(4, Q acts transitively on C4, and 
induces a transitive action on F9 P3 and Mc. Reverting to our notation at the 
beginning of §4 we have Gc acting on F12, Fv and F2. Let P12, Px and P2 be 
the subgroup of Gc which leaves a point of FU9 Fx and F2 fixed. These 
subgroups are isomorphic to subgroups of the form 

* 

0 
0 
0 

* * 

• 

* 

* 

r°~ 0 
0 

* 
* 

0 
0 

* 
1 * 

0 
0 

* 
* 

~0~ 
0 

So Fn = Gc/P12 , Fx = G c /P„ F2 = Gc/P2. 
Now F ^ , F*, and F2 are all three open orbits in the above compact 

complex homogeneous manifolds under the action of the real form SU (2, 2) 
of SX (4, C). Namely, any 2-dimensional subspace L2 c C4 which is positive 
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(i.e. $(L2) > 0)> c a n b e mapped to a given 2-dimensional positive subspace 
by an element of 51/(2,2). This can be seen by taking a basis for L2 

orthonormal with respect to <&, and extending it to a $-orthonormal basis for 
C4, doing the same for the second subspace, and the mapping sending one 
basis to another will necessarily be in (7(2, 2). Dividing by the determinant of 
this matrix gives the desired mapping. 

The open orbits are special cases of open homogeneous complex manifolds 
which have been objects of considerable study in the past decades (cf. [33], 
where there is a detailed discussion of such "flag domains," with additional 
references). We see immediately if we let G = SU(2, 2), then 

Fit - G/Pl2 n G, F+ - G/Px n G9 F+ = G/P2 n G, 

which turn out to be 

P3
+ - SU(2, 2)/S(U(l) X 1/(1, 2)) - (7(2, 2)/1/(1) X 1/(1, 2), 

F+ - SU(2, 2)/S(U(l) X t/(l) X U(2)) = 1/(2, 2) / t / ( l ) X 1/(1) X 1/(2), 
Mc

+ - St/(2, 2)/S(U(2) X t/(2)) - 1/(2, 2)/1/(2) X £/(2), 

where 5 ( ) means determinant = 1, and we have written down a second 
representation on the right hand side. It's not clear which group-theoretic 
representation is most useful at this stage of development. Of interest is that 
the isotropy subgroup for P3

+ is not compact, whereas much of the machinery 
of group representation, and homogeneous manifold theory depend on 
having compact isotropy subgroups (cf. Wells-Wolf [33], and the references 
cited there). We note that MQ above is of the form (semisimple group)/ 
(maximal compact), which means it is an Hermitian symmetric space, and 
hence a bounded symmetric domain, namely the tube domain we saw in §4. 

The main vector bundles of interest on these homogeneous spaces will be 
the tangent bundle and the powers of the hyperplane section bundle of P3 (cf. 
§8). These are all representable as homogeneous vector bundles on P3" 
induced by representations of the isotropy subgroup, which we won't dwell 
on here, but which is important in certain contexts. 

Also, we have a homogeneous representation for the compact manifolds 
which are also orbits of G = SU (2, 2), but closed orbits, and hence minimal 
dimensional (cf. Wolf [34]). Namely, 

N - SU(2, 2)/PNf 

where 
\ a b c\ 

PN - 0 £/(l, 1) d\c SU(29 2) 
[O 0 e\ 

where a, b9 c, d, e are appropriate complex vectors and numbers satisfying the 
orthogonality relation of SU(2, 2). PN contains two subgroups, the confor­
mai-f/(l, 1) group 

a 0 0 
0 1/(1, 1) 0 
0 0 6 

det[ ] - 1, 
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as well as the Heisenberg group 

1 6, 
0 1 
0 0 
0 0 

b2 

0 

1 
0 

c 

bx 
h 
1 

c real. 

See Chern and Moser [5] or Tanaka [27] for a good description of the 
geometry of such hyperquadrics defined by Hermitian quadratic forms of 
mixed signature. The surface M is a similar hyperquadric in Afc, and has the 
form 

M = SU(X 2)/PM9 

where PM is a different real parabolic subgroup, namely PM has the form: 

B 

PM^ 

A 
0 0 

0 0 

C SU(2, 2). 

We will not be making use of the specific nature of the groups which enter 
here later in this paper, but we recall that the topological type of N and M are 
determined by this homogeneous structure (cf. Wolf [34]). One can also see 
the topological nature of N and M by using more elementary methods (cf. 
Penrose [17]), but we leave this for the reader to sort out. 

We now want to look at the action on M<t and M0 induced by 5(7(2, 2). 
Suppose that we represent $ by 

* , -

as before. Then any g 

A9B,C,D each 2 x 2 complex matrices, 

0 il2 

- il2 0 

E SU(2, 2) can be expressed as 

A B' 
C D. 

and the coefficients of g must satisfy the orthogonality relation 

g*^{g^% 
which becomes 

AB* = BA*, AD* - BC* - I» CD* - DC*, 

and detg = 1. 
Now choose affine coordinates [,], for Mc as before, where z = (ziJ) is a 

2 x 2 matrix. Then the action on the "homogeneous coordinates" for Mc 

zvz2 2 x 2 matrices, 

is given by 
A 
C 

B 
D 

Azx + Bz2 

Czx + Dz2 
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This induces on the affine coordinates the mapping 

z^{Az + B){Cz + D)~\ 

which is only well defined where (Cz + D) is invertible (an open dense set of 

Let ds2 := det(*/z) be a holomorphic metric form on MQ. This corresponds 
to the Minkowski metric in M0 (cf. §2) extended to the complexification M£ 
of M0 in a C-linear manner. Now look at the subgroup of G = SU(2, 2) given 
by matrices of the form 

Then necessarily 

D = (A*y\ AB* = BA* and det(A(A*yl) - 1. 

The action of P on M£ is given by 

z->(Az + B)((A*yl)~l= AzA* + 5^1*. 

If we let P c P be defined by 

- { 
A B 
0 D 

,AZ SL(2, C ) | , 

then we see that 

z-*AzA* + BA* 

consists of the action of SL(2, C) on M0 given in §3, plus the translations by 
the Hermitian matrix BA*, which is precisely the Poincaré group acting on 
M0, extended in a C-linear manner to M£. In particular, if z = z*, i.e. is 
Hermitian, then P does act as the Poincaré group on M0. Moreover these 
mappings preserve ds2. 

We see that the dilations correspond to mappings of the form 

80 = 
9 0 

0 P' 
c P, p e R, 

then 

*,(*) 
2 

and P/P is precisely the dilations. The inversions are given by the mappings 
in SU(29 2) of the form 

{[°c î\°c'~'} or 
0 B 

( - £ * ) " ' 0 
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i.e. 

z^5[(-5*)"1z]~ ,= -Bz~lB*. 

If we let g(z) = - Bz~XB*, then 

g*(ds2) = det(</g(z)) 

= det ( - Bd(z~l)B*) 

= d e t ( - 5 [ - z " W z - z - , ] 5 * ) 

= det(P5*)(det z)"2det(</z) 

= det(5*)(detz)"2^2 , 

which is a multiple of the original metric form ds2, so the action by g is a 
conformai mapping of the Minkowski space. We remark that the conformai 
factor in M0 is a positive scalar function and in MQ it is the square of a 
holomorphic function of z which restricts to a positive conformai factor on 
M0. 

Thus we have a conformai metric (metric defined up to conformality) at 
each point of M, which agrees with the usual Minkowski metric (up to 
conformality) at each point of M0, since M£ is a typical model of an affine 
coordinate system on Mc. 

We recall now that if Z ^ 0 in T, then 

r (Z) » P2 c Mc, r°(Z) s S1 c M. 

5.1 PROPOSITION. (1) The plane r(Z) is null with respect to the conformai 
Minkowski metric ds2 on Mc, i.e., each tangent vector to r(Z) is a null vector. 

(2) The circle r°(Z) is null with respect to the conformai Minkowski metric on 
M. 

PROOF. Let Z ^ 0 be given, and suppose that Z = (1, 0, a, /?), which is no 
loss of generality, and then r(Z) is parametrized by 

{L2 D Lx = [ Z ] } ~span 

Thus we have a mapping 

fl 
0 
a 

[P 

0 
1 
z12 

z22 
~ 

a 
0 

zn\ 

z2 2J 

We see that 

C2 4 C4 s M*, 

(zu,z22) h> a 

P 
,22 

T*(ds2) = det 0 
0 

dzn' 
dz22 = 0, 
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and the image of T is clearly a null 2-plane. Case (2) is proved in exactly the 
same manner. Q.E.D. 

The following proposition is a basic property of the Penrose correspon­
dence. 

5.2 PROPOSITION. Let qx and q2 be two points in M, then qx and q2 can be 
joined by a null curve (are null-separated) if and only ifr^ l(qx) n rj~ \q2) 7̂ =0 
inN. 

PROOF. Let/? = T ^ 1 ^ , ) n T J " 1 ^ ) » *hen r(p) is a null curve in M which 
meets qx and q2. What remains to be shown is that any null curve in M 
corresponds to a point in N. By restricting attention to M0, we can consider 
null straight lines (light rays), and a given light ray will determine by simple 
linear algebra a nonzero null twistor in T which determines a specific point in 
TV. It's easiest to express in terms of spinors, which are developed in the next 
section, and we refer the reader to Penrose [17] for a complete proof of this 
proposition. Q.E.D. 

6. Tensors and spinors. If M is a Riemannian or pseudo-Riemannian 
manifold with a metric g given locally by ds2 = gabdxadxb, then the metric 
gives an isomorphism 

T(M) ^g T\M\ 

and if v = vad/dxa, w = wbdxb, then the isomorphism is explicitly given by 
identifying v with coefficients {va} with w with coefficients vb = vagab. We 
have used the summation convention throughout, and this process is known 
as "lowering and raising indices," and is a means of shifting from tangent 
vectors to cotangent vectors by means of the metric g. 

In general a tensor 

r - T^;;:~®^-T®~®' . • ®dxd ®dxe ®def... 
d* dxb 9* 

is a section of 
T(M) ® T(M) ® • • • ® T*(M) ® • • • ® ^ ( M ) , 

and T£tf\" is a representation of T with respect to some basis. 
The spinor calculus is a generalization of the tensor calculus, with the 

addition of a certain amount of complex structure. We will give a simple 
version of it adequate for our purposes (for more details, see [28]). Consider 

S = (C2, e) 

where € is a skew-symmetric nondegenerate complex bilinear form. S is the 
basic space of spinors, from which higher order spinors are derived (just as 
the tangent space equipped with an inner product induces all higher order 
Riemannian tensors). Since e is nondegenerate, we can use e to identify S 
with S*, the complex-linear dual of S. We have 

s ®R c = s1'0 e s0'1, 
s* ®R c = sff0 e s0*l5 

where S1,0, and S0,1 are the +i and - i eigenspaces of the almost-complex 
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structure J o f S (multiplication by i considered as an R-linear mapping in Q, 
extended in a C-linear fashion to S ®R C. We treat S* ® C in the same 
fashion. Now extend e to S ® C by C-linearity, and we can identify S10 with 
Sf 0 by means of e also. Note that S is complex-linearly equivalent to S1,0 and 
that S is conjugate-complex-linear equivalent to S0'1. 

A spinor is an element of the tensor product of some combination of the 
above four spaces, e.g. 

S1'0 ® S0'1 ® S£0 ® S^. 

We can choose a basis 

so that 

{eA9A=09l} forC2 

-[•«H-°, i] 
in those coordinates. Then a spinor £ E S1,0 can be represented as 

£ = r V iA G C , ^ = 0 , 1 , 

or £ E S1,0 ® S0'1 can be represented as 

_ t-iASeA®TB, 

where {eB = eB) is a basis for S0'1. For instance in the usual complex analyst's 
notation for C2, we would have 

{eA) = {ib>t*\ ^ H ^ ' ^ } ' 
with the dual basis 

{eA} = {dz°,dz1}, {IP*} » {!?, 1?}. 

A more general spinor might be 

These spinors were originally developedby van der Waerden, and the 
majority of the physics literature uses ÇA = £A

9 whereas Penrose and his 
school uses %A = £A\ since this is easier on the typesetter. We will adopt 
Penrose's index notation (which can be considered as coefficients as we've 
done here, or as abstract spinors, sections of S1'0 ® S£, . . . , where the 
indices label which tensor products are involved, cf. [18]). To raise or lower 
indices, we use the formulas 

noting that eAB is skew symmetric, and that the order is important. For 
instance if 
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thenÉ0-£1 ,É I-$ ) , i .e. 

-£oJ L - i oJ[{, 

iA = eAB-aB. 
We can consider M0 X ?T(S), where ?T(S) is the tensor algebra of spinors, 

and have spinors at points of Minkowski space. Moreover, there is a mapping 

T{MA)fi S1'0®^'1 

where MA is affine complexified Minkowski space ( = 2 x 2 complex matri­
ces), given by sending 

xu 
„00' 

JO' 

„or 
= x 

A A' 

Here xa is a coordinate representation of a holomorphic tangent vector at 0 
in MQ9 with respect to a frame for which the metric g on Minkowski space 
M0 is of the form ds2 = (<fcc°)2 - (dx1)2 - (rfx2)2 - (dx3)\ We recall that 

« = -4- (*° + *!), £ « -p- (*2 + '*3), 
V2 

1 
V2 

1 
£ = - p - (*2 - w3), t? = - p - (JC° - JC1) 

V2 V2 
Now Lorentz transformations on xa induce a mapping by SL(2, C) acting on 
the 2 X 2 matrix xAA' given by 

[xAA'} -> S [ J C ^ ' ] S * , S G SL(2, C), 

as in §3. The action of SX(2, C) on the matrix xAA' is just the action of 
SX(2, C) on S1'0 ® S0'1, induced from the action of SL(2, C) on C2. Moreover 
this action preserves the skew-symmetric form e, and hence the full spinor 
algebra. Thus we have an embedding of tensor algebras (letting §(M0) = the 
full tensor algebra of Minkowski space) 

%MA)^MAX^{S) 

which is SX (2, C) equivariant, and is induced by the mapping 
,AA' 

taking T(MA) -> S1'0 ® S0'1. We have the diagram 

T 
T(M0)0 

T 
{xAA' = xAA } (Hermitian), 

where we use the convention that £A=lA\ just as in the calculus of 
differential forms one writes w = f(z)dz9 and w = f(z) dz. We have a means 
therefore of transforming [tensor algebra objects] into [spinor algebra ob­
jects]. The spinor algebra is richer, and has more structure, and it simplifies 
many geometric considerations. There is an analogy to introducing the 
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complex numbers as a larger and richer field than the real numbers. We will 
be principally interested in tensor fields, i.e. sections of the tensor bundle 
under consideration, all bundles being bundles over M0 or MQ. These bundles 
are trivial as global bundles, and there are corresponding nontrivial bundles 
for M or Mc, which we do not want to introduce at this time since we will not 
need them in this paper. 

Physical quantities in (special relativity) physics are usually described in 
terms of tensor fields over M0. Scalar fields are invariants, and one considers 
vector fields, differential forms, etc. All of these can be expressed in terms of 
spinors by the above embedding, e.g. a metric form gab would become 

Sab "-* 8AA'BB> 

etc. (cf. [28]). 
One reason for introducing spinors is that we can "take square roots" of 

null vectors. This is important if the null vector in question is of a quadratic 
nature, e.g. a momentum vector. 

6.1 PROPOSITION. Let va be a null vector, then letting va -» vAA', there exists 
spinors £A, rA so that 

VAA> = £ATA>9 

and ifva is real, then there exists £A so that 

PROOF. Set up the equation 
tation 

[vw 

VAA 

„or" 

« " ' . 

= 
iAlA'. 

'£°T°' 
{ V r 

«V 
I'r' 

and solve! It's clear that det = 0 is a necessary condition to have a solution, 
for a given vAA . It's also sufficient. Q.E.D 

We can now think of {xa} coordinates in M0 or xAA' as coordinates in M& 
by the above conventions. Since these are good coordinates, we may consider 
d/dxAA', and other combinations of derivatives as a means of expressing 
differential equations. 

7. Maxwell's equations and the zero-rest-mass field equations. We now want 
to study Maxwell's equations. Classically they take the form 

^ + curl E = 0, E = electric field, 
ot 
dE 
-z curl 5 = 7 , B = magnetic field, 
ot 

div 5 = 0, j = current, 
div E = o, o = charge density. 

These equations are invariant with respect to Lorentz transformations, where 
we set t = JC°. We shall concern ourselves only with the homogeneous 
Maxwell's equations, where y = o = 0, and we will refer to the homogeneous 
equations simply as Maxwell's equations. We want to rewrite these equations 
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0 
Ey 

E2 

E3 

-E} 

0 

-B3 

B2 

-E2 

B3 

0 

-*x 

-E3 

-B2 

Bt 

0 

in a form such that the Penrose correspondence gives us a holomorphic 
representation of solutions. We will do this in a sequence of steps. 

First we define a Maxwell 2-tensor or 2-form, by defining the skew-
symmetric matrix 

[Eab] := 

and setting 

F=Fabdxa/\dxb. 

This is a 2-form in Minkowski space with coordinates x°, JC1, x2, x3
9 where we 

assume the Minkowski metric is ds2 = (dx0)2 - (dx1)2 - (dx2)2 - (dx3)2. 
The metric ds2 on M0 induces a Hodge «-operator. 

*:ApT*(M0)->A4-pT*(M0). 

We recall (cf. de Rham [6]) that if 

a = ai{ , dxil A ' • • A dx1" 

then 

(*«)y, y 4 - , - ± « ' ' " A 
where {/„ . . . , ^,y„ . . . 9j4-p} is an odd or even permutation of {0, 1, 2, 3}, 
which determines the above sign, and 

i \ . . .ip = p ^ ' i ^ i g ^ : 
a £''*'%...^ 

where 

[ * ' ] -
+ 1 0 0 

0 - 1 0 0 
0 0 - 1 0 
0 0 0 - 1 . 

This introduces some minus signs into the usual Euclidean *-formalism (cf. 
Wells [32]). In this case we find that 

**(/>-form) = (~\)p+l(p-îorm)9 

so *2 = — 1, when acting on 2-forms in Af0. Therefore * has eigenvalues ±i 
in this case. Considering C-valued 2-forms on M0 we have 

A2r*(M0) ® c - A+(M 0 ) e A2-(M0), 

where A + and /\2_ denote the + i and — i eigenspaces. So any 2-form 
w E &2(M0) has a decomposition w = w+ + w~, where 

w + —I 
= 2 ^ - ' *W)> W — \(w + i * w), 

satisfy *w+ = iw, *w = — m\ We say that w is a self-dual if w = vv+ and 
anti-self-dual if w = w"\ We now have the following two propositions. 
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7.1 PROPOSITION. (1) Maxwell9s (homogeneous) equations become 

dF = 0, d*F = 0. 
(2) If the Maxwell tensor is rewritten as F = F* + F~9 then Maxwell9s 

equations become 

dF+ - dF' = 0. 
The proof of this proposition is simply a translation of the notation, d* is the 
Hodge adjoint to d and is = ± *d*. 

We now want to switch to use spinor coordinates in M0. 

xa^xAA' = _±_ 
V2 

' X° + X* 
. X2 — IX3 

X2 + JX3 I 
x° - x' j 

as in §6. We want to rewrite F = Fab, the Maxwell tensor, in terms of spinors, 
and express F+ and F~ in terms of spinors also. 

We have 

Kb ~ FAA'BB'> where FAA>BB> = - FBB>AA>> 

and where we associate Fab with its image under the injection ^(M0) -» M0 X 
?T(S). So 

FAA'BB' ~2\FAA'BB' -~ FBBAA) 

= Ï(FAABB' ~" FBAAB' + FBAAB' ~~ FBBAA) 

^2\eABFMAf B' + ZAB'FBM'A ) 

which is easy to check. Now let 
„ — 1 17 M' ,r - i r M 
Vi** ~~2rBMA > VU'*' "" 2 r M^' £'• 

Then 

<PAB = <ÏW & ' * ' = ^B'A'* 

and moreover 

^ ~ ^ ' B B ' = «Ul^ ' lT + *A'B VAB ' ( 7* 2 ) 

7.3 PROPOSITION. ( 1 ) F W ra*/ if and only if^AB> =<PAB-

(2) F ö self-dual (i.e. *F = /i7) //a/%/ only if F= eAB$A>B>* 
(3) F w anti-self-dual (i.e. *F = — /F) /ƒ a«d ö«/y /ƒ F = ^^«FUB-

The proof is computational, and will be omitted (cf. Hanson and Newman 
[9]); it depends on the following formula for the «-operator [28]. 

(*F)AA'BB' = KïAB^A'B' - *A'B'<PAB)-

The representation (7.2) splits Fab ~ FAABW into the sum of two quantities 
EAB^AB^ where eAB is a constant matrix [% l

0] and i / ^ is a variable symmetric 
spinor field. The product eAB\pA,B, is self-dual and corresponds to F+ in the 
preceding discussion. Similarly sA'B>yAB is of the same nature. So the 6 
independent coefficients of F = Fab is replaced by the 6 independent spinor 
quantities <poo> «Pio ̂  ^oi* *Pii> ^ow ^OT = ^ro' a n d ^IT> a n d the relation 
between {<pAB, $AB>}> [Fab], and {Ei9 Bé) is a purely linear algebraic one. 
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Now we want to reformulate Maxwell's equations using the spinor repre­
sentation of a 2-form. Let {xAA} be the spinor coordinates of M0, and define 

V ^ , « j? TiAA' - L 
dxAA' ' 9*4,4' 

where xAA, are </*/#/ variables expressed by 

XAA' ~~ X eBA8B'A" 

By the chain rule we compute easily that 
WA\ 

' BB" 
VAA> = eBAeBAV 

7.4 PROPOSITION. If 

F - F^rf*" A <*** — *AB^A'B> + <U'*^*» 
//ie/î Maxwell9s equations for F take the form 

VAA'<PAB = °» <̂ 45 symmetric, 

^AA'^A'B'
 = 0 i/u^' symmetric. (7.5) 

Again we will not carry out the computations involved. But we note that there 
are 6 independent quantities {<pAB}> {$A>B'} as observed before, and there are 
8 independent equations, just as at the beginning of this section, (recalling we 
are considering complex-valued solutions), e.g. 

V°°Voo + V10'(p10 = 0, 

V00'^ + V»9„ - 0, 
V01Voo=Vn/<p10 = 0, etc. 

These equations correspond to linear algebraic changes of variables in the 
variable and range space of the vector valued function defined on M0 

(components of F). In this form there is a generalization of these equations 
which one can easily write down. 

Consider the differential equation on real or complexified Minkowski space 
(affine): 

V^VABC.D - 0> V " W . . i > ' - 0, (7.6) 

WABC... Z»$AB*.../)'symmetricspinorswith2sindices,s = | , 1, §, 
These are the zero-rest-mass field equations (cf. Penrose [19], [20]). For 
s = \ : solutions correspond to neutrinos, this is the Dirac-Weyl "equation 

of an electron" for mass zero. 
s = 1: solutions correspond to photons, these are Maxwell's equations 

above. 
5 = 2: solutions correspond to "weak gravitational fields;" these are the 

linearized Einstein equations, i.e. equations for a Lorentzian metric h where 
g = ri + eh, g a space-time metric, h a perturbation, and rç-the metric for flat 
space-time (due to Pauli-Fierz, cf. Penrose-MacCallum [25]). 

In the next several sections we will discuss holomorphic representations of 
solutions of these equations. 
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8. Cohomology and holomorphic vector bundles. In the classical theory of 
complex variables the basic object of study is the set of holomorphic func­
tions on a domain D c C". In modern complex analysis it has proven to be 
very useful to generalize these notions in various ways. First the domain D in 
Cn is generalized to a complex manifold, a paracompact topological space X 
which is locally homeomorphic to a domain in C1, and such that the overlap 
transition functions are holomorphic vector-valued functions. Basic examples 
of complex manifolds include P„ = Pn(C) and the flag manifolds discussed in 
§4. These are compact complex manifolds. The open subset P3" of P3 described 
in §4 is an example of a noncompact complex manifold which is not 
biholomorphic to an open subset of C1, since one can show that there are no 
nonconstant holomorphic functions on P^ (this is due to the proliferation of 
compact complex submanifolds of P3" of complex dimension 1, cf. Proposi­
tion 4.6). The second generalization we consider is from a (continuous, C00, 
or holomorphic) vector-valued function defined on a complex manifold X to 
a section of a holomorphic vector bundle over X. Basically, a holomorphic vector 
bundle over a complex manifold X with fiber C is a mapping F-» X where V 
and X are complex manifolds and m is a surjective holomorphic mapping of 
maximal rank which satisfies: (a) for each/? G X, 7r "*(/?) is a C-linear vector 
space of dimension r, the fiber over /?, and (b) for each p G X, there is a 
neighborhood U of p and a fiber-preserving biholomorphic equivalence 
TT~ l(U) a U X C, which is C-linear on the fibers. A section of V over X is a 
mapping s: X-> V such that TT ° s = idx, i.e., to each point/? G X, s(x) is a 
point in the fiber Vp = TT~1(P) over /?. Then locally, near p G X, s(q) is a 
vector in Cr using the (nonunique) local product representation. In other 
words a section of a holomorphic vector bundle is locally representable (or 
identifiable with) a Cr-valued function. 

Holomorphic vector bundles and their sections are important general­
izations of holomorphic functions in several variables and these have various 
applications in problems concerning complex manifolds which are not a 
subdomain of C1. For example some open subsets of P„ (e.g., P3", for n — 3), 
will have nontrivial vector bundles on them. Examples include the tangent 
bundle to a complex manifold and various bundles generated by linear 
algebraic operations on the fibers of these bundles, e.g., ©, ®, duality, etc. 

Let us give one example which will be important for our purposes in this 
paper. First we give a little bit of notation which helps describe bundles. If X 
is a complex manifold and F-> X is a holomorphic vector bundle over X, 
then there is a covering { Ua} of X and local trivializations (see (b) above) <pa: 
TT~x(Ua)-* Ua X Cr which induce transition functions gafi = <pa <> <ppl which 
map holomorphically Ua n Up -» GL(n9 C) and satisfy the cocycle conditions 
8ap ' Spy ' 8ya = ^ It ls e a sy to see that the transition functions {gafi) de­
termine the equivalence class of a given bundle, and that a set of transition 
functions satisfying the cocycle condition will determine (an equivalence class 
of) a holomorphic vector bundle. Now consider P„, and letting [z°, 
z1, . . . , z " ] be homogeneous coordinates for a point in Pw, set Ua = 
{[z°, z 1 , . . . , z"]: z* 7* 0}. Define 

g a ) 8 ( [ z 0 , . . . , z " ] ) = z 7 z « c m t f . n t y , 
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then 

gap:UanUfi^GL(l,C)^C-{0}, 

and { gap) satisfy the cocycle condition. This defines a holomorphic line bundle 
on P„ (a holomorphic vector bundle with fiber Q ; it is called the hyperplane 
section bundle, denoted by H -» Pn. We define Hm -> Pw by the powers of the 
transition functions {&$}. It is a well understood fact that the naturally 
defined holomorphic equivalence classes of holomorphic line bundles on P„ is 
isomorphic to the discrete set of bundles { # m } m e z . Here H° is a trivial line 
bundle S P B X C . 

On a complex manifold X there are C00 differential forms of type (p, q) 
described locally by 

<P - 2 W|...yi...jt dzh A ' • • Adz'pAdz^A- • • A«E*. 
/'i< . . . </> 

7 l < ' " <Jq 

where <fi,...//,..../, are C00 functions, and dz7 = dx7 + /V#>7, rfz7 = rfx7 — 
^ 7 > y = 1 , . . . ,« , are the locally defined 1-forms coming from the complex 
structure, where z, = Xj + i>7-,7 — 1 , . . . , «, are local holomorphic coordina­
tes on X. 

If &p'q(X) denotes the differential forms of type (p, q) on X, and S^A") 
denotes the (complex-valued) differential forms of degree r on X, then there is 
a natural projection <npq: &p+q(X)^>&p'q(X). This induces a differential 
operator complex 

-* &«-x{X) ^ &™(X) Ï* &™+l(X)^ (8.1) 

defined by 9<p = (mpq <> rf)<p, where rf is the usual exterior derivative of the 
differential form <p. The holomorphic functions on X are denoted by 0 (X) 
and are the kernel of the mapping 3 acting on functions (differential forms of 
type (0, 0)), i.e., 

o-*e(x)->s°>°(x)^ &°>\x) 
is exact. Obstruction to (8.1) being exact for (/?, q) ^ (0, 0) is part of the 
cohomology we will meet below. 

Now that we have the concept of a holomorphic section of a holomorphic 
vector bundle F-» X, and the notion of a differential form of type (/?, q) on 
X9 we put these two concepts together in defining a differential form with 
coefficients in a holomorphic vector bundle. First a section of a holomorphic 
vector bundle V is given by locally defined vector-valued functions which 
satisfy compatibility conditions given by the transition functions for the given 
bundle. So if V^> X is a holomorphic vector described by a covering {Ua} 
and transition functions { gafi}9 then a section is a family of mappings (C00 or 
holomorphic, say) Sa: Ua^>C" satisfying Sa(x) = g^OOS^Cx). A differential 
form-valued section (or equivalently a differential form with coefficients in a 
holomorphic vector bundle) is a collection of vector-valued differential forms 

/ a e S * * ( £ / a ) ® C 
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satisfying 

fa(*) - 8afi(x)ffi (*), xEUan Ufi9 

where the matrix gap(x) acts on the vector of differential forms by the usual 
matrix multiplication. We denote the vector space of all such djfferential 
forms of type (p9 q) with coefficients in V by &p'q(X9 V)9 and the 3-operator 
extend^ naturally to these more general forms, i.e., if ƒ = {ƒ«}, then define 
3 /= {3^}. This is well defined, since 3 annihilates gafi the holomorphic 
transition functions. Thus we obtain the general Dolbeault complex 

...^&«~\x9 v)X &«(x9 v)X &«+\x, v)-»... 
satisfying 3 2 = 0. If we define 

Ker 3: &«(X, V)-> &«+x(X9 V) 
Hpq (X V) = - - - - , 

Im 3: S ^ " 1 (X9 V) -> &«{X, V) ' 
then we say that Hpq(X9 V) is the cohomology group of type (p9 q) with 
coefficients in the holomorphic vector bundle V. If V = X X C is the trivial line 
bundle then we write H™(X9 V) = Hpq(X)9 the cohomology of the original 
Dolbeault complex (8.1). There are various important alternative character­
izations of Hpq(X9 V) in terms of sheaf theory, Cech theory, etc., and in a 
given geometric or analytical setting one must choose the representation of 
this cohomology appropriately in order to be able to make computations. For 
the expository purposes in this paper, the above definition will suffice, but 
proofs of various assertions will often depend on understanding the alternative 
approaches to complex manifold cohomology available in the standard 
literature of the subject. 

The cohomology groups Hpq(X9 V) describe on X holomorphic objects 
which are a generalization of H°\X9 V)9 the vector space of holomorphic 
sections of V over X9 which was itself a generalization of ordinary vector-
valued holomorphic functions on X. The analogous quotient space of 
differential forms of total degree r gives the de Rham group of X9 i.e., 

(^-closed r-forms) 
H (X) == ~"7~z r~ , 

v 7 (rf-exact r-forms) 
and its dimension is a topological invariant of X9 the rth Betti number, a 
partial description of the global topological behavior of X. Similarly, 
Hpq(X9 V) is a description of the global complex-analytic nature of a given 
complex manifold X equipped with a vector bundle V-+X. When 
Hp'q(X9 V) vanishes for suitable V and (/?, q)9 then this implies that 
obstructions to solving certain global complex-analytic problems vanish (e.g., 
the problem of Mittag-Leffler and Weierstrass in classical complex analysis 
can be formulated in this manner, or the existence of nontrivial global 
meromorphic functions with specified types of poles on a Riemann surface, 
the Riemann-Roch problem, is of this nature). If Hp,q(X9 V) is not zero, then 
the behavior of this vector space parallels in many ways the behavior of 
vector spaces of holomorphic or meromorphic functions on a given domain in 
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C" or P„. Cohomology classes in Hp,q(X, V) can be considered as 
holomorphic objects which can be studied in the same manner that one might 
study holomorphic or meromorphic functions (cf. e.g., recent work in group 
representation theory and automorphic function theory; see Wells-Wolf [33] 
for references to this). These are the kinds of holomorphic objects which 
occur in Penrose's holomorphic representation of the solutions of the zero-
rest-mass field equations as described in the next section. For more 
background and details about the material discussed so briefly here the 
reader can consult Gunning and Rossi [8], Hirzebruch [11], Morrow and 
Kodaira [16], or Wells [32]. 

9. Holomorphic representation of solutions of the zero-rest-mass field 
equations. Let H -» P3 = P3(C) be the hyperplane section bundle described in 
§8, and consider Hp,q(P3, Hn\ the cohomology groups of P3 with coefficients 
in Hn. It is easy to verify that 

H°'0(P3, Hn ) = {holomorphic polynomials in C4, 

homogeneous of degree n,n>0.} 

i / a o (P 3 , /ƒ") = (), n<0. 

However, if U is open in P3, we may have nontrivial sections of Hn, for 
n < 0. For instance, 

/ ( Z ° , Z , , Z 2 , Z 3 ) = 1/(Z0)3 

defines a holomorphic section of H~3 for an appropriate open set which 
avoids the pole Z° = 0. 

We want to consider / / a , ( P ^ , H~2s~2\ s = \, 1, § , . . . , and show how 
to obtain holomorphic solutions of the zero-rest-mass field equation of spin s 
(7.6) in MQ. These solutions will have real-analytic boundary values 
(satisfying the field equations) in M0 if the cohomology class considered in 
H0A(Pf9 H~2s-2) is actually a class in # a i(P3

+ , if"2 8"2). More generally we 
could consider hyperfunction boundary values in M0 of holomorphic 
solutions in MQ, but we won't get into this question in this paper. 

If F is a holomorphic vector bundle over a complex manifold X, we will set 
0 (X, V) = H°'°(X9 V), the global holomorphic sections of V over X, and we 
will set tip(X, V) = HP\X, V% the holomorphic p-forms with coefficients in V 
on X, and QP(X) denotes ordinary holomorphic/? forms, i.e., HP\X). 

There are two ways of representing cohomology which yields explicit 
solutions to the field equations: Cech coverings and Dolbeault forms with 
bundle coefficients. In terms of a Cech covering {Ua} on P^", with 
holomorphic sections fap G 6(£/a 0 U^ H~2s~2)> one can define certain 
contour integrals of the fap over contours contained in Ua n Up to obtain 
spinor fields in MQ satisfying the field equation (7.6). Basically each contour 
is in the projective complex line r+\zAA')9 where zAA' ELMQ, and the 
contour integral is independent of the particular contour (but does depend on 
a certain homology class). Originally these contour integrals were of homo­
geneous holomorphic functions defined on certain open sets. It was only later 
that it was discovered that the integrals depended on the cohomology class 
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defined by the given data. See Penrose [19], [20], and [23], as well as the very 
comprehensive article Penrose-MacCallum [25] which has many complex 
examples of such integrals worked out in detail. Once it was known that the 
cohomology class was the object of interest, one could find other means of 
mapping a cohomology class to a solution of the field equation, e.g. the 
"Sparling-Ward splitting method" (cf. [29]), and Woodhouse's Dolbeault 
representation [35]. 

We will describe only one of three methods, namely the one due to 
Woodhouse [35]. We'll write down a specific integral formula involving 
differential forms and show that it satisfies the field equations (7.6). In the 
following section we will briefly discuss how to interpret this representation in 
a coordinate free manner. First we will introduce some useful notation, and 
discuss briefly homogeneous differential forms on C4. 

Suppose we have twistor homogeneous coordinates Z = (Z°, Z1, Z2, Z3), 
in which $(Z) = Z*Z2 + ZlZ3 + Z2Z° + Z3Zl. We will denote these 
coordinates by Za(a = 0, 1, 2, 3), similar to our notation for coordinates in 
Minkowski space MA, ZAA' (cf. §6). We define the dual variables with respect 
to the Hermitian form $ by 

^a' ^0 = Z , Zj = Z , Z2
 = Z , Z3 = Z , 

and thus $(Z a) = ZaZa. This is the notation used in the papers of Penrose. 
Define 

„ ' = (w0f „1) : = (Z09 Z l ) VA> . ( ^ V r ) : = ( z 2 f Z 3 ) ? 

so that the 4-tuple of complex numbers Za = (Z°, Z1, Z2, Z3) becomes the 
pair of spinors (coA

9 TTA). The dual coordinates become: 

Za = {*A> ÛA), 

and 
<p(Z«) = ü>AiïA + <irA,üA\ (9.1) 

REMARK. If a particle of zero-rest-mass moves along a light ray then mAmA' 
corresponds to the momentum and Ü>AÜ>A corresponds to the angular momen­
tum, and the form $(Z a) given above corresponds to the spin (or twist) of the 
particle. The path of motion of the particle is given by T([UA, <nA,]). See 
Penrose-MacCallum [25] for a further discussion of this interpretation. We 
note further that the action of SX (2, C) on spinors preserves (9.1), and thus it 
is natural to consider SU(2, 2) the full group of transformations which 
preserve (9.1), which is what we did in §4. 

Thus (o)A
9 ITA) corresponds to C4 = C2 © C2, with uA as coordinates on the 

first summand and mA. as coordinates on the second summand. These coordi­
nates will be used in our integral formula. 

We now turn to homogeneous differential forms on C4 (we could just as 
well study C", but for continuityjwe'll stick to C4). Let Y = Zad/dZa be the 
Euler vector field on C4. Y and Y are tangent to the fibers of the projection 
C4 - {0} -> P3. Suppose l / c P 3 is open, then we want to describe 
ir*(&p(U)) c &p ((/), where Û = 7r_1((/). Essentially we need the form to be 
constant along the fibers; and the following lemma is not difficult to verify. 
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__9.2 LEMMA, TT*: &(U)-* {ƒ E &(fi): y j / = 0 , f j / = 0 , YJdf=09 

YJdf = 0} /.y <ztf isomorphism. 

Here 7 J / means interior product of a vector field and a differential form. 
We see that if p = 0, the first conditions are vacuous, and the second 
conditions are just Y(f) = Y(f) = 0, i.e. ƒ is constant on the fibers of m 
(homogeneous of degree 0). The conditions in Lemma 8.2 say that the 
restriction of ƒ and df as a differential form to the fibers of IT vanish 
identically. 

We want to consider differential forms with coefficients in Hn. Consider 
first holomorphic forms, and we have, just as in Lemma 9.2, if U is open in 
P 3 , a n d ( / = <n-\U), 

ü\U) « {ƒ E QT(Û): YJf = 0, YJdf = 0}, 
(since YJf = YJdf = 0 automatically). Now consider 

a°(£/ , i /w ) = 0 ( f / , / / " ) = {ƒ E 6(1/): y J 3 / = m / } , 

and we have the natural generalization of this to holomorphic p-îovms 

OT(U9 H
m) » {ƒ E Q"(Ï7): 7 J / = O, y J 3 / = mf). 

We will give an example of this which will be useful to us later. Define 

0 - IafiZ«dZP9 (9.3) 

where Iafi is a 4 X 4 matrix defined by 

0 0 
0 ^ ' * \ 

It is easy to compute that 6 depends only on the last two coordinates of C4, 
recalling that Za = (Z°,Z\ Z2, Z3) = (o)A

9 TTA)9 namely, 

0 = -"nE'd<nE, = mE.dmE\ 
Now 

ƒ = 

' ~ 3Za 

which implies that 

Y-z"HT'-a i7+*»-"ë^; 

y j * - ( " ^ + "-9fc)J(-*£ '*£ ' ) 

= TT^IT*' = 0. »E' 

Also, 

y j 99 = z* - ^ j j ^ d z « A dz* 

= zy-^j2 2 iaPdza/\dz^ 

= IZ^dZ1* = 20. 
so 0 is a representation in T s C4 of an element of Q!(P3, H

2). 
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Consider now 

where each component h, f, 9 are defined on Û = ir~\U), t/open c P3 and 
h = homogeneous holomorphic polynomial 

of degree n in C4. 

ƒ = 3-closed (0, l)-form satisfying 
f j / = o , y j a / = ( - « - 2 ) / . 

9 = holomorphic (1, 0)-form satisfying 
YA9, YAW = 29. 

Then \p is a well-defined 3-closed (1, l)-form on Û satisfying the condition of 
Lemma 9.2, and is therefore the lift of a form from U. Namely, 

YJt = h-f(YJ9) = 0, 

YJt = h(Ylf)-9~0, 

YJdp = YJ(dh A ƒ A 9 + hdf A 9 + hf A d9) 
- Y(h)-fA9 + h(YJdf)9 

+ hfA(YJd9), 

= nh-fA9 + (-n-2)fAh9 

+ 2/J/A » = 0, 

fj<ty = à(Fj#) = /J(FJ9/)0 

= a(a(Fj/))0 = o. 

So assume that ƒ e //^'(P^, Hjn~2), and that ƒ is represented in T+ by 
ƒ e S^Cr-*-) satisfying 6 / = 0, Ylf = 0, y J 9 / = ( - « - 2)/. Suppose that 
h S 0(P3

+, #"), and is represented by a holomorphic homogeneous poly­
nomial in T+ of homogeneity n. Suppose that h is spinor-valued, with values 
i n S f 0 ® • • • ® SJ„ i.e., 

' (w-factors) " 

where {eA} is a basis for S£„ and ^'. . . />(Za) is a homogeneous 
holomorphic polynomial of degree n for each set of indices. 

Then we can form 

h • ƒ A 9 e Su(tf) ® S^ ® • • • ® Sfo. 
(«-factors) 

So if we write 
hA-...D\Z)f{Z)A9{Z) (9.4) 

for the coefficients of this spinor-valued differential form, we see that we have 
simply a vector-valued 2-form with coefficients in a trivial vector bundle 
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Now (9.4) above is a well-defined d-closed (1, l)-form on P3" for each fixed 
set of indices (A\ . . . , /)'). So we can integrate this over any compact 
2-manifold in P̂ ~ and get a number depending on the indices. The basic 
formula depends on the right choice of hA,...D>, 0, and the set of submani-
folds. 

Let 9 be defined by (9.3), let 
hAB...D'(z) " ***&, ' / • KD'9 

(n factors) 

which is a homogeneous polynomial in the coordinates (uA, <nA) of T, 
depending on the spinor indices. Let zAA' be a fixed point in MQ, and define 

<PA>... D(ZAA') - ƒ , AA, *A*w . •. «D> f A 99 (9.5) 

where ƒ e /f°'1(P3
+

? H~n~2). So this integral is well defined with spinor 
values, and moreover it is symmetric in the indices. 

9.6 THEOREM. The function <pA>tmmD> defined by (9.5) is holomorphic, 
symmetric in A'... D' and satisfies the zero-rest-mass field equations of spin 
s = AZ/2, 

on MQ"; moreover the integral in (8.5) depends only on the Dolbeault 
cohomology class in H°\Pf, H~n'2). 

PROOF. Let 

^.. .D'(Z) = ^ - - % / ( Z ) A Ö ( Z ) 

be the integrand in (9.5) above, where we have Z = (<uA, TTA) are coordinates, 
as before. Suppose zAA' G M<t, then 

(9.7) the two-plane in T parametrized under the Penrose corre­
spondence by zAA' is the set of all (uA, irA) G T such that 

o)A = izAA'mA^ 

i.e., the graph over the C2-plane parametrized by {*nA,} in 
C4 = C2 X C2 of a C2-valued linear function. 

We have the following diagram: 

(«A 

c2 
m 

XMC
+ 

i 
P, X M, 

«0 

—> 

a 

{(o)A, TTA): uA 

m 
T+ 

i 
P3 

(9.8) 

F+ 

i/8 
Mc

+ 

REMARK. In (9.8) P, X MQ is an explicit representation of the flag domain 
F+, depending on the coordinatization (u>A, TTA) of T, which was a coordinate 
system in which $ had the form $2- These coordinates are not SU(2, 2) 
invariant, and P, X MQ is not an SU (2, 2) invariant representation of F+. 



332 R. O. WELLS, JR. 

We have, in view of the above coordinates, IA. D(Za) = IA, D(o>A, TTA), a 
(1, l)-form which projects to a well-defined spinor-valued (1, ï)-form on P3", 
and which is symmetric in the indices, which we denote also by IA, D>. Thus 
we have the pullback a*(IA' D) is a well-defined (1, l)-form on F+ = Px X 
MQ . We can integrate over the fibers of the projection ft to obtain 

<PA...D(ZAA') = ( AA. <h-...D^A^AA'\ (9-9) 

We see that <pA._D> is holomorphic in M<t by differentiating under the 
integral sign in the integral in (9.7), and we omit this computation, as it is 
similar to but easier than the next one. We want to verify that <pA>._ D> given 
by (9.9) does indeed satisfy the zero-rest-mass field equations, and to do that 
we also simply differentiate under the integral sign. Namely we have, 

•(*•"'>-£ 3W' r . . . , ) f e : " ) . à?* *•-<'"> "JU' 
We have to write out the integrand to compute the derivative, and we work in 
homogeneous coordinates. Namely, we have 

Write 

where 

IB'... Z>' («*> *E') " - ^B *D' (f"dZa ) A **'<*£'. 

rdza=jM,dàM'+fMdïM 

SM- = SM- («N> «*•)> SM - SM («" , *N>)-

Then 

« o * V . . z r ( w " ' ) = -**•-.*D-{SM-d{izMM;tM) +SMdvM}AvE'dvE 

Differentiating we find that 

Jjü K / * . . . J > 0 ( W " ' ) 

-m, > . . . w**,? A ^ 7 {SMA~S"'"*„) + SM chrM} 

-nB.... vD* dmE, \ — — 7 da + — — - dmM 
duA dzAA aw4 6z' 

where 

So we find that 
düA\-W)= -izMMdml M-

3 
dz AA 7 ( « 0 % ' . . . Z > ' ) ( W " ' ) 

- ( ' * > K ' • • • TTD-->rE'dwE. I -jj-^j- ö(5M' + — <firM J, 
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and we see that this last expression is symmetric in *nA.... irD>. So we have 
obtained that 

is symmetric in A',..., D'. This implies immediately that 

,AB' 3 
v WB...D> ^ 0 , 

dzAA' 
by the skew-symmetric nature of eAB. We recall that 

V " ' - eBAeBA'VBB, 

and thus 

as was required. 
We have to show that the integral depends only onjthe cohomology class 

defined by ƒ in H°>l(P?9 H~n~2). Suppose that ƒ = 3/*, where h G S0(P3
+, 

H~n~2% (i.e., A is represented in C4 - {0} by a smooth function satisfying 
FJd/i = (—n — 2)/*). Then we have 

f *rB, • • • W A Ô - f 9(^' •••%*A*) 

•'Pi 

noting that a (2,0)-form restricted to Px necessarily vanishes. Q.E.D. 

10. Deriving the zero-rest-mass field equations from integral geometry. In 
the last section we showed how certain cohomology classes satisfied the 
zero-rest-mass field equations. We will now show how these equations can be 
represented in an SU (2, 2) invariant and coordinate free manner, and that 
the cohomology classes "automatically" satisfy the equations from this point 
of view. 

We start with our basic diagram (4.4) 

Now let Ta(F
+) be the subbundle of the tangent bundle T(F+) which is 

tangent to the fibers of the mapping a, and let T£(F+) be the dual bundle. 
We then have the natural projection 

•» 0 r* 
t 
T 

—» 

«— 

n t 
T„ - o 

dual to the injection of Ta into T (dropping the notational dependence on 
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Now consider the tangential to a exterior differential operator 

where we extend 7ra to higher order differential forms in a natural manner. In 
other words, we compute the exterior derivative of a differential form, and 
then restrict the differential form to act only on Ta, the tangent vectors to the 
fibers of a. We get a well-defined mapping 

H°>*(F+)% 7f° ' ,(F+ , r* ) , 

since 

da:&\F+)-+&\F+,T£), 

and we represent cohomology classes by 3-closed (0, l)-forms, as usual. The 
differential operator extends to differential forms with coefficients in 
a*H~n~~2 since the transition functions for a*H~~n~2 can be taken to be 
constant along the fibers of a, and thus would be annihilated by da. Therefore, 
we get a mapping 

H0l(F+,a*H-n-2)% / / 0 , ( F + , a * / f - / î - 2 ® 7*). 

One can define a vector bundle Vn -* M£ by defining the fibers of Vn to 
be 

Vnx = H*\p-X{x)9 a*H-n-2), n>0. 

This depends on the surjective mapping /?, and one can verify that Vn defined 
fiber-wise in this manner is indeed a holomorphic vector bundle in a natural 
manner (this depends on the theory of direct image sheaves [7], which we 
won't discuss here). There is a natural mapping 

r: H°>l(F+9 a*H-n~2) -> HW(M£9 Vn) 

obtained by restricting a ^-closed differential form representing a 
cohomology class in H0,\F+

9a*H~n~2) to a differential form on the 
submanifold {}~l(x)(^ P^C)), which defines a cohomology class in 
H0A((i~\x), a*H~n~2), i.e., a point in the vector-space Vn. There is a 
mapping 

rtt: Z/0'1 ( F + , a*H-n~2 ® T* ) -> H°'°(Mc
+, V? ), 

where V£x = H00(p'\xl a*H~n-2 ® T*), which is defined in the same 
manner, and we have the following diagram: 

a* _ ^ - > H0>\F+, a*H~n-2) — ^ H°^(F+, a*H~n-2 ® 7£) 

tiO-ipt.H-"-^) T 

H°>°(M+, vn)-^m°>°(M+, v%) 

The dotted line represents the mapping induced by da if this is well defined. 
We have the following theorem concerning this diagram. 
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10.1 THEOREM. Suppose n > 0, then 
(1) r and ra are isomorphisms and Vtt is well defined. 
(2) VntX » ®%mC\ 
(3)F«^(®^m 'C2)<8)C2 . 
(4) The induced differential operator Va is the zero-rest-mass operator of spin 

s = n/2. 
(5) Ker da « Im a*. 

As a corollary of this theorem we have 

10.2 COROLLARY. Ifs>0, then 

/ f ° ' , ( P 3
+ , / / - 2 - 2 ) £ {Ker Va: //°'°(MC+, V2s)-»H«\M^ F2«)} 

s | ££/ƒ *&/# / holomorphic solutions of the 

zero-rest-mass equation of spin s on MQ }. 

In particular this corollary shows that the representation given in §9 by an 
explicit integral formula is invertible. 

The details of the proof of Theorem 10.1 will appear later, and we remark 
that all of the elements of the proof are SU(2, 2)-invariant in nature. This 
implies in particular the conformai invariance of the solutions of the zero-
rest-mass equations, which does not follow from the integral formula given in 
§9. Part (1) of Theorem 10.1 follows from the Leray spectral sequence for 
direct image sheaves (cf. Godement [7]), and appropriate standard 
cohomology vanishing theorems in several complex variables along either the 
fibers of /? or on MQ. Parts (2) and (3) are a computation using standard 
results from the theory of compact complex manifolds. Part (4) follows from 
an appropriate choice of basis for the vector spaces involved. That Im a* c 
Ker da is a simple consequence of the fact that da corresponds to differen­
tiation along the fibers of a and cohomology classes in Im a*, being pull-
backs along the fibers, are essentially "constant along the fibers", hence 
annihilated by da. The converse statement is much deeper and involves 
solving appropriate du = ƒ problems locally along the fibers of a (the 
inhomogeneous Cauchy-Riemann equation for differential forms). The details 
will appear in a joint paper with M. Eastwood and R. Penrose, which will 
consider also the case s < 0, which is not covered by Theorem 10.1, as well as 
various other questions raised by the above analysis. 
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