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This theorem is a consequence of Theorems 1’ and 4’ and the
result of Sierpinski, used by Professor Moore in the proof of
Theorem 5.
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In his fundamental paper on a posteriori probability,*
Bayes considered a certain event M having an unknown
probability p of its occurring in a single trial. In deriving his
a posteriori formula he assumed that all values of p are equally
likely, and he recommended this assumption for similar prob-
lems in which nothing is known concerning . In the corollary
to proposition 8 he derives the value

fl<’l’l« x(l )n—:cd = 1
. x)P P ﬁ_n-l—l

for the probability of x successes in # trials. This result is
independent of x; in a scholium he observes that this conse-
quence is what is to be expected, on common sense grounds,
from complete ignorance concerning p, and this concordance
is considered to justify the assumption that all values of p
are equally likely.t

In order to complete the argument of the scholium it is
necessary to show that no other frequency distribution for
p has the same property.

More precisely, given that a cumulative frequency function
f(p) has the property that for 0=x=mu, x, » being integers,

fol (Z) p(1 = pyedf(p) = 741._1

* Bayes, An essay towards solving a problem in the doctrine of chances,
Philosophical Transactions of the Royal Society, vol. 53 (1763), pp. 370-418.

t In other words, the assumption “all values of p are equally likely” is
equivalent to the assumption “any number x of successes in # trials is just as
likely as any other number y, x <%, y<#n.” It has been suggested verbally
by Mr. E. C. Molina that this proposition has a possible importance in certain
statistical questions.
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it is required to determine f(p) from this equation. Now if
n=x, the equation becomes

1
J e = —=

consequently the moments of f(p) are known. The function
f(p) can be completely calculated from these moments with
the aid of a theorem of Stieltjes.*

Let

C a1 1df(1>)
F(z)—fon— f (ls]>2)

S e -

If f is the function already discussed, this becomes

Consequently the function f satisfies the equation (for

1> z+ 1 Laf(p)
log( z >= j; P-I-z.

From the theorem of Stieltjes, if Y(x) is a non-decreasing

function of x, and
® d
F(z) = f Y(x) ’
o 2+ %

then

YE—0) +y(E+0)  ¢(e—0) + ¢(a + 0)
2 2

1 —a—1i
= lim R(——f F(z)dz).
=40 \wiJ _g iy

* Stieltjes, Récherches sur les fractions continues, Annales de Toulouse, vol.
8 (1894), pp. 172-175. Also, Perron, Die Lehre von den Kettenbriichen, p. 372,
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Now the function F(z)=Ilog {(z+1)/z} can be defined on
the real axis by continuation, hence the limits above and below
the real axis are uniquely determined. Suppose £, @ on the
segment 0 <a <£<1.

Then

f_a_m[log (z 4+ 1) — log z]dz

E—in
- f_allog(l + & — in) — log (x — in)]dx
—¢
=[(1+x-—in)10g(1+x—in)—(1+x—in)]‘“
— (v — in) log (v — in) + (x — in) -t
Now
A+x—iplog(l+x— 1) — (1 + x — in)

approaches real limits, for x = —a, x = —§, as y—0, hence makes
no contribution to the sum required. We have only to consider

—(—a—inlog(—a—in) + (=& — in) log (— & — in).

Now as 7—0, —&—in——§&. Since the approach is from
below the axis of reals, and since the argument of log z, like that
of log (1+32), is zero for a real positive z, the argument here
is —iw. Hence this sum becomes

(a4 in)[— wi+log (a+ in)] — (£ + in) [~ wi + log (¢ + i) ].
This approaches the limit, as 7—0,

mi(f — a) +aloga — £log£.

1 —a—1in
lim R[—f F(z)dz] =§—a.
7—0 Tl J iy

Substituting in the identity, we find

YE—O) +Y(E+0) ¥e—0+¥(e+0)
2 2

Hence

_.a,
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or

Y(E—0) +¢(¢E+0)
2

= §¢ 4 const.

Consequently y itself is continuous, 0 <£<1.
Now if a>1, £>1, the integral

f_a[log (z + 1) — log z]dz
-

is seen to be real, hence
FE -0 +vE+0)] —3¥@—0) + ¢+ 0] =o0.

The same is true if both @ and £ are negative.

There are three additive constants yet to be determined,
one on each of the intervals (—, 0), (0, 1), (1, ). If it is
assumed that Yy (— ) =0, ¢(+o) =1, and ¢ is a non-decreasing
function,

Y(+ o) —¥(— ) =1=y(+0) —¥(-0)
+¥(1 —0) —¢(+ 0)
+¥(1+0) —y¢(1 —0).
The central term being one, the two remaining terms vanish.

Hence ¥(—0)=y¢(+0)=0, $(14+0)=y¢(1—0)=1. Finally

0, if &t=0,
(&) = {E, if 0<§<],
1, if 1<E&
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