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THE GARABEDIAN FUNCTION OF AN
ARBITRARY COMPACT SET

ERIC P. SMITH

If the outer boundary of the compact plane set E is the
union of finitely many disjoint analytic Jordan curves, the
Garabedian function of E is a familiar object. J. Garnett and
S. Y. Havinson have each asked whether the Garabedian func-
tions of a decreasing sequence of such sets must converge.
The present paper shows that they do converge. This fact
leads to a natural definition of the Garabedian function of an
arbitrary compact plane set. As an intermediate step, an ap-
proximate formula is obtained for the analytic capacity of the
union of a compact set E and a small disc not intersecting E.

1* Prerequisites and notation* Good introductions to Analytic
Capacity are given in [2], pp. 1-26, and [1], Ch. 8; and so we shall
give only a brief outline.

C denotes the complex plane. S2 denotes the extended complex
plane with its usual topology. D(z; r) denotes the closed disc with
centre z and radius r.

Let E be a compact subset of C. Ω(E) denotes the component
of S2\E containing oo. The outer boundary of E is the boundary
dΩ(E) of Ω(E). The analytic capacity of E is:

j(E) = sup {| g'(oo) |: g analytic on Ω(E), \ g | < 1} .

This supremum is attained by a unique function, the Ahlfors func-
tion of E ([1], p. 197).

£s will denote the class of all compact plane sets whose outer
boundary is the union of finitely many pairwise disjoint analytic Jordan
curves. Let EeSΊ and write Ω = Ω(E). The Hardy space HP(Ω)
(0 < p < oo) is the space of all analytic functions g on Ω such that
there exists a harmonic function u on Ω with \g\p <u. If ge HP(Ω)
then g has a finite nontangential limit g{z) at almost every point
zedΩ. H\Ω) is a separable Hubert space with the inner product:

(g, h) = ί g(z)h(z)*d8 (g, heH%Ω)) .
JoΩ

If ζ e Ω there is a unique function K(z, ζ) in H\Ω), the Szego kernel
function, such that:

- \ g(z)K(z, Q*ds (geH\Ω)) .

K(z, ζ) is the inner product between the functionals on H2(Ω) given
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by evaluation at z and ζ, so that K(z, ζ) = Σ MΛ(2)wΛ(ζ)*, whenever
{un} is an orthonormal basis for H2(Ω). The Garabedian function is
most easily defined for our purpose as:

ψ(z) = *L y(EyK(z, oof.

See [2], pp. 13-23.
Throughout, E will be a compact plane set, Ω = £?(#), and / will

be the Ahlfors function of E. If Ee£^y κ(z, ζ) will denote its Szego
kernel function, and ψ its Garabedian function.

We shall use the following results.

1.1. Let {En} be a decreasing sequence of compact sets with
intersection E. Let fn be the Ahlfors function of En. Then fn—*f
uniformly on compact subsets of Ω, and Ύ(E%)--+7(E) ([1], p. 198).

1.2. Let Ee^ Then:
(1) / and ψ are analytic across dΩ.
(2) I/I = 1 on 3fl.
( 3 ) f(z)ψ(z)dz ^ 0 on 9β.
(4) ^(oo) = l/(2πi).
( 5 ) K(oo9 co) = l/(2πy(E)).

([2], p p . 18-23).

1.3. Let #, ί7 be compact, T(JK) = 0. Then y(E U F) = τ(F) (an
immediate consequence of [2], Theorem 1.4, pp. 10-11).

1.4. Let # be compact, 0 g £?, EaD(0;R). Denote by ^ the
inversion of £7 in the unit circle. Then:

7(#*) ^ Ύ(E)/8R2

(proof similar to [1], Lemma 12.2, p. 229).
Finally we need the following result on Hubert spaces.

PROPOSITION 1.5. Let h be a separable Hubert space, and let {un}
be a sequence of vectors in h whose closed linear span is h. Suppose
that the infinite matrix T given by Tί3 = (%, u{) is bounded and
invertible (as an operator on l2). Then for every bounded linear
functional f on h the sequence {f{u^)} is square-summable and'.

ί:\\fw=

Proof. T is positive, and so is the matrix of a positive operator
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Pe B(l2). P has a positive square root P1/2, which is invertible since P is
invertible. For i = 1, 2, 3, , write w{ = Pll2eif where e* is the vector
with 1 in its ith place and 0 elsewhere. Since P 1 / 2 is invertible, l2

is the closed linear span of the w^ (wjf wt) = (P1/2β;, P1/2e*) = (Pe,-, et) =
ϊ7^. = ( ^ Ui); so we can define a unitary J": Z2-+A by J{w^ = ^ for
all i, extended to the whole of l2 by linearity and continuity. The
bounded linear functional J*/ on Z2 is represented by some s e l2.
(eif Pll2s) = {Pι>%, 8) = (wif s) = (J*f){w%) = /(Jw<) = / ( ^ ) . Hence
{/(%)} is square-summable. Also:

- Σ

2* The slope function* The purpose of this section is to es-
tablish Theorem 2.2, which gives an expression, up to first order in
ε, for the analytic capacity of a set of the form E u D{%\ ε), where
Ee Sf and ^e Ω(E). This will be extended to arbitrary compact sets
E in § 3. First we need a lemma which gives bounds on the Szego
kernel function.

LEMMA 2.1. Let EeS^ ζeΩ(E), ζφ oo. Let r, iί be the least
and greatest distances of points of E from ζ. Then:

r ^ κ(ζ, o ^
2πr2rγ(E)

Proof We prove the upper bound: the lower one is similar. We
may assume that ζ = 0. Let g e H2(Ω), \\g\\ ^ 1. Denote inversion
in the unit circle by *. Define g* on Ω* by g*(z) = g(z*)*. Clearly
g* e H\Ω*) and \\g* || ^ 1/r. Hence:

1 ^ 8R2

2πr2y(E)

by 1.4. So:

Z(0, 0) - sup {| g(0) |2: ^ e H\Ω\ \\ g \\ ̂  1} ^ 8 J g 2 .
27τr27(i£)

There is a simpler bound for the Garabedian function: for, in
the above notation:

2πi — ζ

THEOREM 2.2. Lβί EeS< There is a positive real-valued func-
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tion aE(ζ), the slope function of E, defined on Ω, with the property
that for all ζe Ω:

y(E U D(ζ; ε)) = Ύ(E) + eaE(ζ) + 0(ε2) .

is given explicitly by.

The bound in the error term depends only on Ύ(E) and on the ratio
of the greatest and least distances of points of E from ζ.

Proof. We may suppose that ζ = 0. Let r, R be the least and
greatest distances of points of E from 0. Note that Ec.D(0;R), so
that j(E) ^ R. We shall prove the theorem by showing that:

U 0(0; e)) - Ί{E) - eaE(0) \

Fix ε < lQ-*(r/B)6Ύ(E). Since r < i? and τ(#) ^ Λ, we have ε <
10~5r; so J9(0; ε) does not meet #. Write Ex = E U 0(0; ε), i3x = ^(JEO,

H2 = H2(Ω), HI = H'iΩJ, 7 - 7(#), 7i = 7CEΊ). Choose an orthonormal
basis {̂ %} for iϊ2. Now we can use the Cauchy integral to express
any element of Hi as the sum of an element of H2 and an element of
H%S2\D(0; ε)). The latter space is the closed linear span of {z~n: n ^ 0}.
It follows that if, for n ^ 1, vn is any function analytic on Ω except
for a pole of order n at 0, then Hi is the closed linear span of {uj U
{vn}. To be specific, we shall put:

v (Z) = ε-1/2 K(z, 0)
nK J V{2π) K(0,0) zn '

1.2 (5) says that l/(2τττi) is the square of the norm of evaluation at
oo in HI. Our proof consists of calculating this by applying Proposi-
tion 1.5 to {un} U {vn}.

We shall calculate various bounds now, so as not to break con-
tinuity later. Throughout, " | | | |" and "norm" will refer to the norm
of an element of a Hubert space, or the norm of an infinite matrix
considered as a bounded operator on i2; and " | | \\J' will denote the
supremum of the absolute value of a function on the set 0(0; ε).

Let zoeC, | z01 ^ ε. For n ^ 1:

=ri2 z — z0

Hence:
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( r / 2 — ε ) Jiβi=r/2"

so that by Schwarz's inequality:

πr
NOIL 2*

4π2(r/2 - ε)

Summing over n and using Lemma 2.1 gives:

( 1 )

- ( K(z,z)ds
— ε ) 2 Juι=W2

r πr 8(R + r/2)2

~ 4ττ(r/2 - ε)2 2ττ(r/2)2τ ~

since ε < 10~V and r < R. Analogous computation gives:

( 9\ V II */' II 2 <

In particular:

(3) Σ I < ( 0 ) | 2 ^

Next we want a bound for || dk/dzk K{zf 0) |U. Let z0 e C, | z0 \ £ ε.
Then for k ^ 1 and for all s < r:

dzι
-K(z,

2ττι Jι«ι=«

M

2 0 ) * + 1

SR(R + g)
2τr (s - 2πr(r

(Here we have estimated | K(z, 0) | by K(z, zy'2K(0, 0)1'2 and then used
Lemma 2.1.) In particular, putting s = kr/(k + 1):

d"

dz*
•K(z, 0) U=z

kl SR-2R {k

2π r(r - (k + l)ε/k)k+1y kk

^ (fe + 1)! 16.R2 ΊR\k + 1)!
2π r(r - 2ε)/fc+1τ ~ r(r - 2ε)*+I7 '

This holds also for k — 0 by Lemma 2.1. Hence for k = 0,1, 2, :

(4) ——K{z, 0) ;£ j-γ— .

We need one more estimate. Since ε < 10~5r, (4) gives:

\\dK(z,0)\\ ^ 15R*
II dz lU r 3 7

Hence, using Lemma 2.1 and the fact that ε < 10~5i2~V5, we have:
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dκ(z, o;
dz

^ l.Oliφ, 0) .

We shall imagine the basis {un} U {vn} to be partitioned into three
sections. The first section consists of all the un, the second section
consists of vι alone, and the third section consists of v2, v3, vi9

The corresponding matrix T of inner products will be in block form:

( 6 ) Γ = M, M =

A BH CH

B D EH

C E F

Next we calculate the inner products. Denote inner products in

Hi by ( , ). By a statement of the form "X = Y with error Z" we

shall mean \X — Y\ ^ Z, or || X — Y\\ <; Z, according to context.

unuίds = \ unulds + \ unutds = dmn + 2πεum(0)*un(0)

[um(θr(un(εeiβ) - un(0)) + ( M ^ T - «»(0)*)Mtι(ε

n, um) - δmn - £ 2πe%\\ um | u'm D .

Now the matrix [2πεum(0)*un(0)] has norm 2τrε(Σ I ^m(O) I21 un(O) |2)1 / 2 =
2ττεZ"(0, 0) <g 8i2V~27~^ by Lemma 2.1. The norm of the matrix

[2πε2(|| um | | J | < |L + II *4 | | J | u% | | J ] is at most 4πε2(Σ II u« \\l\\ < \\l)112 £
2Q0R2r-3y-1ε2 by (1) and (2). So (see the format (6)):

( 7) A = [2πεum(0)*uw(0)] with error 200i2V-37~1ε2 .

Also, || A | | ^ δBV-V'ε + 200i2V-37~^2 ^ 9(i2/r)27~^ ^ 9(J?/r)57~]ε since
ε < 10"V and r < R. In fact the cruder bound ]| A || ^ 2500(J?/r)57~1ε
will be sufficient. Observe that, since ε < 10~5(r/i?)57, we have also

K(z, 0)*umds

The mth element of B is:

V(2π) K(Q, 0) Jo

K(z, 0Y'uJz)dz .

Now the second term on the right-hand side is:

Λ (K(z,θr -K(Q, 0)*)un(z)dz
I J | z i = eV(2π) K(0, 0)ί

by Cauchy's theorem, and is therefore bounded in magnitude by
(2πesη(V(2π)Kφ, 0))) (15#2/r37) || um | | . by (4). So:
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p _ Γ ε1'2 f K(z, 0)*umds
U/(2π) K(0, 0) ho z*U/(2π) K(0, 0) ho

w i t h e r r o r

V(2π) K(0,0) r37 ~ - " —•-'

^ 66iΓ(0, oy'R'r-'y-31^12

by (1). The norm of the matrix in the square brackets is at most:

ε1'2 /f 1 g(g, 0) \2ds V'2

VW) K(0, 0) \ho \z\* )

, 0)r

l /2

Hence, using Lemma 2.1 and the fact that ε < 10~5(r/-R)4T, (8) gives
WBW^SRr-'y'i'ε1!2. The cruder bounds | | B | | ^ l / 4 0 and | | £ | | 2 ^
2500(iϋ/r)57~1ε will suffice. Also, using (8) and the estimates calculated
in the last few lines, we have:

B»B = Γ ε f κ(z' 0)<ds [ K{z, 0)*u%d81
( 9 ) L2πK(0, 0)2 h° z ho z* J

with error 20000i2V-8ε2 .

The elements of C are, for m ΐg 1, n Ξ> 2:

(u v \ ~
, 0)

l/(2τr) if(0, 0)ΐ

Call the first and second terms of the above expression Pmn and Qmn

respectively. Then:

V (2π) J6Γ(0, 0)

1

l/(2τr)Γ ϋΓ(O, 0) VίΞi r2 :

3^r-3γl/2ε3/2 ^

We estimate the integral in the expression for Qmn as follows. Replace
K(z, 0) by if(2, 0) minus its Taylor expansion about 0 as far as the
term in zn~\ By Cauchy's theorem, these added terms do not affect
the integral. By Taylor's theorem, K{z, 0) minus its Taylor expansion
is b o u n d e d on \z\=ε b y (en/n\)\\dn/dzn K(z, 0)\\^ a n d (4) g i v e s a n
estimate for that. This procedure gives:
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0, 0)7 \& (r - 2ε

147Γ.R2 16π.R27 4ε5'2 l / T i g
rV(2π) 7 r2 r 8 V 7 r

6000i2V-77"1/2e5/2 ^

i 2 ) 1 ' 2

Hence | | C | | ^ | | P | | + | | Q | | ^ 2(β/r)57-1ε. Once again we shall need
only || C\\ g 2500(Λ/r)57~1ε ^ 1/40.

It is convenient to deal with \ ™ p as a single matrix. Its

(m, %)th element (see (6)) is, for m ^ 1, n ^ 1:

, 0) 12& / ε " + ^ 1 f \K(z,0)\2ds+ ^ 1 f \K(z,0)\2ds g \
: ( 0 , 0 ) 2 J I . I = . ( Z * ) W ^ m V "

Denote by Gmn, Hmn respectively the first term and the bracketed
term of the above expression. We have:

Hence 11G \ \ ^ (1/(2^6^(0, 0))) Σ»=i s27* 2κ ^ 9i22r~47ε ^ ^B/rY^-'ε. H is
trickier to deal with. We have:

i ( I iΓ(s, 0) |2ds - 1
2πK(0, 0)2e Jι.ι-.' v "

f 0 ) 2 ( 0)* - K(0,

Lemma 2.1, (4) with k = 1, and (5) now give | i2»n | ^ 800i24r-5s. If

m > n, then:

•( K(z, 0)K(z, 0)*zm—ldz .
Jl«l=«0, 0) 2

As before, we may replace the second occurrence of K(z, 0) in the
integral by K(z, 0) minus its Taylor expansion, this time as far as
the term in zm~n~\ Then by (5), Lemma 2.1, and (4) with k = m — n:

1 π l< *—1 Π1 16πi?7 ΊR\m - n + 1)
| i l " | - S " ~ ^ r(r - 2e)— + 1 7

^ 400i2V-5ε(| m - Λ I + l)(l/99998)"11-'11-1

since ε < 10~V. This holds similarly for m < n. Combining the cases
m — n, m > n, and m < it, we see that:

I,flu S ^ 1 ( 8 0 0 + 2 X 400(2 + - ^ + 1 5 5 ± i F + . . . ) )
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So ϊjj J Π has norm at most | | G | | + | | f f | |^ 2500(ie/r)57"1ε. Hence

each of \\D\\, \\E\\, \\F\\ ̂  2500(i2/r)5τ-1ε ^ 1/40.

To summarise: we have shown that:

J ^ 2500(Λ/r)V1e\\A\
( ) | |A|

In particular we have verified that M is a bounded matrix: indeed
that || M|| ^ 3/40 < 1. Thus T = I + M is invertible, and Proposition
1.5 applies.

Our next step is to calculate the top left-hand block of the in-
verse of T. Since T'1 = I - M + M2 - M3 + , this top left-hand
block is:

S = I
-A

+ A2 + BHB + CHC

-A3- ABHB - ACHC - BHBA - BHDB - BHEHC - CHCA

- CHEB - CHFC

The row of this expression containing products of degree n (n Ξΐ 4)
consists of 3""1 terms. Each of these terms has norm at most
(2500)2(Λ/r)I07-2ε2(l/40)κ-4 by (10). Hence S = I - A + BHB with error:

TV \ 40 + + 40 + + 40 + 40 + 40 + 40

+ 27(l + — + (—Y + •)) ̂  3.108(i?/r)107-2e2.
v 40 \ 40 / / /

Using (7) and (9), we have:

S =

Here and subsequently all integrals are taken round dΩ.
Finally we apply Proposition 1.5, which says that 1/(2TΓ7I)

Σ Smnum(oo)un(oo)* (since vn{oo) = 0 for all ri). Hence:

— V I oi (ao\ I2 — 9TΓPI V o/ fOΪ*-?/ f ooϊ I2

27Γ7!

2πK(0, 0)2
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with error 4.108(#/r)107~2ε2 Σ I w»(°°) |2 = 4.108(i2/r)107-2ε2/(2ττ7). Multiply-
ing by 27Γ7 and using the fact that Σ ^»(^)^*(0* = %(z, Q> we have:

- ) r + ^ j Γ I jJL=i-

with error 4.108(#/r)107-2ε2 .

Now the last term simplifies. On dΩ, f(z)ψ(z)dz ^ 0, so that ds =
(f{z)/\ ψ(z) \)f(z)dz = (K(z, oo)/K(z9 oo)*) (f(z)/i) dz. Therefore:

K(Z, 0)K(z, oo)*rfg _ 1 f g(g, Q)g(z, oo)/(z)dg

0, O)ϋΓ(O, oo)/(0)

since K(z, 0)K(z, °°)/(z) is analytic on Ω and vanishes at oo. Substi-
tuting in (11), we have:

J- = i _ 4τr27ε| iΓ(0, oo)|2{l - | /(0) |2} with error 4.108(E/r)10γ-2ε2 .

Now 4π27ε| iΓ(0, oo) |2{l - | /(0) |2} ^ 4τr27είΓ(0, 0)jBΓ(oof oo)

10~4. Also 4.108(i2/r)107~2ε2 ^ 1/25. So we can invert to obtain:

-2L = i + 4ττ27ε| ΛΓ(O, oo) |2{l - | /(0) |2} with error 109(£/r)107-2ε2

7, = 7 + 4ττ272ε| Kφ, oo) |2{1 - I /(0) |2}

- 7 + 2ττε| ̂ (0) |{1 - I /(0) |2} with error 109(i2/r)107-^2 .

It is as well to explain the curious choice of the functions vu in
the above proof. The only essential property of vn we used is that
it vanishes at oo and is analytic on Ω except for a pole at 0 near
which vn(z) = (2π)~1/2en~ll2z~~n + . The simpler choice vH(z) =

(2ττ)~1/2ε%~1/2^~% shortens the proof but yields an error bound dependent
on the length of dΩ, which would have been unsuitable for the next
section.

3* Extension to arbitrary compact sets* We shall now show
how the above results extend to arbitrary compact sets E. In par-
ticular, we show how to define the Garabedian function of E, thus
solving a problem considered in [2] and [3].

Let E be compact. We shall suppose meantime that y(E) > 0.
E can be expressed as the intersection of a decreasing sequence {En}
in S< Hence ψEn and aEn are defined. Fix ζeΩ(E), and choose nQ

so that ζ e Ω(En) whenever n > nQ. By Theorem 2.2 there exist ε0 >
0, k > 0, such that Vw > n0, Vε < ε0:

(12) I 7(1*7. U D(ζ; ε)) - <γ(En) - eaE%(Q \ ^ kε* .
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That is, for all ε < ε0, the sequence {εaEn(ζ)}n>nQ, considered as an
element of the Banach space of bounded sequences with the supremum
norm, is within a distance kε2 of the sequence {Ύ(E% (J D(ζ; e)) —
l(En)}n>no, which converges to Ί{E (j D{Z\ e)) - y(E) by 1.1. Thus
{aEn(ζ)} is within a distance kε of the closed subspace c of convergent
sequences, for all ε, and is therefore itself in c. Call its limit aE(ζ).
aE is the slope function of E. Letting n —» °° in (12) now gives, for
all ε < ε0:

I j(E U D(ζ; ε)) - j(E) - εaE(ζ) \ ̂  kε" .

This shows also that the limit aE(ζ) is independent of the choice of
the sequence {En}.

Now, for each n, \ ψEn{Q I = aEn(ζ)/(2π{l - \fEn(ζ) |2}), and this con-
verges pointwise in Ω(E). Moreover, {ψEJ is a normal sequence,
since, if F is a compact subset of Ω{E), {irEJ is uniformly bounded
on F by the remark following Lemma 2.1. It follows that for some
sequence λΛ of points on the unit circle, {λnψEJ converges uniformly
on compact subsets of Ω(E). In fact we may take Xn = 1, since
ΨES°°) ~ V(2^i). So {ψEJ converges uniformly on compact sets. Call
its limit, {ψE}t the Garabedian function of E. Hence also aEn(ζ) =
2π\ ψEn(Q |{1 — i/δjw(Q|2} converges uniformly on compact sets (and not
merely pointwise, as ascertained already).

Now suppose that j(E) = 0. We define ψE(ζ) = l/(2ττi), aE(ζ) = 1
for ζeΩ(E). This is consistent with the relation αu(ζ) = 2ττ| ̂ E(Q |
{1 - |Λ(Q |2} since Λ(ζ) - 0. Ύ(E U D(ζ; e)) = ε for all ε > 0 by 1.3,
and so the relation Ύ(E U D{ζ; ε)) = j(E) + εaE(ζ) + O(ε2) holds trivi-
ally. If {EJ is a sequence in S^ decreasing to E, then ψEn(ζ)-+
l/{2πi) = fE(ζ) uniformly on compact sets by the remark following
Lemma 2.1.

Finally, if E is compact, and {En} is any sequence of compact
sets decreasing to E, the same working as above shows that ψEn —•>
ψE and aEn —> aE uniformly on compact sets.

We have therefore proved:

THEOREM 3.1. The Garabedian function ψE(ζ) and the slope func-
tion aE(ζ) can be defined for all compact sets E, in such a way that:

( 1 ) The definitions coincide with the existing meanings if

( 2 ) If {En} is a sequence of compact sets decreasing to E, then
ψEn —* ΨE and aEn —> aE uniformly on compact subsets of Ω(E);

n (3) Ύ(E U D(ζ; e)) - Ύ(E) + εaE(ζ) + 0(ε2) for all ζeΩ(E), and
the bound in the error term depends only on y(E) and on the ratio
of the greatest and least distances of points of E from ζ; and

(4) aE(ζ) = 2π\ f (ζ) |{1 - | /(ζ) |2} for all ζ e Ω(E).
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The slope function is related to the problem of subadditivity of 7.
If E is connected, then aE(ζ) ^ 1: this is a re-statement of Bieberbach's
distortion theorem. Subadditivity of 7 would obviously imply aE(ζ) <J
1 for all compact E.

I should like to thank Dr. A. M. Davie for his invaluable super-
vision.

Added in proof. N. Suita recently has independently proved the
uniqueness of the Garabedian function much more simply ("On a metric
induced by Analytic Capacity," Kodai Math. Sem. Rep. 25 (1973),
215-218).
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