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THE GARABEDIAN FUNCTION OF AN
ARBITRARY COMPACT SET

Eric P. SMmITH

If the outer boundary of the compact plane set E is the
union of finitely many disjoint analytic Jordan curves, the
Garabedian function of E is a familiar object. J. Garnett and
S. Y. Havinson have each asked whether the Garabedian func-
tions of a decreasing sequence of such sets must converge.
The present paper shows that they do converge. This fact
leads to a natural definition of the Garabedian function of an
arbitrary compact plane set. As an intermediate step, an ap-
proximate formula is obtained for the analytic capacity of the
union of a compact set £ and a small disc not intersecting E.

1. Prerequisites and notation. Good introductions to Analytic
Capacity are given in [2], pp. 1-26, and [1], Ch. 8; and so we shall
give only a brief outline.

C denotes the complex plane. S? denotes the extended complex
plane with its usual topology. D(z;7) denotes the closed disc with
centre 2z and radius r.

Let E be a compact subset of C. Q2(F) denotes the component
of S®\E containing <. The outer boundary of E is the boundary
0Q(FE) of 2(E). The analytic capacity of E is:

Y(E) = sup {| ¢'(e=) |: g analytic on Q(E), |g| <1} .

This supremum is attained by a unique function, the Ahlfors fumnc-
tion of E ([1], p. 197).

& will denote the class of all compact plane sets whose outer
boundary is the union of finitely many pairwise disjoint analytic Jordan
curves. Let Fe &4 and write 2 = Q(E). The Hardy space H(Q)
(0 < p < ) is the space of all analytic functions g on 2 such that
there exists a harmonic function % on Q with |g|? <u. If ge H(Q)
then ¢ has a finite nontangential limit g(z) at almost every point
ze 0Q. H*Q) is a separable Hilbert space with the inner product:

@ 1) = o@h@ds (g he H(@) .

If e 2 there is a unique function K(z, {) in H*Q), the Szego kernel
function, such that:

00 = | oK@ 0%ds  (ge HYQ).

K(z, ) is the inner product between the functionals on H?*Q) given
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by evaluation at z and {, so that K(z, {) = > %, (?)u,.(0)*, whenever
{uw,} is an orthonormal basis for H*Q). The Garabedian function is
most easily defined for our purpose as:

v = ZAByKG, =)

See [2], pp. 13-28.

Throughout, E will be a compact plane set, 2 = 2(F), and f will
be the Ahlfors function of E. If Eec .5 K(z, {) will denote its Szego
kernel function, and + its Garabedian function.

We shall use the following results.

1.1. Let {F,} be a decreasing sequence of compact sets with
intersection K. Let f, be the Ahlfors function of E,. Then f,—f
uniformly on compact subsets of 2, and v(&,) — v(&) ([1], p. 198).

1.2. Let Fe & Then:
(1) f and + are analytic across 092.
(2) |f]=1 on 0Q.
(3) f(@)Yy(2)dz =0 on 02.
(4) (o) = 1/(2m7).
(5) K(co, ) = 1/(2mv(E)).
(2], pp. 18-23).

1.3. Let E, F be compact, v(E) = 0. Then v(E U F) = v(F) (an
immediate consequence of [2], Theorem 1.4, pp. 10-11).

1.4. Let E be compact, 0¢ E, Ec D(0; R). Denote by FE, the
inversion of E in the unit circle. Then:
Y(Ey) = v(E)/8R?
(proof similar to [1], Lemma 12.2, p. 229).

Finally we need the following result on Hilbert spaces.

ProPOSITION 1.5. Let h be a separable Hilbert space, and let {u,}
be a sequence of wvectors im h whose closed linear span is h. Suppose
that the infinite matric T given by T.; = (w;, u;) 1is bounded and
invertible (as an operator on ). Then for every bounded linear
functional f on h the sequence {f(u;)} is square-summable and:

1F1E= 5 (Tl ) fw)*

Proof. T is positive, and so is the matrix of a positive operator
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Pe B(l,). P has a positive square root P"? which is invertible since P is
invertible. For 1=1, 2, 3, -.., write w; = P'’¢, where ¢; is the vector
with 1 in its ¢th place and 0 elsewhere. Since P'* is invertible, I,
is the closed linear span of the w,. (w;, w;) = (P'%;, P'’¢;) = (Pe;, e)=
T,; = (u;, u;); so we can define a unitary J:Il,— h by J(w;) = u; for
all 7, extended to the whole of I, by linearity and continuity. The
bounded linear functional J*f on [, is represented by some se¢l,.
(e5, P's) = (P'Pe;, 8) = (wy, 8) = (J*fHw;) = fJw,) = f(u;). Hence
{f(u;)} is square-summable. Also:

FIE=1lsll = (P7(P'Fs), (P's))
= 5 (T7)ules, Ps)(e;, Pis)* = Z (T7)isf () f ()™

i,5=1

2. The slope function. The purpose of this section is to es-
tablish Theorem 2.2, which gives an expression, up to first order in
¢, for the analytic capacity of a set of the form FE U D(z;¢), where
FEe¢.% and ze Q(F). This will be extended to arbitrary compact sets
E in §3. First we need a lemma which gives bounds on the Szego
kernel function.

LEMMA 2.1. Let Fec. (e Q(F), { +# . Let r, R be the least
and greatest distances of points of E from {. Then:

2 8R2
167tR27(E) = KG9 = 2nriy(E)

Proof. We prove the upper bound: the lower one is similar. We
may assume that { =0. Let ge H¥Q), ||lg|| 1. Denote inversion
in the unit circle by .. Define g, on 2, by g¢.(?) = g(z.)*. Clearly
g€ HY(2,) and || g. || £ 1/r. Hence:

: < ga P 1 BR-
IQ(O)I lg*( )[ 277."7(E*) = oy ry(E*) = 2r? '7(E)
by 1.4. So:
K(0,0) = sup {| g(0) > g& H¥Q), |lg]| = 1} = _2_%

There is a simpler bound for the Garabedian function: for, in
the above notation:

15 v()dz | 1 Sl [ds_“/(E)

2%@‘_'%7} 0 2 —C 1T 2 Joe

w0 -

THEOREM 2.2. Let Ee &% There is a positive real-valued func-
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tion az(l), the slope function of E, defined on 2, with the property
that for all e Q:

7(E U DG €)) = v(E) + eax(d) + OE) .

ax(Q) is given explicitly by:

ax(C) = 2x[y Q{1 — [ F(O I} .

The bound in the error term depends only on Y(E) and on the ratio
of the greatest and least distances of points of E from (.

Proof. We may suppose that { = 0. Let », R be the least and
greatest distances of points of E from 0. Note that Ec D(0; R), so
that v(E) < R. We shall prove the theorem by showing that:

e < 107%r/R)y*v1(E) — [ Y(E U D(0; €)) — Y(E) — ¢az(0)|
= 10°(R/r)"v(E)™%e* .

Fix ¢ < 107%(r/R)’*v(E). Since r < R and v(E) < R, we have ¢ <
107°r; so D(0; €) does not meet E. Write E, = E U D(0;¢), 2, = Q(E)),
H* = H¥Q), H? = H¥2)), Y = 7(E), 7. = v(E,). Choose an orthonormal
basis {u,} for H®.. Now we can use the Cauchy integral to express
any element of H? as the sum of an element of H*? and an element of
H*(S®\D(0; ¢)). The latter space is the closed linear span of {z7": % = 0}.
It follows that if, for » =1, v, is any function analytic on 2 except
for a pole of order » at 0, then H;? is the closed linear span of {u,}U
{v,}. To be specific, we shall put:

e K(z, 0)

u) = e R0 o

1.2 (5) says that 1/(277,) is the square of the norm of evaluation at
o in H2. Our proof consists of calculating this by applying Proposi-
tion 1.5 to {u,} U {v.}.

We shall calculate various bounds now, so as not to break con-
tinuity later. Throughout, || ||” and “norm” will refer to the norm
of an element of a Hilbert space, or the norm of an infinite matrix
considered as a bounded operator on [,; and “|| ||.” will denote the
supremum of the absolute value of a function on the set D(0;¢).

Let z,¢C, |z,]<e. For n=1:

_ 1 S u,(R)dz
un(zo) o7t Jlzi=rl2 2 — 2 .

Hence:
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Hlle S | Juids,
- 277.'(7'/2 — 8) lzl=7]2
so that by Schwarz’s inequality:
r
wle £ ———— . 1%ds .
”u ” - 477.'2(7'/2 — 5)2 SIzI:r/Zlu , 5

Summing over # and using Lemma 2.1 gives:

2 r
Sl S et K s
1
(1) < PP 8(R + r/2)* < 3Ry

4n(r/2 — €)* 2m(r/2)*y

since ¢ < 107% and » < R. Analogous computation gives:

(2) Sl s < B0R% ™y
In particular:
(3) S ul(0) P < 5OR ™y .
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Next we want a bound for || d*/dz* K(z, 0)||... Let 2,€C, |z | <Ze.

Then for £k =1 and for all s < r:

dk
dazk

_ | R S K(z, 0)dz
K(z, 0)]2:20 - Zﬂ'i (z|=8 (z —_ zo)k+1

_ k215 SR(R+s)
= 2m (s — &)t 2mr(r — s)y

(Here we have estimated | K(z, 0)| by K(z, 2)'*K(0, 0)'/* and then used

Lemma 2.1.) In particular, putting s = kr/(k + 1):

dk K(z, 0) Iz= é _LCL 8R'2R (k '+' ].)IIH.1
dz* 0 2 r(r — (k + L)g/k)s+y k"
< E+ 1! 16 R? o< B+ 1!
2 r(r — 2e) 'y T r(r — 2e)ktly

This holds also for £ = 0 by Lemma 2.1. Hence for £=0,1,2, -.-:

We need one more estimate. Since ¢ < 107%, (4) gives:

‘dK(z, 0) ‘ _ I5R*
dz o T iy

Hence, using Lemma 2.1 and the fact that ¢ < 10°R~*%, we have:
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(5)  |K(G 0)]. < K@, 0) + 4}%” < 1.01K(0, 0) .

We shall imagine the basis {u,} U {v,} to be partitioned into three
sections. The first section consists of all the u,, the second section
consists of v, alone, and the third section consists of v, v, v, ---
The corresponding matrix T of inner products will be in block form:

A BY C*
(6) T=I+M, M=|B D E"
C E F

Next we calculate the inner products. Denote inner products in
H:by (,). By a statement of the form “X = Y with error Z”7 we
shall mean | X — Y| < Z, or || X — Y || £ Z, according to context.

u,uhds + S U Uids = 0y, + 271,,(0)*u,(0)

lz1=¢

(s, ) = |,

CEY

U, Upds = S
1

5Q

+ sS:“ [, (0)* (u(c™) — %,(0)) + (Un(ce?)* — n(0)%)u,(ce™)]d6 .

[ Uy Un) — O — 27€2,(0) %, (0) | = 27&°(|] U [l % 1]oo + |1 %0 1]l %0 []) -

Now the matrix [27eu,,(0)*u,(0)] has norm 27e(>) | %..(0) |*] ,(0) [})'2 =
2reK(0, 0) < 8R*r*v"'¢ by Lemma 2.1. The norm of the matrix
(27571 st 1), L+ 12 [ 2, 1)) i @t most 4me(S, [l |11, 1) <
200R*r3y'¢* by (1) and (2). So (see the format (6)):

(7) A = [2meu,,(0)*u,(0)] with error 200R* v

Also, || A]] £ 8RRy 'e + 200Rr v~ 'e* < Y(R/r)*v e < Y(R/r)*v ¢ since
€ <107% and » < R. In fact the cruder bound || A | < 2500(R/r)*v "¢
will be sufficient. Observe that, since ¢ < 107%(»/R)*y, we have also

[[A]l < 1/40.
The mth element of B is:
Y — el K(z, 0)*u,ds
(W, %) = R0, 0) S =
glie

T G KO, 0 Suvst(z’ 0)"un(2)d% -

Now the second term on the right-hand side is:

e~z
V'(2r) K(0, 0)7

S[z\:s(K(z’ O)’ - K(O’ O)y)um(z)dz

by Cauchy’s theorem, and is therefore bounded in magnitude by
(2me**/(V/ (27) K(0, 0))) (I5R*/1*Y) || 4, ||, by (4). So:
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B =[ o S K(z, 0)*umds]
V' (27) K(0, 0) Joe z*

2me’l 15R?

V' (2r) K(0,0) r*y
< 66K(0, 0) Rty oi2%3

(8) with error

(X M ww [1)"?

by (1). The norm of the matrix in the square brackets is at most:

1/(27'[)51,;{(0’ 0) <Sag l K(zl',zc;z I*’ds )1/2

gtz . 1/2 gl
= V' (2r) K(0, 0)r <§a.ol K 0] ds’) = 1/ @) K(0, 0)r

Hence, using Lemma 2.1 and the fact that ¢ < 107°(»/R)*y, (8) gives
|| B|| £ 3Rr*y'%¢'*.  The cruder bounds || B|| <1/40 and ||B|*<
2500(R/r)*y~'e will suffice. Also, using (8) and the estimates calculated
in the last few lines, we have:

B”B:[ e S Kz, O)u:';dsg K(z, 0)*u%ds]
27K(0, 0) Jio 2 o

with error 20000R%%* .

(9)

The elements of C are, for m =1, n = 2:

(umr v’ﬂ) =

gnie S K(z, 0)*u,ds
V/(2m) K(0, 0) Joe (=)
S] K 092 d

e—n+1/2

* V/(2m) K(0, 0)¢

Call the first and second terms of the above expression P,, and Q.
respectively. Then:

L = (| Kz 0)['ds )
1P| §W<Z§Te )

1 o gl 1/2
§1/(2n) K(0, 0) @‘ r K(0’0)>

< 3Rr—3y'e’l* < (R/r)v e .

We estimate the integral in the expression for @, as follows. Replace
K(z, 0) by K(z, 0) minus its Taylor expansion about 0 as far as the
term in 2*7'. By Cauchy’s theorem, these added terms do not affect
the integral. By Taylor’s theorem, K(z, 0) minus its Taylor expansion
is bounded on |z| =¢ by (¢"/n!)| d"/dz" K(z, 0)||.., and (4) gives an
estimate for that. This procedure gives:
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147 R? S e (n 4+ 1) \/? 2 \1/2
el = "/ (2x) K0, 0)y (Z‘ (r — 2e)+ ) (Ol 1)

147R* 167R*y 4¢°2 V'3 R
- @)y ™ Vyr
< 6000 R r~ "y~ %% < (Rfr)’y e .

Hence |[C|| < ||P]| + | Q] £ 2(R/r)*y*¢. Once again we shall need
only || C|| < 2500(R/r)*v'e < 1/40.

It is convenient to deal with [g g :' as a single matrix. Its

(m, n)th element (see (6)) is, for m =1, n = 1:

gmtn S | K(z, 0) [*ds +< gmiet S | K(z,0)'ds _ 5 )
27K(0,0)* Joo  (2%)"z" 27 K(0, 0)* Jizi=e  (2%)"2" ")

Denote by G,., H,. respectively the first term and the bracketed
term of the above expression. We have:

gmtn—1

27 K(0, 0)rm+» *

(Gl S gy 7w bl K O) 15 =

"= 2nK(0,0)F rmin ’
Hence ||G || < (1/(2reK(0, 0)))2 L € S OR M ve S X R/r)vle. H is
trickier to deal with. We have:

Hy= -t | K@ 0)pds -1
27 K(0, 0)°c Jizi=:

1 _
= K(z, 0)(K(z, 0)* — K(0, 0)*)z'dz .
RGO Do, K& O G, 0 — KO, 0370z
Lemma 2.1, (4) with ¥ = 1, and (5) now give |H,,| < 800R*r%. If
m > m, then:

H,, =_L"l’”__§ K(z, 0)K(z, 0)*2"""'dz .
STiK(0, 0)F e T DK, 0) ¢

As before, we may replace the second occurrence of K(z, 0) in the

integral by K(z, 0) minus its Taylor expansion, this time as far as

the term in 2™ "', Then by (5), Lemma 2.1, and (4) with £ = m — n:

m—n 167rR v TR(m — n + 1)
1.01
1,,(,,,. — ze)m—n+17
< A00R*r%e(| m — m | + 1)(1/99998)™ ™~
since ¢ < 10~%. This holds similarly for m < ». Combining the cases
m=mn, m>mn, and m < n, we see that:

| Hpn| = €

< SR 400( 2 3 4 ces
1Hl = (800 +2 x 400(2 + 99998 (999987 )

< 2401R‘r‘ e < 2401(R/r)v e .
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So [g g}[] has norm at most [|G || + || H|| < 2500(R/r)*v'c. Hence
each of || D]], || Ell, || F'|| < 2500(R/r)’v"'e < 1/40.
To summarise: we have shown that:

LA, IBIE 1ICIL | DI, | E]l, | FI] < 2500(R/7)*y™"s ;

O 4 1Bl ICL DI I, | FI < 1/40.

In particular we have verified that M is a bounded matrix: indeed
that || M|| < 3/40 < 1. Thus T = I + M is invertible, and Proposition
1.5 applies.

Our next step is to calculate the top left-hand block of the in-
verse of T. Since T' =1~ M + M? — M*® + ..., this top left-hand
block is:

S=1
— A
+ A* + BB + C*C
— A®* — AB¥B — AC*“C — BP¥BA — B"DB — B*E"C — C“CA
— CYEB — C*FC
NE
The row of this expression containing products of degree = (n = 4)

consists of 3"' terms. Each of these terms has norm at most
(2500)*(R/r)*v%*1/40)"* by (10). Hence S = I — A + B¥B with error:

(2500)%*R® 141 1 1 1 141 1 1 1 1
Ae)E (1 4+1 4+ — 4+14+ — 4+ 1414+ = 4 = 4+ = =
7t < 40 40 40 40 40 40
3 3\ _
—_— —_— ves < 8 10 202
+27(1+40+<4O>+ ))..3.10(R/'r)’)’ 2,

Using (7) and (9), we have:

S = [5,“ — 27eu,(0)*u,(0) + : S

K(z, O)utds S K(z, 0)*unds}
27K(0, 0)? *

R 2

with error 200 R*r~%y~'e?+ 20000 R®r %%+ 8.10%(R/r) v %* < 4.10% R/r) vy~ %".
Here and subsequently all integrals are taken round o02.

Finally we apply Proposition 1.5, which says that 1/(27v) =
> S athm(o0)t,(c0)* (since v,(c) = 0 for all n). Hence:

L = S (o) P — 2] 2w (0) un(0)

2y,
+ Z(uﬂ(m)gw”z

)
27K(0, 0)°
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with error 4.10%(R/7)"v %% 3, | n(c) |*=4.10%(R/r)" v %?*/(2nY). Multiply-
ing by 27v and using the fact that 3, un(z)uﬂ(C)* = K(z, €), we have:

S K(z, 0)K(z, -)*ds |*

=1 — 4x*ve| KO, o) [P+ —22 ;

amw K(0, 0)*
with error 4.10%(R/r)*y~%*.

Now the last term simplifies. On 02, f(2)v(2)dz =0, so that ds =

(¥ (@)1 9(2) |) f(2)dz = (K(z, «)/K(z, <)*) (f(2)/i) dz. Therefore:

E K(z, 0)K(z, °)*ds _ lg K(z, 0)K(z, ) f(z)dz
z 7 2z
= —2nK(0, 0)K(0, =)f(0)
since K(z, 0)K(z, «)f(z) is analytic on 2 and vanishes at co. Substi-
tuting in (11), we have:

7i =1 — 47*ve| K(0, o) |41 — | £(0) |} with error 4.10%R/r)*y % .
Now 4mve| K(0, ) {1 — | £(0) [} < 4m*veK(0, 0)K(oo, ) < 8(R/r) e <
107,  Also 4.10%(R/r)*v~%* < 1/25. So we can invert to obtain:

% =1 + 47n*ve| K(0, <) |1 — | £(0) |} with error 10°(R/r)"y % ;

v =7 + 47| K(0, ) ({1 — | f(0) [}
= v + 2me| v(0) [{L — | £(0) |?} with error 10°(R/r)*v~¢*.

It is as well to explain the curious choice of the functions v, in
the above proof. The only essential property of v, we used is that
it vanishes at o and is analytic on £ except for a pole at 0 near
which v,(2) = (2r) %" %™ 4 .... The simpler choice v,(z) =
(2m)'%em—12z= shortens the proof but yields an error bound dependent
on the length of 92, which would have been unsuitable for the next
section.

3. Extension to arbitrary compact sets. We shall now show
how the above results extend to arbitrary compact sets E. In par-
ticular, we show how to define the Garabedian function of E, thus
solving a problem considered in [2] and [3].

Let E be compact. We shall suppose meantime that v(E) > 0.
E can be expressed as the intersection of a decreasing sequence {E,}
in &7 Hence v, and ag, are defined. Fix (e 2(%), and choose 7,
so that (e 2(E,) whenever n > n,. By Theorem 2.2 there exist ¢, >
0, £ > 0, such that vn > n, Ve < &

(12) [ Y(E, U DG ¢)) — v(E,) — eag,(0) | = ke*.
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That is, for all ¢ <e¢, the sequence {eaz ({)}.>., considered as an
element of the Banach space of bounded sequences with the supremum
norm, is within a distance ke of the sequence {Y(E, U D(; ¢)) —
Y(E,)}usny Which converges to v(E U D((;¢€)) — v(E) by 1.1. Thus
{az,(Q)} is within a distance ke of the closed subspace ¢ of convergent
sequences, for all ¢, and is therefore itself in ¢. Call its limit az().
ay is the slope function of E. Letting n— o in (12) now gives, for
all e < ¢

[Y(E U D €)) — 7(B) — eax(l)| < ke

This shows also that the limit ay({) is independent of the choice of
the sequence {FE,}.

Now, for each n, | v, (0)| = az, (0/@x{l — | f5 (0 [}}), and this con-
verges pointwise in Q(F). Moreover, {y;} is a normal sequence,
since, if F' is a compact subset of 2(E), {v,} is uniformly bounded
on F by the remark following Lemma 2.1. It follows that for some
sequence \, of points on the unit circle, {\,4; } converges uniformly
on compact subsets of Q2(F). In fact we may take ), =1, since
Yz, () = 1/(2mi). So {yrz,} converges uniformly on compact sets. Call
its limit, {2}, the Garabedian fumction of E. Hence also a,/({) =
2| 5, (O) {1 — | 5, (0) [} converges uniformly on compact sets (and not
merely pointwise, as ascertained already).

Now suppose that v(E) = 0. We define ¢ x({) = 1/@2x1), ax(l) =1
for {e 2(E). This is consistent with the relation a({) = 27|+5(0)|
{U'— | fe(Q) |} since fo() =0. v(E U D(e) =e¢ for all e >0 by 1.3,
and so the relation v(E U D(E; ¢)) = 7(E) + eax(l) + O(¢®) holds trivi-
ally. If {E,} is a sequence in & decreasing to K, then v ({)—
1/(27t) = ¥x({) uniformly on compact sets by the remark following
Lemma 2.1.

Finally, if E is compact, and {F,} is any sequence of compact
sets decreasing to E, the same working as above shows that +, —
vz and az, — a; uniformly on compact sets.

We have therefore proved:

THEOREM 3.1. The Garabedian function yz() and the slope func-
tion ax(C) can be defined for all compact sets E, in such a way that:

(1) The definitions coincide with the existing meanings if
Ee &

(2) If {E,} 1s a sequence of compact sets decreasing to E, then
Vg, = vz and ag, — ap uniformly on compact subsets of Q(E);

(3) YEUDE e) =vE) + cax(l) + 0 for all e QAE), and
the bound in the error term depends only on Y(E) and on the ratio
of the greatest and least distances of points of E from { and

(4) au®) =2a[pQ {1 — [ £} for all e AE).



300 ERIC P. SMITH

The slope function is related to the problem of subadditivity of ~.
If E is connected, then az({) < 1: this is a re-statement of Bieberbach’s
distortion theorem. Subadditivity of v would obviously imply az({) <
1 for all compact E.

I should like to thank Dr. A. M. Davie for his invaluable super-
vision.

Added in proof. N. Suita recently has independently proved the
uniqueness of the Garabedian function much more simply (“On a metric
induced by Analytic Capacity,” Kodai Math. Sem. Rep. 25 (1973),
215-218).
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