ON INFORMATION AND SUFFICIENCY
By S. KuLLBack aNp R. A. LEIBLER
The George Washington University and 'Washingtén, D.C.

1. Introduction. This note generalizes to the abstract case Shannon’s definition
of information [15], [16]. Wiener’s information (p. 75 of [18]) is essentially the
same as Shannon’s although their motivation was different (cf. footnote 1, p. 95
of [16]) and Shannon apparently has investigated the concept more completely.
R. A. Fisher’s definition of information (intrinsic accuracy) is well known (p. 709
of [6]). However, his concept is quite different from that of Shannon and Wiener,
and hence ours, although the two are not unrelated as is shown in paragraph 2.

R. A. Fisher, in his original introduction of the criterion of sufficiency, re-
quired ‘“that the statistic chosen should summarize the whole of the relevant
information supplied by the sample,’”” (p. 316 of [5]). Halmos and Savage in a
recent paper, one of the main results of which is a generalization of the well
known Fisher-Neyman theorem on sufficient statistics to the abstract case,
conclude, “We think that confusion has from time to time been thrown on the
subject by ..., and (c) the assumption that a sufficient statistic contains all
the information in only the technical sense of ‘information’ as measured by
variance,” (p. 241 of [8]). It is shown in this note that the information in a
sample as defined herein, that is, in the Shannon-Wiener sense cannot be in-
creased: by any statistical operations and is invariant (not decreased) if and
only if sufficient statistics are employed. For a similar property of Fisher’s
information see p. 717 of [6], Doob [19].

We are also concerned with the statistical problem of discrimination ([3], [17]),
by considering a measure of the ‘“‘distance’” or ‘‘divergence’ between statistical
populations ([1], [2], [13]) in terms of our measure of information. For the sta-
tistician two populations differ more or less according as to how difficult it is to
discriminate between them with the best test [14]. The particular measure of
divergence we use has been considered by Jeffreys ([10], [11]) in another connec-
tion. He is primarily concerned with its use in providing an invariant density
of a priori probability. A special case of this divergence is Mahalanobis’ gen-
eralized distance [13].

We shall use the notation of Halmos and Savage [8] and that of [7].

2. Information. Assume given the probability spaces (X, S, ui), 7 = 1, 2,
such that u; = u! (cf. p. 228 of [8]) and let \ be a probability measure such that
A= {m, ue} (e.g., \ may be p;, or u; or 1(u1 + we), ete.). By the Radon-Nikodym
theorem [7] there exist fi(x), ¢ = 1, 2, unique up to sets of measure zero in X\,

YIf uy(E) # 0, uo(E) = 0 or u1(E) = 0, us(E) # 0 for E ¢ S then we can discriminate per-
fectly between the populations. The assumption u; = u, that is, that u; and . are absolutely
continuous with respect to each other is made to avoid this situation.
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measurable A with 0 < fi(z) < « [A], 7 = 1, 2, such that

@.1) wi®) = [ fio) D), i=12,
E

for all E ¢ S. If H;, 7 = 1, 2, is the hypothesis that z was selected from the
population whose probability measure is u;, 7 = 1, 2 then we define

f 1 ()
2.2) log f2 20

as the information® in z for discrimination between H, and H,. The mean in-
formation for discrimination between H; and H, per observation from E ¢ S
for u; is given by (cf. pp. 18, 19 of [16]; p. 76 of [18])

1 filz) fi(x)
1) = i J, a0 08 55 = gy |, 59 ey
(2.3) for wm(E) > 0,
=0 for wm(E) = 0.

It should be noted that I:..(E) in (2.3) is well defined in that the integral
in its definition always exists even though it may be + «, since the measures
are finite measures.’ It is shown in Lemma 3.2 that

I:2(E) = log m(E)/u(E) for wm(E) > 0.

We shall denote by I(1:2) the mean information for discrimination between
H, and H. per observation from p; ; ie.,!

10:9) = LX) = [ @) log 12

fa(x)
ey (@)

— 1
- [ 5010652 0.
2 It follows from Bayes’ Theorem [12] that

f Wz) P(H, l z) a

log f(:c) = log P2 — log - 8]

where a; , 7 = 1, 2, are the a priori probabilities and P(H;| z), ¢ = 1, 2, the a posteriors
probabilities of H; , ¢ = 1, 2, respectively.

3 We are indebted to a referee for this remark as well as for the following example
which shows that the assumptions at the beginning of this paragraph do not imply ﬁmte-

ness of information. Take E = (0, 1), u1 = Lebesgue measure, f2(z)/f1(z) = ke’””, where

ol
k= f ¢Vt di. Tt is easily verified that I(1:2) is infinite (cf. also p. 137 [9]).
(]

4 We shall omit the region of integration when it is the entire space.



INFORMATION AND SUFFICIENCY 81

Set,
le(E) = Il:z(E) + Iz:l(E')
1 A 1 fo(z)
@5) = @) f o) log 15+ oy [ doate) log 705

@ @), AE
= fz(nl(E) #z(E)) € rm D@

We denote by J(1, 2) the “divergence” between y; and u. (cf. p. 158 of [11]) so
that?

@0 I, 2 = 5 = [ () - 4@) log D D@,

Shannon ([15], [16]) defined information on a finite discrete space and we note
that I.2(E) defined in (2.3) is precisely the generalization of that information
which is obtained when one replaces the finite space by S N E, the measure of
equidistribution by p/u(E) and the measure whose information is being de-
fined by p1/m(E). Just as Shannon observed that certain theorems were carried
over to the Lebesgue case, we shall see here that they maybe formally carried
over to the general case.’

For the parametric case in which fi(z) = f(z, 8) and fo(x) = f(z, 8 + A6),
where 6 and 6 + A6 are neighboring points in the k-dimensional parameter
space, with suitable assumptions on the density function (e.g., see p. 774 of
[4]), to within second order terms it is found that

@.7) I(6; 0 + AB) = 3Zgap004A05, ,B=1,-,k
(2.8) J(0,0 + AB) = Zg.pA0.A0p, a,8=1,--,k,
where

(29) = (10 (L)

are the elements of Fisher’s information matrix (cf. par. 3.9 of [11]).
When p; and p; are multivariate normal populations with a common matrix
of variances and covariances then

(2.10) J(1,2) = 28,850°", a,B=1--,k,

where 8., a = 1, «++, k, are the differences of the respective population means
and ¢®f o, 8 = 1, , k, are the elements of the inverse of the common matrix

8§ We are indebted to a referee for the comments with respect to Shannon’s definition
as well as for the comment that this should be of interest to anyone who has puzzled over
Wiener’s statement that his definition of “information’ can be used to replace Fisher’s
definition in the technique of statistics (p. 76 of [18]).
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of variances and covariances; i.e., J(1, 2) in (2.10) is k times Mahalanobis’
generalized distance [13].

3. Some properties of information.

LemMa 3.1. I(1:2) is almost positive definite; i.e., I(1:2) Z 0 with equality if
and only if fi(x) = fa(z) N

Proor.® Let g(x) = fi(x)/fa(x). Then

101:2) = [ /@)@ log 9(2) M)

3.1)
= [ 9@ 1og 9(a) dunta).
If we write ¢(t) = ¢ log ¢, then since 0 < g(z) < « [)\‘] and
(32) [ 4@ duate) = [1i2) dNe) =

we may write
33) o(g(x)) = o(1) + [g(x) — 1}'(1) + 3lg(@) — 1" (@),

where h(z) lies between g(z) and 1 so that 0 < h(z) < « [Al
Therefore

(34 [ o) du@) =} [ 9@ — 176" () duata),

where ¢”(t) = t} > 0 for t > 0. It therefore follows from (3.4) that

(3.5) [ 4 108 4(@) dinte) 2 0
with equality if and only if g(z) = 1 [\l
Lemma 3.2.
ﬂl(E)
I;2(E) 2 log (B for N(E) > 0,

Proo¥. If I1.2(E) = «, the result is trivial. For finite I1.;(E) apply Lemma
3.1to

e B _ [ dm(@) | fi@)/m(E)
Lio(B) — log a5 = |, ia(®) "B 7i@) /ualB) "

TreoreM 3.1. I(1:2) s additive for independent random events'; i.e.,
I.,61:2) = I,(1:2) + I,(1:2).

¢ This is essentially the proof on p. 151 of [9].

7 Shannon (p. 21 of [16]) and Wiener (p. 77 of [18]) prove similar results. This is clearly
a fundamental property which information must possess, and is one of the a priori require-
ments set down by Shannon in arriving at his definition.
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Proor.

I,(1:2) = f filz, y) log ;’Ex y; d\(z, v)

(1) (2)
(3.6 = [[ @10 106 B2l ) vt

(1)
= f @) logji}—ng% (@) + f %) log L lg)gy; dh(y)
2

I.(1:2) + I,(1:2).

4, Transformations and invariance of I(1:2). Consider the measurable trans-
formation T of the probability spaces (X, S, u;) onto the probability spaces
(Y, T, »;) and suppose for G ¢ T, (@) = u(T'R),% = 1,2. Then »; = », = v,
where ¥y = AT'. We define

’ 7®) 0¥
@) 1@ = oo [ anlog 2D = 1 [ 0) 10 29 ar),

g:(y).
t o _ [ (@) _ dn(y) 71(y)
4.2) Jm»—f@ﬂ» mwy%a@’

where ¢:(y) is defined by

3

@3) n@ = [ 0 arva), i=13,

forall G e T.

THEOREM 4.1. I (1:2) = I'(1:2), with equality if and only if T is a sufficient
statistic.

Proor. If T (1.2) = o the result is trivial. By Lemma 3 of Halmos and

Savage [8]

‘ 1(1+9) — [} T(x)
4.4) Ia:2) = [ dw@) 108 i
. Then
O — T(1+9) — Al T ()
. I(1:2) — I'(1:2) fd;u(x) l_logfz( ) log ng(x)-l

fi(x)g, T (x)
ffl(x) logm d\(z).
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_ fi(x)g. T(x) then

If we set g(2) = @ T@
10:2) - 12 = [ fz&;‘%@g@ log ¢(z) d\(&)

(4.6)
= f g(x) log g(z) dua(z),

where p(E) = fz fz(.'v)g:(T)(x) d\(z) forall EeS.

Since

h1(@)g:.T@) fiz)aT(x) d\(z) =1,

[ 9@ dmse) = [ 20 = ot

the method of Lemma 3.1 leads to the conclusion that I(1:2) — I'(1:2) =

with equality if and only if
fl(x) — ng(x) D\]-

@) W@ ol
But (4.7) implies that
4.8) A 711y ),

fa(@)

0

which is by Corollary 2 of Halmos and Savage [8] necessary and sufficient that
the statistic T be sufficient for a homogeneous set of measures on S. If T is
sufficient then by the same proof® as Theorem 1 of Halmos and Savage [8] fi(x)
and f»(z) are (¢)T " (T)]\]. Then by Lemma 2 of Halmos and Savage [8] and
the definition of ¢y and ¢:, fi(x) = @:T(z) ], fo(x) = ¢:T'(x) [A] and the result

in (4.7) follows.
COROLLARY 4.1. I(1:2) = T ’(1 2) if T is non-singular.

Proor. If T is non-singular, T'(T) is S and therefore fi(z)(¢) T T), s = 1 2.

The result then follows from Theorem 4.1.
THEOREM 4.2.% I1.o(T™*G@) = I15(Q) for all G ¢ T if and only if

I(1:2) = I'(1:2).

ProoF.
v _ [ On),  giy) _ dn(®) 1o, 0@
L@ = | 5@ %8 ) [ a0 n@ % 6w
_ ) du () 0T (z)
(4:.9) - fxT-lg(x) (T_IG) IOg ng(fC)

() log 9T (z)
T=1¢ Ml(T—l G) ng(:v) :
Application of the method of Theorem 4.1 completes the proof.

8 Note that the A in Theorem 1 of [8] is different from the A here. However, as remarked

by a referee, the same proof will suffice.
9 We are indebted to a referee for calling this to our attention.
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6. Properties of J(1, 2). For each of the results in paragraphs 3 and 4 there
can be stated an identical one for J(1,2). This follows from its definition in
(2.5) and (2.6). Also it should be noted that J(1,2) is symmetric with respect
to u and p, and independent of the a prior: probabilities. Jeffreys (par. 3.9 of
[11]) mentioned the symmetry, positive definiteness and additivity, and in-
variance for non-singular transformations.

6. Application. Two indications of simple application of these concepts may
be useful.

(1). Consider the problem of testing an hypothesis presented by Lehmann
(p. 2 of [20]). Let the subscript 1 refer to Lehmann’s hypothesis H, the sub-

script 2 refer to any of the alternatives, F = {—2,2}, G = {0}, then
lfa a o a
61 Iix(F) = o (é log Tpc + 5 log m);

1l -«
1-c¢

L., (@) = i- a log

It may be readily verified that I1.2(G) < I1.2(F) and therefore G i.e. {0} should

be used as the critical region.
(2). Suppose it is necessary to decide whether a sample of n observations

has been drawn from the multinomial population {p,, p,,---, px] or
{llc’ % , v "}15 . Because of certain limitations the test must be made under

the following conditions:
a) Sequential analysis cannot be used.
b) The observations must be grouped into two mutually exclusive categories.
If it is assumed that p, = p: = --- = p«, then the most effective grouping
is such that
r k

) r ; Di L E—r .-24-1 b
(6.2) J = <Z Pi — ) lOg /k + <‘.-ZH-1 Pi — I > l (k r)/k

=1

is a maximum. The efficiency of the grouped test is measured by

(6.3) g,
where
k
(6.4) J = ;l <p,~ )log ik

in the sense that n observations of the grouped test will provide as much in-
formation as N observations of the ungrouped test where

(6.5) . nJ' = NJ.

For exampleif p, = .5, p» = .3, p3 = .1, p« = .1, then using logarithms to base
10, J' for r = 1, 2, 3, 4, becomes respectively

(6.6) 1193, .0903, 0716, 0.0,
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and in this case J is 0.1986. The most effective grouping is therefore

(p1), (P2 + ps + ps) and the grouped case is %% = .6007 times as efficient as

the ungrouped test; i.e., there is a loss of 409, because of the grouping.
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