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COMPUTATION OF THE OPTIMUM DESIGNS UNDER
SINGULAR INFORMATION MATRICES

By ANDREJ PAZMAN

Slovak Academy of Sciences, Czechoslovakia

The main result of this paper is that g-inverses are not needed for com-
puting optimum designs when the singularity of the information matrix is
unavoidable. They are, of course, needed for the analysis. It will be shown
that it is possible to augment the experimental region so that procedures
for computing optimum designs for s out k& parameters (s < k) which are
developed for the nonsingular case may also be used for the singular case.

1. Introduction. Let us start with the following design problem (cf. Karlin-
Studden (1966)). We are given a vector § = (6,,- - -, 6,) of unknown parameters
and a vector f(x) = (fy(x), - - -, fi(x))’ of the regression functions, all defined on
a given set 2. It is assumed that the information matrix

M(E) = $zc o (X)f (x)E(dx)
is singular for any design measure § on 2. However, some of the parameters,
say 0,, - - -, 0, (s < k) are assumed to be estimable for some (not further specified)
design.

The standard iterative methods for computing the optimal designs are neces-
sarily starting from an initial design having a nonsingular information matrix.
Hence, they cannot be used directly in the present setting. Moreover, similarly
to the problems of parameter estimation (Rao (1971)), the use of the g-inverses
seems to be unavoidable.

The aim of this paper is to show that a simple improvement of the existing
standard algorithm leads to a computation procedure which does not make use
of g-inverses.

2. Estimates and g-inverses. A function A(6) = p'0 is estimable if and only
if pe Z/(M(£)), the range of the information matrix M(¢) (cf. Karlin-Studden
(1966)). The variance of the best linear estimate for 4 is given by

(1) Var, h = p’M~(§)p
where M~(§) is a solution of the equation
(2) MEM-(E)M(E) = M(§) -

This statement is a special case of Theorem 3.1 in Rao (1971). It may be
obtained also from the expression (cf. Karlin-Studden (1966), Theorem 2.1):

Var, h = sup 41%% de ZZ/(M(§)), d + O}
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(the supremum is attained for d = M~(£)p). Finally (2) may be obtained also as
a consequence of Theorem 1.1.3 in Fellman (1974).

One solution of (1) which will be used later, may be described as follows:
M~(§)g is the unique vector h € ZZ(M(§)) such that M(&)h = g for g e Z/(M(§)),
otherwise, for g e 7Z7+(M(§)), M~(§)g is the zero vector.

3. Optimum designs. In what follows we shall deal with the optimality cri-
teria of the form ®[D(§)], D(¢) being the covariance matrix of the estimates of
0, -+, 0, @ having the property ®(4) < ®(B) for A € B. Some well-known
examples are the following ones:

D[D(§)] = det D(§) (D,-optimality),
= tr D(§),
=sup{D,(¢€), 1 i< s}, etc.

The dimension of Z7(M(&)) will be denoted by r. Let
f(zj)z(fl(zj),"',fk(Z’.))', j:r-}-l,...,k

be arbitrary vectors with the property that
fzr) L{f1x): xe 27}

fz) LSS x€ 2V U (fZon)s o flZ;)} J=r 420 e k.
By adding the “points” z,,,, - - -, z, to 22”7 we obtain an extended experiment
with the regression functions defined on the set

T =Z U2,y s 2}

and

PROPOSITION. Let § be a design measure supported by a subset of % . Denote
by p the restriction of ¢ to the set 2, i.e.,

#(+) = §()E(Z) -

@[D(1)] = @[D(§)]

Then the inequality

is valid.

Proor. The matrix M(¢) can be expressed in terms of the matrix M(x) and
the vectors f{(z,;) chosen above:

M(E) = (1 = D5 §@DIM(1) + Zhr i 2 (2))6(25) -
Let us consider the g-inverse M~(y) of the matrix M(y), as described in Section 2.
The formula

M-=(€) = M~ (p) + Yk 1 f)f(zy)

L= Therné@) - 27 P EE)T

then established a g-inverse of the matrix M(§) of the same type, too. If
h(6) = p'0 is estimable in the experiment with the experimental region 57 then,
p € ZZ(M(§)), that means that

P LfZds s flan) s
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hence

Var, h = Var,h.
[— 2r 62 "
Consequently, ®[D(§)] = ®[D(p)]. The proposition is proved.

The important consequence of the latter statement is that a ®-optimal de-
sign (i.e., design minimizing ®[D(€)]) is not supported by points from the set
{z,41 -+ +» z;}. This in turn implies that the standard computation procedures
apply for the extended experiment. The resulting nearly optimal design is to be
merely restricted from 27 to .2°. Following this manner a nearly optimal de-
sign is obtained in the original experiment. Hence the use of g-inverses may be
avoided.

To finish the paper let us note that the method was essentially based on the
Hilbert space structure of a regression experiment. Hence similar ideas are
available even in a more complicated (infinite-dimensional) setting (cf. Pazman
(1974)).

The author is indebted to Dr. L. Kubacek for valuable discussions.

Vare h = p’M_(E)p =
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