
Commun. Math. Phys. 133, 433-485 (1990) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1990

Selberg Supertrace Formula for Super Riemann Surfaces,
Analytic Properties of Selberg Super Zeta-Functions
and M ul ti loop Contributions for the Fermionic String

Christian Grosche*

II. Institut fur Theoretische Physik, Universitat Hamburg, Luruper Chaussee 149,
W-2000 Hamburg 50, Federal Republic of Germany*

Received March 16, 1989; in revised form March 29, 1990

Abstract. In this paper a complete derivation of the Selberg supertrace formula
for super Riemann surfaces and a discussion of the analytic properties of the Selberg
super zeta-functioπs is presented. The Selberg supertrace formula is based on
Laplace-Dirac operators Πm °f weight m on super Riemann surfaces. The trace
formula for all meZ is derived and it is shown that one must discriminate between
even and odd m. Particularly the term in the trace formula proportional to the
identity transformation is sensitive to this discrimination. The analytic properties
of the two Selberg super zeta-functions are discussed in detail, first with, and the
second without consideration of the spin structure. We find for the Selberg super
zeta-functions similarities as well as differences in comparison to the ordinary
Selberg zeta-function. Also functional equations for the two Selberg super
zeta-functions are derived. The results are applied to discuss the spectrum of the
Laplace-Dirac operators and to calculate their determinants. For the spectrum it
is found that the nontrivial Eigenvalues are the same for Πw and do UP to a

constant depending on m, which is analogous to the bosonic case. The analytic
properties of the determinants can be deduced from the analytic properties of the
Selberg super zeta-functions, and it is shown that they are well-defined. Special
cases (m = 0,2) for the determinants are important in the Polyakov approach for
the fermionic string. With these results it is deduced that the fermionic string
integrand of the Polyakov functional integral is well-defined.

I. Introduction

The Selberg trace formula has turned out to be a powerful tool to analyse the
spectra of Laplacians on Riemann surfaces and to calculate their determinants. In

* Present address: Imperial College of Science, Technology and Medicine, The Blackett
Laboratory, Prince Consort Road, London SW7, UK



434 C. Grosche

addition, the Selberg zeta-function serves as a function with which many cal-
culations and considerations can be simplified. In this paper I want to present a
discussion generalizing these features to the "super"-case.

The main interest in this field emerges from the Polyakov approach to string
theory [49]. In this prescription the perturbation expansion is given by a summation
of all Riemann surfaces with increasing genus # = 0,1,2,... and an additional
integration over all variations of a Riemann surface with a given genus g, i.e. the
integration over the Teichmuller space. This partition function in the genus g, i.e.
the multiloop expansion, has been in detail discussed by e.g. DΉoker and Phong
[16], Gilbert [21] and Namazie and Rajjev [45] for the bosonic string and by
DΉoker and Phong [18] for the fermionic string. In the bosonic string theory as
well as in the fermionic string theory it turns out that the Selberg (super-)trace
formula serves as a tool to express the (super-)determinants of the relevant
Laplace(-Dirac) operators as ratios of Selberg (super) zeta-functions. There is the
alternative to express these terms by means of Theta-functions as was pointed out
by Alvarez-Gaume et al. [1] and Manin [40]. The final task is, of course, the
study of the superstring [24,25] and the heterotic string as developed by Gross
et al. [33]. The question of the superstring is relatively easy. In the fermonic string,
the spinors on the Riemann surface are defined with some spinor structure, which
can be independently chosen for left- and right movers. In type II superstring
theory (type I theories contain open strings, whereas type II theories only closed
strings), these spinor structures must be summed over to project (GSO-projection
[22]) onto the correct sector of the Neveu-Schwarz-Rammond theory [18]. It
turns out that at the one-loop level, for type II superstrings the resulting sum for
the partition function vanishes by the use of a famous Jacobi identity on
Theta-functions ("aequatio identica satis abstrusa"), indicating the presence of
10-dimensional space-time super symmetry, i.e. the equality at each mass level of
the numbers of bosonic and fermionic states (for details see e.g. [18]).

Throughout this paper I work with type II theories in flat space-time having
critical dimension d = 10. The question of heterotic strings is not discussed in this
paper.

However, the Selberg trace formula and its super generalization has much more
applications than only for string theory. There is also the question of the
spectrum of Laplace(-Dirac) operators on (super-) Riemann surfaces. The Selberg
(super-)trace formula with appropriately chosen test functions gives answers for
those considerations.

Furthermore there is the study of quantum chaos. Classical motion on bounded
domains on the Poincare upper half-plane (or the Poincare disc, respectively) turns
out to be chaotic (Bernoulli-like) and there are an infinite set of closed geodesies
in these domains. An remarkable achievement in this field has been presented in
papers of Aurich and Steiner [4], where up to 200 million geodesies were
determined, and by Aurich, Sieber and Steiner [5], where these geodesies have
been used to determine the first low lying Eigenvalues of the Laplace operator on
the simplest symmetric compact domain for g = 2, corresponding to the regular
octagon. Also McKean [38] and Steiner [57] have used the Selberg trace formula
to obtain information about determinants of Laplace operators and to study some
properties of the Selberg zeta-function.

This paper is devoted to the program to generalize as much as possible notions
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of the bosonic case to the fermionic one. To make this paper selfcontained, I
introduce in Chap. II the notion of superconformal transformation on the
Poincare super upper half-plane y$f. This includes a description of the super
Mδbius transformations and the construction of the metric on the super Poincare
upper half-plane ̂ 3? by the Vielbein approach of 2 + 2-dimensional supergravity.

The further contents of the chapters will be as follows: In Chap. Ill the Selberg
supertrace formula for automorphic forms of weight m on compact super Riemann
surfaces is discussed, the latter are visualized as bounded domains on the super
Poincare upper half-plane 9*$f. I will derive the corresponding trace formula in
the super generalisation for Laplace-Dirac operators with weight m. This gives the
super-generalization of the Selberg trace formula as introduced by Selberg [56]
and discussed in great detail by Hejhal [36]. A supergeneralization of the Selberg
trace formula was already given by Baranov et al. [7], but with some details not
taken into account, i.e. in their discussion the term corresponding to the unit
transformation (except m = 0) was missing. I derive this term explicitly and thus
complete their work. However, I do not claim to be mathematically rigorous.

The fourth chapter is -devoted to the discussion of the two Selberg super
zeta-functions and contains entirely new results. These zeta-functions were
originally introduced by Selberg [56] to study spectra of Laplacians on compact
Riemann surfaces of genus g. The super Selberg zeta-functions are similarly defined
as the usual Selberg zeta-function. I find similarities but also important differences
for Z0 and Z^ in comparison with the usual Selberg zeta-function. Functional
relations for Z0ίZ1 and a relation linking these two functions are derived.

In the fifth Chap. I apply my results to fermionic string theory. This includes
first the discussion of the spectra of the Laplace-Dirac operators, and second the
calculation of their determinants. It is shown that the relevant determinants which
have to be considered in the Polyakov functional integral exist and are regular.
Discussions of the superdeterminants are already due to Baranov et al. [7] and
Aoki [2]. In ref. [7] ratios of superdeterminants corresponding to different copies of
super Fuchsian groups were considered (due to lack of knowledge of the analytic
behaviour of super zeta-functions). In ref. [2] attempts have been made to express
the superdeterminants by the super zeta-functions, where the functional equation
for the usual Selberg zeta-function has been used. These indirect reasonings will be
avoided here. Furthermore the behaviour of the superdeterminants of the operators
Πm in Λe case of degenerate super Riemann surfaces is discussed.

Chapter VI contains a summary and concluding remarks.

II. The Poincare Super Upper Half-Plane

In this paper super Riemann surfaces are considered as special supermanifolds
[20,34,46,50,54] of the DeWitt-type [15,51]. These supermanifolds Jt have a
trivial topology in the direction of the soul coordinates, they are fiber bundles over
their body JίE. The reason for this property is the fact that an open set in M is
always the cartesian product of an open set of Rm with the entire space of the soul
coordinates. If this restriction is omitted one gets Rogers-supermanifolds which
allow a more complicated structure in the soul coordinates [53]. From the point
of view of physics only the DeWitt-supermanifolds seem to be of interest [15]; for
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further details see e.g. Rabin and Crane [51]. An introduction into superanalysis
can be found e.g. in the books of Berezin [9] and DeWitt [15].

In the fermionic string theory one is interested in superconformal symmetry.
The notion of superspaces and supermanifolds enables one to represent these sym-
metry transformations as pure "geometrical" transformations in the coordinates
(z, 0)eCc x Cfl (the indices "a" and "c" denote the set of anticommuting and
commuting (complex) numbers, respectively). Let us consider the transformation
(εeCJ:

z = z + 0ε, 0 = 0 +ε. (1)

Lagrangians are constructed from fields and their derivatives. Therefore one is led
to use supersymmetric differential operators. This is nothing but to choose a
Vielbein of complex dimension (1,1), which is invariant under the transformation
(1). Now rewrite Eq. (1) in homogeneous coordinates

(2)

and realize the infinitesimal generator

/O -1 0\
X = 0 0 1 (3)

\o o o/
as a differential operator on the set of all superanalytic functions F(Jί) on the
supermanifold Jί:

x Cα), /(z,0)^/(exp(ε*)M)) (4)

The operator 3?x obviously has odd parity. Invariance of an operator DeTpJί is
now equivalent to the restriction [D, <ex~] = 0, where [A, £] = AB - ( - \)ABBA is
the supercommutator of two operators A and B. For the operator D one chooses

D = θdz + dθ. (5)

The operator D is something like the square root of dz since D2 = Sz.
Let us consider a general superanalytic coordinate transformation

z = z(z,0), 0 = 0(z,0). (6)

Then D transforms as follows

D = (DΘ)D + (Dz - ΘDΘ)D 2. (7)

Now, a superanalytic coordinate transformation is called superconformal, if the
(0, l)-dimensional subspace of the tangential space generated by the action of D is
invariant under the coordinate transformation, i.e.

D = (DΘ)D. (8)
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Thus we have the

Definition. A Super Riemann Surface is a complex (1, l)-dimensional supermanifold,
whose coordinate transformations are superconformal mappings.

One introduces homogeneous coordinates and can represent the (1,1)-
dimensional complex projective space as (ξ,z1,z2)eCα x C2\{0} = P(lfl)(Λ00). The
group 5PL(2, C) of superconformal automorphisms is the natural super-generali-
sation of the Mόbius transformations. Its generators are the operators L0,L l5

L_!, G1/2 and G_ 1/2 of the Neveu-Schwarz section of the Virasoro super algebra of
the fermionic string [in ref. [2] 5PL(2, C) is denoted as OSp(2\ 1, C)]. On P^^ΛJ
these transformations can be realized as linear transformations, which are
superconformal in the local coordinates. Also we have the constraint that
SPL(2, C)Body = SL(2, C). A resonable Ansatz reads:

SPL(l,2;C f lxC2)

(c * β\ }
:={y = \δ a b :α,t,c,d,β6Cc;α,/f,y,ίeCβ;βd-6c = l sdety = 1 V.

(y c d) }

(9)

Locally the transformation xf = yx^x.x'^P^^A^) for yeSPL(l,2;Cα x C2) reads
as

+ β_Γ

cz + d~B' ( Ψ

Superconformal invariance gives the constraint:

Dz' = Θ'DΘ'^(DA)B - A(DB) = Γ(DΓ). (11)

Comparison of the coefficients yields e=l+ (3/2) /?α, γ = da — cβ,δ = ba — aβ. Inserting
into (10) gives finally

+ θ θ, = +

cz -f d (cz + d)2 cz -f d cz + d 2

Let us define the quantities JVy and χy by [7,41,43]

1. (13)

Ny is called the norm of an hyperbolic yeΓ and χy describes the corresponding
spin structure. χγ can take on the values ± 1 and has to be chosen as χy = sign (α + d)
or, respectively [43]

1 s t r y - h l > 2

-! s t ry + l<-2.

ΛΓyo will denote the norm of a primitive y0eΓ, where elements γeΓ which are not
powers (greater or equal to 2) of any element in Γ are called primitive elements
of Γ in analogy to the usual bosonic case. Γ is called a super Fuchsian group, the
subgroup 5PL(2, R) of SPL(2, C), thus the group of superconformal automorphisms
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. Its body JVV B is the corresponding norm of an element yBePSL(2,R), the
group of hyperbolic transformation on the Poincare upper half-plane. In analogy to
the classical bosonic case I denote by lγ = In Nγ the length of a closed geodesic
corresponding to a hyperbolic γeΓ. Of course, /yo is the length corresponding to
a primitive y0. In the bosonic case these generators are also called boosts, because
they correspond to explicit Lorentz transformation on the pseudosphere A2 which
is analytical equivalent to the Poincare upper half-plane ffl [27-31]. They obey
the important constraint

(15)

For a 5PL(2,R) a hyperbolic transformation is always conjugate to the trans-
formation

(16)
or in matrix representation:

1 0 0
hyperbolic yεΓ conjugate to \ 0 χyNy~

1'2 0 | . (17)
0 χyNy~

To normalize y correctly by sdet y = 1 one has to multiply all matrix-entries of
Eq. (9) by K = 1 - |j8α = 1 + Jα£ Therefore:

/1+f jSα α β\ /l+βx α β \
γ = K\boί-aβ a b\=\ba-aβ α(l-^jβα) 5(l-ijβα) (18)

\doc~ cβ c d) (doc-cβ c(l-$βaι) d(l-$β<x))

and the inverse transformation reads:

cβ — rfα hoc — aβ
(19)

To formulate super uniformisation let us first remember the uniformisation theorem
for Riemann surfaces (e.g. [10]):

Theorem. Every compact Riemann surface is conformally equivalent to JίfΓ, where
Jt = C (Riemann sphere), Jί = C (for the torus) or M = ffl (upper half-plane) where
Γ is a discrete, fix-point free subgroup of the conformal automorphisms of Jί.

Since C, C and tf are simply connected, and super Riemann surfaces are fiber
bundles over their body, there exist generalisations SC, SC and ̂  Jjf. The conformal
automorphisms of C and J^ are subgroups of 5L(2, C). This is not true in general
for the superconformal automorphisms of SC and tftf. But for application in
physics we need in general a metric and we can restrict ourselves to "metrizable"
super Riemann surfaces. Superconformal automorphisms of a "metrizable" super
Riemann surface, which leave the metric invariant, are always subgroups of
SPL(2,C).
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With the DeWitt definition of open sets, a subgroup Γ c SPL(2,R) acts discrete
and without fix-points, iff ΓRQd = ΓEody c SL(2, R).

Theorem [51], Every "metrizable" super Riemann surface Σ is superconformally
equivalent to JίjΓ with Jt = SC, SC or Sfffl and Γ is a discrete fix-point free
subgroup of the superconformal automorphisms on Jί.

The coefficients in Eq. (9) are specified by α,b,c,deRc and α,/?eCα, α = iα,
β = ίβ. The fundamental group of a compact Riemann surface of genus g can be
defined by 2g generators satisfying the relation (15). In the super case we have
analogously:

(20)

The real Teichmuller space y of a compact Riemann surface with genus g has
(real) dimension dy = 60 — 6, whereas super Teichmuller space S&~9 respectively,
super Moduli space [44,46,58], has dimension dS3Γ = (6g — 6,40 — 4).

To construct the metric on Sfffl let us consider the Vίerbein EA. The general
method for constructing the Vierbein in a curved 2 + 2-dimensional super space
was given by Howe [37]. Because a 2 -f 2-dimensional superspace is conformally
flat, if there exists a coordinate system in which the metric is proportional to the
flat metric, one starts with the Vierbein EM

A in flat superspace

A _
-

0
-θ

v o

o
1
0

0
0
\)

0
0 1
θ 0

Vo -θ

0\
0
0
\)

(21)

where EA

M = (EM

A) l is the inverse Vierbein. This gives for the quantities

Es = dz-θdθ, ff=dθ.

Under a super Weyl transformation the Vierbein EM

Λ changes as

(22)

v '- (23)
ϊM* = Λll2(Z)EM"-iEM

a(γa)
ΛβDβΛ

ll2(Z), (α = 0,0),

where DΛ = EΛ

MdM,Λ(Z) the scaling function and (yα) the y-matrices which in my
notation read (raising and lowering of spin-indices are performed by the totally
antisymmetric εα/?-tensor):

0 2

0 0
0 0

2 0
(24)

Since the Vierbein EA should be (up to phase factors - see eg. [28]) invariant under
the action of SPL(2,R) the appropriate scaling function reads Λ(Z)=Y~l, where

θff
Yis given by Y:=lmz + — = y + iθ1θ2,i{Iϊ\ιτtheτsetθ = θ1 + iθ2andθ = θ1 -iθ2,
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where Θ1 and Θ2 are real Grassmannians. Note: 7=7. The EA are now given as
(see [51, 59]):

The SPL(2, R) invariant line element can be constructed by [59]:

ds2 = E'E* - 2EeE^=^[_dzdz - iθάzdθ- iθdθdz - (27 -f θθ)dθdθ]. (26)

Rewriting ds2 = dqa

agbdqb we obtain the metric tensor on

/ O 1 0 -iθ
, , J_ 1 0_ -iff 0 _
\a9b) Λv2 Λ , Λ f\ CΪV i ΩΩ\ \^''

1

272

υ
1
0

\iθ

L

0
iff
0

υ
-iff
0

27 + 00

— iσ '
0

-(2Y + ΘΘ)

0 /

and its superdeterminant reads: sdet(α#5) = — — y. Let us contruct the SPL(2,R)
invariant volume element on ^Jtif as

= J\sdet(agb)\dzdzdθdθ = . (28)

Note the difference in the power of 7 to the P5L(2, R) invariant volume element
on 2tf\ dV(z) = dxdy/y2. The super hyperbolic distance between two points q(l} and
q(2} on yjf is defined as [41,60]:

ί2

- dt = ω(ί2 - ίj, (29)

where ω is a phase factor with |ω|= 1 [59]. This can be rewritten as

cosh d(q(ί\ q(2)) = 1 + $R(q(l\ q(2}) - 2r(q(1\ q™\ (30)

where [set q(1) = Z, q(2) = W = (M H- it;, v t + v2), F = t? + vv/2] :

FF (y + ββ/2)(» + OT/2)'

MA_200~+t(v-nQ(0 + t0) 2vv + i(0-ί0)(v + iv)
J'^~ 47 + 4V

(v + iv)(0 + i0) Re (z - w - 0v)
+ 4ΫV '

(32)

All these two-point quantities are SPL(2, R) invariant. Following ref. [59] the super
Laplae-Beltrami operator can be constructed as

1/4Paβ
ll2^b

kPd-l/4. (33)
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This super Laplacian is a straightforward generalisation of the classical bosonic
one and is in general the simplest one which is invariant under general point
canonical transformations (see [30, 47] for a discussion of the classical bosonic
case). The quantum Hamiltonian on a super Riemann manifold is then given by

H = ~ 4 s L B = " '^ + (~ mΓa"gb + (W))a»] (34)

Thus for the Hamiltonian on the Poincare super upper half-plane:

i Y
Hy* = ~ ̂ ~ V<3*A = -- L(2Y- θθ)dzd, + iθdjdς- iθdzd - θθdθd^ I. (35)

2m m

Ί
d^ I.

J

The Hamiltonian H^,^ can be factorized. Let us define

Π = 2YDD = 2y(δθ-δθ + θθdzd, - θd^dz
(36)

[i.e. D = D0, D = D0, in the Vierbein notation of Eq. (21)]. It can be easily shown
that the important relation holds:

Δ^=Ώ2 (37)

Generally I will refer to the operator Π as the Laplace-Dirac operator on
With the invariant volume element on ίftff, Δ^^ and Π are hermitian with respect
to the scalar product

2. (38)

The operator Q is the zero-case of the more general operator Πm which is defined
by (I use a slightly different notation as in Baranov et al. [7, 8] and Aoki [2]; in
refs. [2,7] a description is given, how such operators can be constructed in a
systematic approach):

Πm = 2 YDD + m(iθ - Θ)D. (39)

This is the important operator for the fermionic string. In ref. [7] also the operator
Πm is introduced which is constructed by a linear isomorphism

-m/2. (40)

Hence we have an unitary equivalence of Πm and Qm 4- — . Explicitly Πm reads:

^ _ γγι _ _

Πm = 2YDD + -(iθ - Θ)(D + ID). (41)

I denote this unitary equivalence by Πm = D + y Let us consider a differentiable
superfunction on

Φ(z, z, 0, 0) = A(z, z) + 4=[βχ(^ z) + θχ(z, z)] + -ΘΘB(z, z). (42)
Jy y
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With the notation -Δm = -4y2dzdf + imydx = -y2(d2

x + d 2 ) + imydx we obtain the
following equivalence relation [7]:

[f]mφ = (43)

5 ~ =

where s is an even supernumber. Thus, the solution of the Eigenvalue problem is
formally the same as the classical bosonic one. However, the periodic boundary
conditions [for e.g. m = 0: Ψ(yZ)= Ψ(z\ yeSPL(2,R)] must be interpreted in the
super language. By taking the body in all quantities, one recovers, of course, the
bosonic problem. The equivalence relation legitimates to set s = ̂  + φ (/?eR,
so-called "small" Eigenvalues neglected). This reproduces the positivity of the
operator — Δm.

Path integral treatments for the free motion on the entire upper halί-plane can
be found in ref. [27,29] for m = 0 and in ref. [26] for m Φ 0. As is easily checked,
Φl = Ys and Φ2 = (Θ1 + Θ2)y~s satisfy (43), i.e. Φ1 and Φ2 are an even and an odd
solution of the Laplace-Dirac operator Πw, respectively, with Eigenvalue s:

Starting from Eq. (43) it is straightforward to calculate the even and odd
Eigenfunctions of Πm. In ref. [43] this has been done for the Laplacians Do
result

(45)

$ (x, y, θ, θ)=-0<M*. JO

(46)

with fceR, p > 0, — J ̂  c ̂  i, σfc = sign (̂ ) and a point (p, fe) = (0, 0) is understood as
excluded. kv is a modified Bessel function and WVtμ a Whittaker function. The
functions Φ are orthonormal in the sense of the scalar product (38) [43]:

q). (47)

The heat kernel of the Laplacians Πm

 an^ Πm> respectively, has been calculated
by Aoki [2] and can be constructed with the help of the heat kernel of the operator
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Δm on the Poincare upper half-plane. However, as has been pointed out by Oshima
[48], in ref. [2] the term corresponding to the discrete spectrum is missing. An
investigation of the heat-kernel of Πm

 and Dm, respectively, in fact shows that in
addition to the continuous spectrum, there is also a discrete spectrum with

Eigenvalues s = — — / and s = / + ! — — ί / = 0, l,...,Nm< — - — I for the cor-

responding even and odd Eigenfunction, respectively. This is, of course, due to the
spectrum of Δm on Jf [13,26].

The scalar-product (38) does not form in general a Hubert space inner product
in the sense that it is not positive definite - quite puzzling in view of De Witt's
book [15]. The asymptotic behavior of the heat-kernel (see Chap. V and [2])
suggests that one has to give up either positivity or diagonalizability of self-adjoint
operators (or both), to have a super reparametrization invariant notion of super
Hubert space [3].

Let us consider the partition function for the fermionic string. The relevant
action to be used in the Polyakov approach [12, 14,37] reads:

, X, χ,ψ) = \ f

(48)
Here denote:
1. M: the two-dimensional world sheet,
2. gmn = em

aen

bδab: metric on the world sheet,
3. ψμ: real (Majorana-)spinor,
4. χα: spin f-gravitino field,
5. Fμ: nondynamical field which is needed to close the supersymmetric algebra off
shell [37, 55]:

δX = ίεψ, δΨ=daXyaε + Fε, δF = iέγadaψ, (49)

where ε is a two-dimensional spinor. One sets F = 0, since the equation of motion
just reads F — 0.
6. ya (a = 0, 1, 5) denote the y-matrices

-\ o/ \\ o (5ϋ)

and a bar over quantities denotes complex conjugation.
The action (48) is invariant under five fundamental symmetries [18]

i) Reparametrization invariance,

(51)
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ii) Supersymmetry transformations,

(52)
Here Dm = dm — ̂ ωmγ5 are co variant derivatives taken with the connection

ωm = em

aεpqdpeq

bδab-^χmy5y
nχn, where εab is the totally antisymmetric tensor for

the raising and lowering of spinor indices.
iii) Weyl transformations,

Q. (53)

iv) super- Weyl transformations

δχm = Jmί ^(anything else) = 0. (54)

v) Local Lorentz transformations,

Q. (55)

(With δVn an infinitesimal vector field, ξ an infinitesimal spinor, Λ and λ
an infinitesimal scaling-function and / an infinitesimal Lorentz transformation,
respectively.)

It is very important that the action (48) can be cast into a compact form if a
superspace notion is used [37]. Define

Φ(Z) = X(x) + iθϊy°ψ(x) + i 0V 0F(x). (56)

Then the action (48) can be rewritten as

S = i f dx*dx2dθldθ2eL, L = EΛ

MdmΦ(Z)EaNdNΦ(Z). (57)

The equations of motion read

DαD
αΦ(Z) = 0, (58)

where DΛ = EΛ

Mdm. Mapping (in the sense that we want to study partition functions)
a closed compact world sheet into a fundamental domain (of a super Fuchsian
group) on the Poincare super upper half-plane £fJJf we get the Laplace-Dirac
operator ^\^ = 2ΎDD which we have to study. The partition function is then
calculated as follows:

Z = z 9 , Z, = l9gΛl9ιΛl®X'Ί9re-*tJlΛM (59)
0 = 0

μ denotes the imbeddings in space-time (d = 10). Analogous considerations as
in the bosonic case yield [6-8]:

Πi)]1/2, (60)
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where (in the notation I am using) ZfJlg is the super moduli space [44,58] and
dμswp the super Weil-Peterson measure. The factor [sdet(-Πi]1/2 is the contri-
bution from the Faddev-Poppov ghosts determinant.

III. The Selberg Supertrace Formula

Let us consider the SPL(2, R) transformation as given in Chap. II,

+ b_A
= ' "

where A(Z) = az + b-θδ, B(Z) = cz + d-θy and Γ(Z) = αz + 0 + *0 with έ?=l+fj8α,
y = doc — cβ and δ = boc — aβ. The numbers a, b, c, d satisfy the relation ad — be = 1
and are real even supernumbers. The numbers α and β are odd supernumbers with
the property d = iα, β = iβ. I also use the notation Z' = (z'9 θ') = y(z, θ) = γZ. A, B
and Γ must be multiplied by K = l+ %a,β to give the correct normalization
sdet T = 1. I denote these quantities by A,B and Γ9 respectively.

Let us introduce some important notions:

Definition 1. Let Γ c SPL(2, R) be a discrete subgroup and 17 c y^ a fundamental
domain of 7" which tesselates

Definition 2. Let yeΓ. I call a function f(Z)(Ze^J^) a super automorphic function
of weight m iff it is satisfying the relation /(yZ) = j™(Z)/(Z), where;™ is given by

(z',θ') = y(z,θ). (2)

The task is to construct the relevant operator for the super trace formula which
maps super automorphic functions into super automorphic functions.

Definition 3. Let us consider the integral operator L

Lφ(Z)= J dV(W)km(Z,W}φ(W). (3)

We call L the Selberg super integral operator on ^J f , where fcm(Z, W) is the
integral-kernel of an operator valued function of the operator Πm

We introduce the functions Φ(x) and Ψ(x) sufficiently decreasing at oo. Since
the Laplace-Dirac operator Π is a SPL(2, R) invariant operator its integral kernel
(and the integral kernel of functions of Π) must depend on SPL(2,R) invariant
quantities. Therefore one makes the Ansatz

/c(Z, W) = k0(Z, W) = Φ IR(Z, W)-} - r(Z, W) Ψ[_R(Z, W}-}. (4)

The invariants r(Z, W) and R(Z, W) have been defined in Eqs. (11.31, 32). For the
heat-kernel of the operator Dm the integral kernel /cheat can be explicitly calculated
[2, 43] and has the form of Eq. (4). It consists, of course, of two contributions,
coming from the discrete and continuous part of the spectrum of Πm> respectively.
Let meN0. km is now defined by

), (5)



446 C. Grosche

where

/ - m/2

(6)
— w + ιθv

Jm has for Jm(Z, W)-+Jm(γZ,yW) the transformation property:

J"(yZf y HO = z - , _ w , g y =#(2) HZ> W)j~m(W). (7)

The Selberg super integral operator is then given by

L/(z) = j dV(Z)Γ(Z, W){Φ[R(Z, HO] - r(Z, Wθn*(Z, »0]}/(HO (»)

and maps super automorphic functions into super automorphic functions.
Let / be a super automorphic function and g = Lf. Then:

= J
r# {y}pγU

= Σ SdV(W)kJίZ9γW)f(γW)=Σ S dV(W)kJiZ9yW)ff(W)f(W)
u u

(9)

where U denotes a fundamental domain of the super Fuchsian group and

Definition 4.
K(Z9W)=ΣkJίZ9γW)fϊ(W) (10)

[y}p
is the super automorphic kernel.

Let us consider the supertrace of L. L represents an integral operator of an
operator valued function h of the Dirac operator Dm* i.e. L ̂  h(Om). On the one
hand we have

str(L) = str[fe(Dj]= £ WO ~ MC,)3
n = 0

λjy denote Bose- and Fermi Eigenvalues of Πm> respectively.

On the other, we have for the transformation W = yZ = (Nγz,χγ^W^Θ):

JΊ I IT iiw
\Fy\

and therefore we obtain for str (L):

str(L) = J dV(Z)K(Z,Z) = X J d V ( Z ) k m ( Z 9 y Z ) j ^ ( Z ) = X $A(y\ (13)
U {y}p U {y}p

where A(y) is given by

= ϊ ί ̂  J dx ί —rfJm(Z, yZ)[Φ(Λ) - r f(K)]. (14)
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Immediately one can state the term corresponding to the identity transformation
[Jm(Z,Z) = (-l)m/2 = ϊm]

JΉ Nvo oo dθdθ
A<S» = A(I) = - f dy j dx J — - Φ(0) = ίmπ(g - l)Φ(O), (15)

^ 1 -oo -*

since vo\(RSg) = 4π(g - 1), where RSg denotes a Riemann surface of genus g. For
the explicit evaluation of (14) we need the following

Theorem. Let L be the super Selberg operator and φ any Eigenfunction of Πm in
with Πmφ = sφ. Then

J dV(Z)km(W,Z)φ(Z} = h(s)φ(W\ (16)

where the superfunction h depends only on s and the kernel k. The value of h(s) is
thus independent of the function φ.

Proof. In [7] the proof of this theorem is given for all functions φ (even and odd),
all meZ and all We^J^f . Since we need the theorem only at a specific value, i.e.
W = Z0 = (/, 0), I restrict myself to that relatively easy case, which has also the
advantage that the case of odd functions drops out. Thus for W = Z0 = (i, 0):

w.
Let φ an even superfunction as in Eq. (11.42) without linear in 0, 0-terms, i.e. φ is

of the form φ = A(x,^)ί 1 H -- θθ 1. Insertion yields:

1 °° ^/v °° / Y _ i(v -4- 1 \\ m /2
Lφ(Z0) = ldV(Z)km(Z0,Z)φ(Z) = -ί -^ J dxί * 7* A(x,y)

^ o y -oo \x H- π.y H- i j/

• J dβd^Γ *(/?,) +

|z-w| 2

Since Φ depends only on R0(z, i)9 where R0(z9 w) = - is an 5L(2, R) invariant

quantity, the last equation can be interpreted in terms of the Selberg trace formula
for automorphic forms of weight m [36] with integral kernel Φ. Now, an operator
L on the Poincare upper half-plane whose kernel depends only on R0 is in fact a
function of the Laplace operator Δm. It follows that L multiplies φ by

where Q(y) = J Φ(x2 + y)dx. (19)
o
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This completes the proof.

Let us turn to the calculation of A(γ). The invariants r and R are given with

the hyperbolic transformation W = yZ = (Nyz,χy.v/ΪV^0) as:

θθ\ _ Λ θθ\

~T>

r(Z,yZ) = (2-;

For the Jm term:

2

1 —
2j>'

(20)

J" (Z,yZ) =
:-Nvz + iχ^/Nvθθ

TO/2

u
2ιcosh-

2/

1--

where use has been made substitutions: ζ =

(21)

7s is an

Eigenfunction of Πm with Eigenvalue λ = s. Setting W = Z0(ί',0) the theorem gives
therefore the multiplication by the function h(s):

1 <? , » , „ i/0d0

4 6

,

v _

Γ-(S-l)φf^^^^L \ y /
+ (y - 1)2 + (y - , -i)2

(22)

where the (m/2)th power is to be a principle value (see [36], p. 454). Now performing
in the y-integral a partial integration for Re(s) > 1:

imx

Therefore for h(s):

1

x2 + (y + I)'

dx

Φ
-(y-i)2

. (23)

4sinh 2M/2 I
m/2
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x — 4 sinh2 -

-imeul2Φ(x)-
x + 4

(24)

In the calculations the substitutions x = ^fyξ and y = eu have been made, followed
u ( u\m

by x = ξ2 + 4 sinh2 -. Further the abbreviation αm(ξ, u) = I £ - 2i cosh - 1 has been
2 \ 2/

used. Thus we see that for appropriate h the operator /z(Πm) equals to an integral
operator L of the form (3) whose integral kernel fcm(Z, W) is related to h by the
equations

h(s)=

= ;r- J
Z7Γ -oo

(25)

x—4 sinh2-

—α_

x-h4

m
with the abbreviation α± =αm[± ξ(x),w]. Since Πm

 and Πm + y ar^ unitary

equivalent, we can study traces of Πm instead of Πm. But some care is needed.
Going back to Πm» which is the relevant operator in the fermionic string, then
γs-m/2 js an Eigenfunctίon of Πm with Eigenvalue λ = s; thus

(26)

Consider now h as an operator valued function of Πm

 we nave MΠm)='
m

Therefore one hase to replace in the calculation of h(s) as a multiplier of
the kernel of h(Γ\m)Ys by ys~m/2. Considering s as an Eigenvalue of Πm, this yields
for the multiplier of the kernel

4-
(27)

where ^(M) is explicitly given in terms of Φ and Ψ as in Eqs. (25). Note that the

contributions — coming from h(s 4- m/2) and ys~m/2 cancel. To distinguish between
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the functions h in Eqs. (25) and (27) I often denote h in Eq. (27) by hm(s) = h s + — .
Let us consider several combinations of g(ύ) and g( — u) for later use

m

dx
«P(x)+4sinh2-Φ'(x)

=; ί
dx

u
x — 4sinh2-

cosh-'P(x)

x+ + off) - ί'm cosh ̂  Φ(x) —— -̂
2 x + 4

α"? - α^

1 u

. . 2u: — 4 sm^ -

4cosh-Φ'(x)

(28)

(29)

α
+ + αί ) - imΦ(x)—

x — 4sίnh2-
x + 4

(30)

We have now the relevant terms to calculate A(γ):

N™ °° dθdθ
A(y)= J dy J dx$---J'n(Z,yZ){ΦlR(Z,yZn-r(Z,yZ)ΨlR(Z,yZn}

1 - oo ^*

1 — im-

[ /ΊΛ"
Φ(R0)-yΛ0Φ'(K0)-

Performing the βθ-integration and the substitution x = yξ gives,

Performing another substitution, ξ = ζ ̂ /N~y/(Ny -1) = ζ 2 sinh - , where Ny == e"
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and R0 = ζ2 + 4 sinh2-, the ^-integration yields

/ u\ m/2

ζ-2icosh-X

A(y) =
m J V v

ί
A ' u24 sinh2- 2/cosh^

+ 4cosh2-

φ[ ζ2 + 4sinh2-
u \ 2 (31)

Let us consider the Φ and Φ'-terms in (31) and perform a partial integration in ζ

ζ — 2icosh-
m/2

\

= ί

ζ + 2i cosh - .
2/

u \ m/2

ζ-2icosh-

<- ^ , u

ς-f 2ϊcosh- .

Φ( C2 + 4sinh2-

C2Φ' 4 sinh2 -

f r 0. u w ^
ζ —2ίcosh-

\
2icosh-

= — im cosh - J
2 -oo

/, Λ. u w \ m / 2

ς — 2ίcosh -

ζ + 2i cosh - .

m/2-]

4 cosh2 -

(32)

With the substitution x = ζ2 + 4sinh 2-,dx = 2ζdζ = 2 x-4sinh2-</£ we get

00

ί
n . i M 4sinh 2 u/2 / , . , 7 W
8sinh- ( x + 4smh2-

BI/2

1 - χ cosh + 4 sinh2 - Φ'(x)

i x —4 sinh2-
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(and finally by Eqs. (28) and (29))

l 2 [flf(n) + 0( - «) - (33)

This is the result of ref. [7]. Therefore the supertrace formula reads:

y mln Λ/"

where w = In JVy = ίy and #(w) is given by

(34)

(35)

Furthermore an index m has been added in Φm(x) to denote the dependence on
w. Our final task is to eliminate Φm(0).

Let us first consider m = 0. By Eqs. (30) we have

.

/ x — 4 smhz -
2

(36)

Let us denote ( w = 4sinh2-

1

~υv ' sinhw

Further consider the integral

w . / X — VV
(37)

dw

f

.dy

- xΓ Il2(x -

= - - B(i i) ^ ΦΌW = ΦoM
7Γ x

Here use has been made in the last step of the integral [23, p. 285]:

f (x - aY~ l(b - x)v- 1 dx = (b- a)v + »- ̂ (v, μ)

(38)

(39)

and B(x,y) = Γ(x)Γ(y)/Γ(x -f .y) is the Beta function. Thus we have the inversion
formula

1 °° dw
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Therefore

453

u
smh-

du

Z7Γ o . , - oo
smh-

= ~2 J
π -oo

sin up , i °f ,,
du = - J hfr

ό . , u π -oo
smh-

where the integral [23, p. 503]:

°? sin(αx) π απ

has been used. Finally (in [7] a factor of two is missing):

(P = i(g-l) J Λ(ι

(41)

(42)

It is possible to construct the inversion formulas for, e.g. the m = 1 and m = 2 cases
explicitly by starting from Eq. (30). But this is rather tedious and cannot be easily
generalized to all meZ. Therefore I must develop a symmetric approach to invert
Eq. (30), i.e. to express Φm(x) by an integral (or integrals) over g(ύ) — g( — u). The
general inversion formula must then be evaluated for Φm(0).

Let us consider Eq. (30) by reinserting the variable ξ = x — 4sinh2-:

dξ

ξ — 2ιcosh -
in/2

ξ -f 2i cos -
2 /

imξ

4 cosh2 -

(43)

Let be m ̂  0.1 perform a partial integration in the second term, where it is assumed
that all the relevant terms are sufficiently decreasing at oo:

" / . u \ m/2

^ + 2ιcosh^j (
_ \ 2/

1

!;2 + 4cosh2^
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m/2

1

2im cosh -

oo

! dξ
— oo

ξ-2icos-

ξ 4- 2i cosh -
\ 2/

KΦmU2 + 4sinh2-

With the abbreviation w = 4sinh2- this gives in Eq. (44):

^
Let us define [Q must not be confused with Q0 in Eq. (37)]

β(w) = 2 coth^ fe(u) - ^( - M)], Φm(x) = ϊm[(

(44)

(45)

(46)

and get the integral relation ( w = 4 sinh2 - ̂  0

(47)

For this integral relation I can apply an inversion formula given by Hejhal
[36, p. 454] which yields for Φ:

(48)

Reinserting Φ we get a differential equation for Φ:

—t\m/2

which can be easily solved to give the inversion formula for Φ:

1 <? ϊ
imφm(x) = - J fi'

*

Λ. (50)

.̂ 1) The integration constant in Eq. (50) is given by Φm(oo) = 0.
2) The inversion formula is valid for weZ [see below Eq. (51) for m = 0].

To get some confidence in the inversion formula let us consider Eq. (50) for
some specific values of m.

This is the main result of this section.
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1) m = 0:

ΦoW =
1 o v

J -μ= J Q'(y + t2)dt

(w = y2 + t)

455

(Rearrangement of integrations)

Elementary integral: J

(Partial integration)

w = 4 sinh2 -

dx

+ d/c

π.v/x + 4 x
J β'(vv) arctan

π x (w + 4)v/w - x

= —— f —
n ,αrc - . , 24 sinh2 - - x ^

(51)

This is equivalent with Eq. (40) and shows that the inversion formula is also valid
for m = 0, i.e. the inversion formula is valid for all weZ.

2) m = 1: Similarly as for m = 0.

/ j + 4 -oo

f 2 — A1/2

In particular for x = 0:

4 sinh2 - — x

4- 4 + ί2 4- ί

icosh-dw.

dt

7 °°• sf*. //\\ ί*

π -"c

(52)

(53)

where use has been made of the integral [23, p. 504]

u o sinh

°? . coshpx , π y
smαx ax = .

o sinhyx 2y , πa πβ
cosh h cos —

y y

(54)
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This gives finally for A($} by Eq. (15)

A#> = i(g - 1) ϊ coth πph(ip + l)dp. (55)
— oo

3) m = 2:

00 /

4

4
, — - ί -7=3- ί ί2Q'(y + ί2)rfί

πx/x + 4 o x/y + 43 o

The first integral is up to a factor Eq. (51). For the second I get:

4 °° dv °?

π(x + 4) 2arsin

j

hv/^

This gives for m = 2 the inversion formula

-flf(-n)] 4sinh 2 !-xAι. (57)

π 2arsinhv

/ί/2 . 2/ 4 smh2 — x

? lg(u)-g(-u)l Usmh^-xdu. (58)
±Jx/2 V Z

In particular for x — 0:

j2φ2(0) = — f /z2(ip + τ)tanhπpβp f g(u)sinh-du, (59)
π -oo π -αo 2

and therefore finally

42) = i(g ~ 1) ϊ MiP + i) tanh πpdp + (1 - flf)[Λ2(l) - Λ2(0)]. (60)
— 00

4) m = 3: Similarly as for m = 2 it is straightforward to show that

i3Φ3(0) = — f /i3(ΐp + τ)cothπpdp f ^(w)si
π - oo π -oo

Let us for a moment turn to test functions h for the operator Πm, i.e. let us consider

the function h(s) = h0(s). By Eqs. (25) (relating h and g) g and Q do not depend on
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w ("hatted" quantities belonging to Πm). The equations for Φm (m = 0, 1, 2, 3) suggest
the following general structure for Φm:

£ oo 2 m/2 oo

Γ Φm(0) = - f h(ip + i) tanh πpdp-- j] ί 0(w) sinh (fc -
fc=ι -o

(m even),

(62)

^ i °° 2 (m~~ i)/^ °°
/mΦm(0) = - J ft(ΐp + i) coth πpdp ^ J ^(w) sinh kudu (m odd).

fc=ι -o

In particular, it remains to show that for all m (even and odd):

^ ^
r+2Φm+2(0)-rΦm(0)= --

71 — o

4-

(63)

(64)

Having proved Eq. (64) once, one can go back to the operator Πm

 and all related
quantities. I prove Eq. (64) by induction for m -> m -f 2.

1) Since each step forward is by two units in the induction I have to distinguish
between the even and odd cases. Equations (42) and (59), respectively Eqs. (53, 55)
and (61) show that Eq. (64) is correct for m = 0 and m = 1, respectively.
2) Let us consider Eq. (64) and insert for imΦm(0) and ίm + 2Φm + 2(0):

dy .

I Partial integration and w = 4 sinh2 -

w+1

With a rearrangement of integrations:

4π

[Substitution t2 = 1 - (y + 4)/(w + 4)]

(65)
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Let us consider the ί-integration and replace m -»m 4- 2:

"(1 - ί)

ί Partial integration and w = sinh2 - reinserted 1

U m + 2 >Mw + 4)Γ/ι _ A(m-l)/2 / j + ^(m-1)/2 Π

= 4cosh-sinh—-—u — (w+1) J — (m+3)/2 +— (m + 3)/2 \dt. (66)

Thus repeating the calculations of Eq. (65) for m -»m -f 2 and taking into account

the result of Eq. (66) yield together with w = 4sinh2-:

-ώ - pm+2Φm+2(0) - im

2 °° m -4- 3
= — ί flu) sinh -^Ai. (67)

7C — oo -̂

This proves the induction!

Let us make some remarks concerning the property of the kernel fc(Z, W) that in
general for m φ 0 it can be represented by a sum of a discrete and continuous
spectrum contribution

fe(Z,^) = /cdisc(Z,PF) + /ccont(Z,^), (Z,We50f). (68)

As mentioned in Chap. II, in the case of the heat-kernel on ̂ ^ , fc(Z, W) can be
explicitly calculated [2]. In the calculations of the supertrace formula, we have
not made any reference to fcdisc and kcont, respectively. Of course, implicitly these
two contributions to the complete kernel are always present and contribute to the
trace formula. This is similar as for the usual "bosonic" trace formula and, of
course, is important in the calculation of determinants [8, 11, 17,48]. However, let
us look on this feature more explicitly. Let h be an operator valued function of the
Dirac-operator Πm Then the kernel of /ι(Πm) is given by

00 oo

1 dk I + lp - Λ - tp Ψp,k(Z) Ψ*p,k(W). (69)
- o o θ

\ \~\
i - t p ) \ Ψp,k

/J

Here Ψltk and Ψptk denote the Eigenfunctions of the Laplacian Πm

 on

/ = 0,1,..., NM ^ —,—-— (m even or odd, respectively). Equation (69) generalizes

the result of [2] for some function h and the usual bosonic case [36]. Rewriting
Eqs. (62) and (63) in terms of A(™} we obtain using Eq. (69)
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for m even or odd, respectively. Thus we see explicitly the contributions in the A(™}

term coming from the discrete and continuous part of the spectrum of Πm It *s

not difficult to show that for A(y) the corresponding terms coming from the discrete
spectrum do not contribute; this can be shown by contour integration and is similar
as for the bosonic case [8, 17]. The great advantage of discussing the abstract
concept of a trace formula in comparison to an explicit expression like heat-kernels
lies thus in the fact that one simply has not to take care of substilities of discrete
or continuous spectra. Once stated, the trace formula contains all relevant
information.

I summarize. I have formulated the Selberg Supertrace formula on super
Riemannian surfaces for operator valued functions of the Laplace-Dirac operator
Πm Let h be a testfunction with the properties (following Baranov et al. [7]):

ii) h(^ + ip) need not be an even function in p,

iii)

iv) Λ(^ + φ) is holomorphic in the strip |Im(p)| ̂  1 + — + ε,ε>0 to guarantee

absolute convergence in the sums of Eq. (75) below (see [36, p. 30]).

Its Fourier transform g is given by:

1 oo / m 4-
- (71)

The term A(™} corresponding to the identity transformation reads

-oo

m/2

' (72)

oo / ffj _ι_ 1 \

A™ = i(g - 1) J h (ip + — — coth πpdp
-CO \ 2. J

(m odd). (73)

The last two equations can be combined and stated in a compact form yielding

Λ( \ ? @(u) ~ Q(~M) ί u\Afr' = (l — g) J Tml cosh- law, (meZ), (74)
o . , w V 2 7

smh-
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where Tm( cosh- J = cosh — u denotes the mth Chebyshev-polynomial in cosh-.
\ 2/ 2 2

Thus for the supertrace formula we get (ly primitive geodesic, λ%(F) = ̂  + Pn(F)

are denoting the Bose and Fermi Eigenvalues of Π, respectively):

n ^9u-g-u m
= (1 - 0) J cosh-rfw

0 . , W 2
smh-

+ Σ Σ -ΰ̂ ^{y}p /c = ι e y — e y\_ \ / j

(75)

Equation (75) completes the work of refs. [6-8] by explicit statement of the inver-
sion formula (50) and the Λ(

0

m)-term (74), respectively.

IV. Analytic Properties of the Selberg Super Zeta-Functions

1. The Selberg Super Z eta- Function Z1. The Selberg super zeta-functions are
defined by

z

q(
s)'= Π Π [1 - tfe-(Λ+k}l>l (Re (5) > 1), (1)

{ y ) p f c = o

where q can take on the values q = 0, 1, respectively. χγ describes the spin structure
and ly is the length of a primitive geodesic, as already defined. The γ product is
taken over all primitive conjugacy classes ye/". The Selberg super R-functions are
defined by

Z (s]
R M ' = r ( ' n = T\V-Xyqe-sl^ (Re(s)>l). (2)

Zq(S + 1) {y}p

To study the analytic properties of Z0 and Zί let us consider the Selberg supertrace
formula for w = 0, i.e. (throughout this Chap. I denote by A?(F) = i + pfF) (neN)
the Bose and Fermi Eigenvalues of Π, respectively):

= i(g - 1) J h(ip + {) tanh πpdp

Σ Σ j 12 e-u= ι e y e y _

(3)

To get information for Zl or Rί9 respectively, one has to choose a test function
h(p) so that the first two terms in the square bracket in the supertrace formula
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cancel, i.e. g(u) = — g( — u). I choose the function (Re (s) > 1, Re(σ) > 1):

The second term plays the role of a regulator so that all the involved terms in the
supertrace formula are convergent. Thus for g(u):

and we see that g(u) is an odd function as required. Using [23, p. 406]:

°° x sin ax , . π R

ί^— 2^=^'"' (fi)0 p -r X 2

we get (w > 0) g(u) = (e~su - e'σu) and for weR

0(w) = sign(W)(e-sH-e-*M)? (7)

thus finally for G(w, χ)

G(u,χy) = 2χy(e-sW-e-σW)smh^ (8)

Therefore only the χy-term remains in the supertrace formula which allows to study
the properties of Z^ alone. Inserting G(w, χ) into the length term yields

Σ Σ — jL

Ί
'^'Isinh

/ V P~sly 1 Ύ P~σly Ίyλy _ !__JZM_JL
i-^-^ i-z^'J

In the last step the property of the logarithmic derivative of the Selberg super
/^-functions has been used, i.e. for Re (5) > 1:

s^-έ-Ht'-i/ -^-Sî  <«»
The AO term gives

00

A0 = i(g-l) J

_ Z / Ί _ \ r "" 1 c r*lίLl*f j- f psinwp
π o . u w

smh -

sinh

= 4(l-^)J^-«s+^2>" du, (11)
o . , w

smh-
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where the integrals (6) and (111.41) have been used. Using now [23, p. 356]

I μ-β\Ί

~ ~ ~ 2 ~ 2 Γ ' ( '

1 Γ /I μ + A /

2ϊ|_ U ~2b~)~ \

where Ψ(z) = Γ'(z)/Γ(z)9 zeC, we obtain finally for A0

-!P(σ + i)]. (13)

Let us denote by Δn(£} = n% — ΠQ the difference between the number of even and
odd zero modes of the Dirac operator Π Thus we get the supertrace formula for
the function h<

(0)Γ 1 1 1

First let us discuss the trivial structure of zeros and poles of Rl and Zl in the
complex s-plane. We can read off the analytic properties of the R1 -function:

• For s = %: there is a pole, zero or a regular point depending on whether ΔΠ(Q} > 0,
An($} < 0 or Δn^ = 0, respectively.

• For s = — ̂ : there is a zero of multiplicity 4(0 - 1) + ΔΠ(Q} (assuming that
-Δn^ > 4(0-1)).

• For s = —^ — k (/ceN): there are zeros with multiplicity 4(0 — 1).

Here in the discussion has been used that Res Ψ(z)\z= _ λ = — 1 (/ceN0). Therefore
we get the analytic properties of Z^

• For s = %: there is a pole, zero or a regular point depending on whether
/4n(

0

0) > 0, Δn(^ < 0 or Δn($\ respectively.
• For s = — i — fc (/ceN0): there are zeros with multiplicity 4(k + !)(# — 1).

Second let us turn to the nontrivial zeros and poles of these two functions (first
so called "small Eigenvalues" not considered). Since

one has

with signs of the residua reversed for the Fermi Eigenvalues. Thus we see that
RI(S) has

• for s = ipn(F): there are zeros (poles) of the same multiplicity as the corresponding
Eigenvalue of Π,

• for s = — ipn(F)'- reversed situation for poles and zeros.

Note the crucial dependence on the signs.
Since R^l ± ip) is regular we can conclude by Zί(l±ip) = Rί(l + ip) Z1(2± ip)

that Zi(s) is regular on the line Re (s) = 1. Furthermore this gives by Zt(φ) = Rι(ip)'



Selberg Supertrace Formula for Super Riemann Surfaces 463

2 . 0

0 0

-2.0

u n

1 :

-

-

[ ' [ ' 1[ ' I ' '

-

> :

ι .

- 4 . 0 -3.0 - 2 . 0 - 1 . 0 0 . 0 1 . 0 2 . 0

Fig. 1. Zeros and poles of the zeta-function Z^

Zi(H-φ) that Zi(s) has on the line Re(s) = 0 the same properties as R^s), i.e.
zeros (poles) for s = φf F) and poles (zeros) for s = - ip*(F\ Repeating this procedure
for Z1(φ-/c) = Λ1(φ-fc) Z 1(φ-/c+l) (fceN), we see that we get an infinite
number of critical lines for Zγ located at Re (5) = - k (feeN0). Therefore we get the
analytic properties of Z1 for the nontrivial zeros and poles (/ceN0):

• For 5 - ip* F) - k: there are zeros (pjj) and poles (pF) with the same multiplicity
as the corresponding Eigenvalue of Π

• For s = - φ*(F) - k: there are poles (p*) and zeros (pF) with the same multiplicity
as the corresponding Eigenvalue of Π

Finally, let us discuss the case of so-called small Eigenvalues (0 <; λ <* £), which are
also unknown and likely do not exist for small g [5]. We can see from Eq. (14)
that for Rl they are located in the complex s-plane at -^s5^ J.

• for s = λζ - i there are zeros and
• for s = - (λF

n - 1) there are poles of the same multiplicity as the corresponding
Eigenvalue of Π, respectively.

By the same considerations as for the other nontrivial zeros and poles we get
the structure for the Z^function (fceN0):

• for s = λn(F) — ̂  — k there are zeros (poles) and
• for s = - (λ*(F) - i) - fc there are poles (zeros) of the same multiplicity as the

corresponding Eigenvalue of Π> respectively.

All these Eigenvalues are of course, even numbers, i.e. elements of Cc. Therefore
we can conclude that the supertrace formula can be extended meromorphically to
all se/loo and that R^ and Zλ are meromorphic functions in Λ^.

In Fig. 1 I have displayed the analytic properties of the Zrfunction. The trivial
zeros are indicated by filled dots, the position of the bosonic zeros and poles by
filled and empty squares, respectively, and the position of the fermionic zeros and
poles by filled and empty triangles, respectively. The small Eigenvalues are not
considered. The x- and j-axis are taken at the body of /!„, i.e. (ΛJβody = C. The
y-axis is taken in arbitrary units.

Let us consider Eq. (14) in the limit σ->^ and get

~ 4(9 ' l) ψ(σ
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where (̂1) = — yE is the Euler's constant γE = 0.57721... and Al is given by

(M0)<0), (18)

Therefore

oo Γ

Σ -
n = l | _ 5

(19)

Λs has the symmetry hs = Λ _ s . Writing down Eq. (19) for s-» — s and subtracting
it from Eq. (19) gives with Ψ(% + s) = Ψ(% - s) + π tan πs [39, p. 14] the functional
equation in differential form for the Ri -function,

— \nR1(s)R1(-s)= -4(g- l)πtanπs.
as

(20)

Of course, every information about the nontrivial zeros is lost. This equation can
be integrated yielding

where Άl is a constant given e.g. by Ά1 = R1(s0)R1( — 50)(cosπ50)
4(1~g) with some

50eC, which is however, independent of s0. We have, e.g. (no small Eigenvalue
λ = \ assumed) for s0 = 0: A1 = #?(0).

2. The Selberg Super Zeta-F unction Z0. In this section I derive the analytic
properties of the Selberg super zeta-function Z0 and present a functional equation
connecting the two Selberg super zeta-functions Z0 and Z^1 Let us consider the
test function (Re (5) > f):

hs(p) = -
1 1

(22)

1 It is also possible to derive the analytic properties of Z0 similarly as the reasoning for Zj as in
the previous section. The choice of the test function (Re(σ) > 1, Re(σ) > 1):

2λ 2λ 1 + 2ip 1 + lip

turns out to be the correct one
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This gives at once A0 = 0 because hs is an even function in p. Furthermore for g(u):

1 oo p-iuP \
-

([39,p.431]).ThusforG(w,χ):

G(klrχγ) = — —τ— 1 -Jt/coshy . (24)
s~ 2 \ L J

Therefore we get for the right-hand side of the supertrace formula

oo I -(s-(l/2))Wy

Σ Σ Ί i~

— ^ V V y Γ1r~skh — v *V-(s-(l/2))Wy _ y kg
~2s-l,tΛl-e-*'vL Xϊ Xv

i a r zg(5)

Here use has been made of the properties of the logarithmic derivative of the super
zetz-functions:

(26)

Thus we find the supertrace formula for the test function hs

"
(27)

Due to our knowledge of the analytic properties of the Zrfunction we can deduce
the analytic properties of the Z0-function. Therefore:

• s = — k (fceN0): There are trivial zeros with multiplicity (g — l)(4fc + 2).

Since both sides of Eq. (27) must be regular for s = ̂ ±ipn — k (fceN0) I get
further

• s = i 4- ipn(F) - k: There are zeros (pj) and poles
• s = — \ — ίpJ(F) — k: there are poles (pj) and zeros

with the same multiplicity as the corresponding Eigenvalue, respectively. Similarly,
as for Z1? we get an infinite number of critical lines. Note that there is no zero for
5 = 1 as for the ordinary Selberg zeta-function [36]. By the same considerations
as for Zx we get the structure of the Z0-function for the "small Eigenvalues" (fceN0):

• for s = Aj(F) — k there are zeros (poles) and

• for s = 1 — λ%(F) — k there are poles (zeros) of the same multiplicity as the
corresponding Eigenvalue of Π, respectively.

A functional equation for R0 can be derived, as can be seen in the next section.
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Fig. 2. Zeros and poles of the zeΐa-function Z0

Of course Eq. (27) and Z0 can be extended meromorphically to all seΛ^. In Fig. 2
I have sketched the analytic structure of Z0. The trivial zeros are indicated by
field dots, the position of the bosonic zeros and poles by filled and empty squares,
respectively, and the position of the fermionic zeros and poles by filled and empty
triangles, respectively. The small Eigenvalues are not considered. The x- and y-axis
are again taken at the body of A^, i.e. (A^oAy = C. The y-axis is taken in arbitrary
units.

The test function hs is invariant under the change s -> 1 — s. Performing this
substitution in Eq. (27) and subtracting it from (27) yields the functional equation

Let us consider the functional equation (20) for the R! -function and perform the
substitution $->£ — s. By expressing the R^ -function by the quotient of the
Zj— functions, this yields

d

ds
(29)

Thus we find by combining Eqs. (28) and (29) the functional equation in differential
form connecting Z0 and Z t:

ds
(30)

The functional equation can be integrated yielding (in ref. [8] the (sinπs)2(^~υ-
dependence is missing):

(31)

where C0 is, e.g. given by Z^i - s^Z^HZ^ + s0)Z0(l - s0)(sin πs0)
2(1 "fl)] with

some s0eC which is, however, independent of s0, e.g. for s0 = \\ C0 = Z1(0)/Z1(1) =

3. . TΛe 5wper Zeta-Function Zs. To get around the difficulties of the combination
of the Z0 and Zt functions for general test functions h in the Selberg supertrace
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formula let us (following Matsumoto, Uehara and Yasui [42]) define the super
zeta-function Zs:

zs(s):=Π Π

(32)

Let us consider the resolvent of Πo' ^s(Do) = (s2 -

MP) = -
1 1

s2-λ2

We first calculate the Fourier transform of h(p):

where

> I). Therefore

(33)

(34)

sinwp

2π Λ>

Using the integrals [23, p. 407]:

I (b + ex) sin ax
j 2 ^

I (fc + cx)cosflx _

We get for w > 0:

Ί f^r-2
-.smaq + ccosaq \πe VP q

b-cq
- cos aq + c sin a# αχ/p

J

1 u
— - ,

~

Therefore (weR):

which gives for G(u, χ)

s \

(35)

(36)

(37)

(38)

(39)
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and the right-hand side of the supertrace formula reads:

h(p)tanhπpdp

For the Λ0-term:

π δ . w - o s - - φ + p2 s2

smh-

where the integral (36a) has been used. Therefore we have for the resolvent kernel
the supertrace formula

=
2 l j

Equation (42) and Zs can be extended meromorphically to all seΛ^. We can read
off the simple analytic structure of Zs:

• s = 0 there is a zero with multiplicity 2(g — 1 +
• s = ±(i + φj) there are zeros (poles) and
• s = ±(i + Φπ) there are poles (zeros),

with the same multiplicity as the corresponding Eigenvalue of Π, respectively. A
very simple functional relation can be deduced from Eq. (42), reading

d In Zs(s) d In Zs( — s) /A~.
-— = . (43)

ds ds

In terms of Z0 and Z1 Eq. (43) gives (in comparison to ref. [42] one has to take
the limit α = 1 in the formulas):

—In ° 2 °—r-— =—In—-—-
ds Zι(s + τ) as

Equation (43) or (44), respectively, integrated gives Zs(s) = Zs(-s), thus Zs(s) is an
even function in s. Combining Eqs. (20), (30) and (44) I deduce the functional
equation for the R0 function, which reads:

d
- In R0(s)R0( - 5) = 4π(g - 1) cot πs. (45)
as

Equation (45) can be integrated to give

RO(S)RO(~S) = BQ(sin πs)4(«- ", (46)

where the constant B0 is e.g. given by B0 = R0(s0)R0(-s0)(sin π50)
4(1 -^ with some

50 eC, where B0 is independent of s0. We have, e.g. for s = ± f B0 = Z0( - i)/Z0g) =
-i) Of course, any information about the nontrivial zeros and poles is lost.
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A similar relation holds also for the ordinary Selberg zeta-function:

however, in this case the integration constant is given by B = 24(flf~1).
From Eqs. (21), (31) and (46) many relations linking Z0 and Zx for particular

arguments can be deduced, e.g.

z (
_

°~ Aί ( }

However, I do not see any valuable consequence as, e.g. determining from these
relations the constants Al9 B0 and C0 like for the Selberg zeta-function. It is also not
obvious to me to derive from these relations a functional relation for Z0 or Z l 5

respectively, like for the ordinary Selberg zeta-function:

'
(here G(z) denotes the Barnes G-function, e.g. [23, p. 937; 57]). On the contrary:
I believe that such relations do not exist for Z0 and Z1? because we have an infinite
number of critical lines for these two functions. The immediate consequence of
such relations, if they would exist, would be that we could solve the Eigenvalue
problem for the operator Do by just looking at the poles (for λ%) and zeros (for
λζ) at, e.g. the critical line Re (s) = - \ for Z0(s). The values at the critical line
Re(s)= — \ for Z0(s) would be related to the line Re(s) = |, where Z0 could be
easily calculated by Eq. (1) once a sufficiently large enough set of geodesies {ly}
would be known. This is, however, very unlikely (but not a proof).

V. Spectra and Determinants

L Resolvent and Heat-Kernel. Since Dm is not a positive definite operator I
calculate the superdeterminant of c2 — Dm f°Γ Re(c) > m and analytically continue
in c. Similar considerations have been done by Aoki [2] by means of the supertrace
of the heat kernel of Πm Fitted with the knowledge of the analytical properties
of the Selberg super zeta-functions I can avoid the indirect reasoning of Aoki to
get the superdeterminants in compact form. For this purpose I use the functional
relations for Z0 and Z^ of the previous chapter. These functional relations have
not been available in [2]; without proof Aoki has used the functional relation of
the Selberg zeta-function, assuming that it is also valid in the super case. As
discussed at the end of the previous section this seems to be very unlikely that
such functional relations exist. Furthermore, statements of the spectrum of the
operators Πm and its relation to the spectrum of Π can be made (and similarly
for Dm which I do not consider explicitly).

Let be meN0. Let us calculate the superdeterminants by the C-function
regularization. This method of regularization was introduced by Ray and Singer
[52] in differential geometry and Hawking [35] in field theory. We get:
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where use has been made of the integral [23, p. 317]:

o

The function h corresponding to the heat-kernel of (c2 — Dm) reads

hhk(s) = etί(s+(ml ^ . (3)

Therefore for g(u)

= ̂ =exp Γ - £ -
πί L 4ί

hhk(ip + M> = =exp - - c2t + (m + i (4)
2

This gives

πt

πt 2

Splitting the calculation of ζm(s; c) into two terms corresponding to the identity
transformation and the length term, respectively, gives:

(6)

Let us first calculate ζ*m:

Π*)δ
u

ι „ oo sinh(m-fl)-
du = (1 - g)e~c2* £ ek2'. (7)

. usinh-

Equation (7) can be e.g. proved by induction [2,28].
Similarly:

A^~m)(i\ — (a — \\p~c2t Y pk2* ίm — 2 1 } (%}^o wi — \y ι/eί Z-( v * — ' ' *''' v '

This gives for ζj,:

1 Λ m oo m

(l-^)Σ(c2-fe2)- s. (9)
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For later use I easily calculate

-(9-1) (10)
s=0

Let us calculate ζm in two alternative ways. The first is appropriate to the analysis
of the spectrum, the second to the calculation of the superdeterminants.
1) The supertrace formula for the heat-kernel now reads:

» r[(;S )2_ c2 ] [ί(;F )2_C2 ] _c2ί ™ ^

2-ι \ ϊ ~\ y) £j

Σ Σ
, km Γ kl kl~λ

> cosh (m + l)-^-χ/cosh m-^ , (11)

and the A0 term appropriately replaced for negative integers. With the help of
Eqs. (2), (7) and the integral [23, p. 340]:

v/2

we get for the supertrace formula of the generalized resolvent kernel:

1 1 1

1 1 km

Γ(s)

s-d/2)

cosh -χ cosh =*)].
This gives explicitly for s = 1 (m even):

^

(12)

(13)

(14)

where the logarithmic derivative of the super zeta-functions has been used. For
s = 1 and m odd:

1 1

= 0-0)
Z , c -

(15)
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2) Let first m be an even number. Let us consider the representation (Res (5) < 1):

7 oo 4- r
^ f '* 1^ *^ 3 / 0 _ι_ O /.W ι Λ /• -j ^-v

(16)

where this integral representation follows with the help of [23, p. 318]. There-
fore we get for ζmΓ(c,s) with the help of Eq. (11) and the representation

rΓl sinπs°° dλ
£(s;c) = J

π o

sin πs °? dλ d
In

Let be /(s) = sin(πs)[/l(Λ
(Re(s) > m):

(17)
s]. Then /'(s)|s=0 = π and we get for ζ'(0;c)

*=o

?, a d.
}dλ—In
o dλ

Z0( A +

m+ 1 1 -m

(18)

2 J \ 2

Here it was used that lim Za(s) = 1, which follows at once from the Euler product
s-*oo *

representation of the Selberg super zeta-functions. Therefore (m = 0,2,...):

m , \ / m
-+l\Z0lc--

Z^c
Similarly (m = 2,4,...):

sdet(c2-Π2-J = -

m+ 1
ZΛc

1-m
-fc2)1-". (19)

,2(9-1

m-2

(20)
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For m an odd number the roles of Z0 and Zt are just reversed and it follows
immediately (m = 1,3,.. .)'•

Similarly (m = 1,3,...):

7 / , m\ ( m\
Z l ( c + l__) Z l (c + y) „__,

l. (22)

Z0

Equations (19-22) are the starting points for the calculation of determinants.
Because the super zeta-functions are meromorphic functions in Λ^, the same holds
for the superdeterminants.

Let us denote by Θ(ί):=str[exp(ίΠo)] Then we have:

f Λt- ̂ '"̂  J}

sdet (c> - DS) = exp - Λt- ̂ '" (23)

Even if we are in the position to make statements about the ί-integral this would
be of no use because we have no information about the implicit moduli-dependence
and signs which occur in the Grassmann-part, or respectively in the moduli-part
in the super Weil-Petersen integration measure in Eq. (11.60). Thus no statement
about the growing properties for sdet(c2 — Do) for increasing genus can be made,
similarly to the argueing of Gross and Periwal [32, 34] for the bosonic string.
However, we can make some statement about Θ and can derive an equation
expressing Θ by the zeta-function Zs. Let us consider the supertrace formula for
the resolvent kernel:

str<c' - D8- - j .--«*)* 4|̂  - 1±̂ *. ,24)
δ 2c Zs(c) c*

This equation can be inverted by the theory of Laplace transformations yielding
(see e.g. [19, pp. 129]):

1 J ue-"2/4'^ 1 In Zs)(u)du -(g-ί+ Δn™), (25)
/4πto

where & ~l denotes the inverse Laplace transformation. In particular this gives

(26)

this result is consistent with Eq. (14). Equation (14) gives also that for ί-> oo the
supertrace for the heat-kernel for Πm diverges according to (weN)

Θm(t) = str [exp (t Qi)] = (1 - g ~ Δn^)em\ (t -> oo) (27)

(and similarly for negative integers), a result found by Aoki [2],
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2. Discussion of the Spectrum. The operator Π is simpler to study than the operator

Πm» because the trivial contribution — to the Eigenvalues has been subtracted

4

m\
see Eq. (11.40) for the unitary equivalence between Πm

 and Dm + y )•For applying

the supertrace formula for the operator Πm we must change the formulas
appropriately - see Eqs. (111.25). We have

G(u,χ) = g(u) + g(-u)-χ\_g(u)e u/2 + g(-u)eu/2]. (28)

The function h has taken on the argument ip -h \. This gives immediately:

πt

-c2' e-"2 '4 'coshmdu = (1 -
πt o 2

(29)

Therefore we get for the supertrace formula for the resolvent of Dm f°Γ m even

("hatted" quantities belonging to Π):

1 1

_

2 2

. t d

] ΓZ0(c+l)Z0(c)

and similarly for m odd:
(30)

1-
m

(31)

m
Analysing for the particular values c = ε and c = ± —h ε we get for m even (|ε| « 1):

1 d } ΓZ0(c+l)Z0(c)Ί f-1

_

oc

: = ε,m = 0),

r = ε,m^0), (32)

mε
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and regularly otherwise up to the nontrivial zeros and poles of Z0 and Z l β For m
m

odd we get for c = ±\ + ε and c = ± — + ε (|ε|« 1):

Z1(c+
)̂1

) J

i-l

cc i

mε

ft ___

(c=±

(c=±

m
C = ± 2 '

(33)

and regularly otherwise up to the nontrivial zeros and poles of Z0 and ZA. Let us
discuss two scenarios for Δή(Q\

1. Δή(Q} = 0: This yields for the various trivial modes of Πm for m even:

m even: m odd:

= 0-1 (ro^O),

2. Δή(Q} = 1 -g: In a similar way:

m m

= 1-0; (m/0);

That trivial-modes or trivial Eigenvalues (as the trivial-modes of Πm) appear can
be understood in the view of the corresponding results for the classical Laplacian
- Δm as discussed, e.g. by Hejhal [36, p. 408]. Let {λ™} be the set of all Eigenvalues
of the Laplace-operator - Δm = - y2(dx2 + dy2) + imydx and m ̂  2. Then (neN):

(34)

where d = (5 + (0 — l)(m - 1) and £ takes on the values 0 and 1, depending on m.
There are several methods of obtaining this result. E.g. one can first consider the
trace formula for the (regularized) resolvent-kernel function and deduce this
statement from the analytical properties of the Selberg zeta-function (nontrivial
Eigenvalues) and the poles occurring in the A0 term (trivial-modes); second, one
can consider commutation relations of the differential operators V* acting on
tensorfields which give simple recursion formulas for the Laplacian Δm depending
on the curvature R of the space in question [11].
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Equations (32) and (33) give also the relation of the Eigenvalues λnttn of Πm

and λn of Π0.1 find due to the analytical structure of the super zeta-functions for
the nontrivial Eigenvalues:

X,m = X> (neN,meN).

This simple result corresponds to the classical one noted in Eq. (34).

(35)

3. Determinants and the Fermionic String Integrand. The starting points for the
calculation of determinants of the operator Dm are Eqs. (19-22) which all can be
analytically continued to c = 0 (including omission of zero-modes if necessary). Let
us first consider Eq. (19) for w = 0. Performing the limit c-»ε for |ε| « 1 one gets

sdetί_sdet(
<o>

(36)

Here I have denoted by Zx(^) the appropriate derivative or residuum of Z1 at
s = I, depending whether An(£} ^ 0 or 4n(

0

0) > 0, respectively. To make this quantity
well-defined we subtract from sdet(— Do) the zero-mode which is denoted by
priming the sdet. Using further the functional relation (IV.31) for Z0 and ZA we
get finally:

For calculating the superdeterminant for m even and m ̂  2 a subtraction of zero-
or trivial-modes is not necessary. Proceeding similarly as for m = 0 we get for

sdet(-Πi) =
rn

Similarly (m = 2, 4,...):

sdet(-Π2-J =

Zi

For m = 1,3,....:

sdet(-Πί) =
im

Zt(0)

m

(38)

(39)

Zt(0)
(40)
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and m = 3,5,...:

477

sdet(-D2-J =

m

(41)

Note the differences to ref. [2] which are due to the additional super zeta-functions.
The case of Π-i mus* be treated separately because of the appearance of
zero-modes which must be subtracted. Therefore denoting the omission of
zero-modes by priming the super determinant we get

,42,

From Chap. II we know that the relevant string integrand is given by sdet' ( — Do)
and sdet(- Πl) Equations (37) and (38) yield:

[sdef(- DS)r5/2[sdet(- Di)]1/2

or alternatively

πY^ZoP) Z0(f)
2

(43)

and I conclude that this expression is well defined. Furthermore for Zg of Eq. (11.60):

SMg

2π

9-1

.4 / J ^μSWPVί dμ,
sMn

(44)

Note the appearance of the various ratios of the Selbrg super zeta-functions. The
main difference to Aoki [2] who first calculated super determinants of Laplace-
Dirac operators lies in the additional factor [Z1(l)/Zl(Q)']2 in the superdeter-
minants. This factor is unambiguously given by the functional equations which
have been used to derive Eq. (43) and it changes the super-moduli dependence of
the integrand.

Finally we can discuss the behaviour of the fermionic string integrand for the
case of degenerate super Riemann surfaces. For this purpose let us consider such
a surface, i.e. a pinching process takes place and at least the length of one geodesic
vanishes. Let /0 be the geodesies of γ0eΓ with (/0)Body < ('y)Body f°r all yeΓ with
y 7^y0 Let us introduce the partial zeta-functions 3ίq(s) = ̂ (s,/0) with

):= Π [1 - = 0, l,Re(s) > 1). (45)
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For the entire zeta-functions one has

zq(s) = ι«?q(s)γ™ Π Π [i - *?o^(β+k)l'], (Re(*) > iλ (46)
yeΓ fc = 0

where g(/0) denotes the multiplicity of /0. A discussion for the bosonic string is
due to Wolpert [61] who showed that for /0 -»0 one has (set q — 0 in Eq. (45) and
interpret all quantities in terms of the bosonic case)

(/o-O). (47)

This asymptotic behaviour has the immediate consequence that the bosonic string
has a divergence due to geodesies of zero-length. We can generalize this result to
the fermionic string. To see this let us start by taking the logarithm of partial
zero-function:

oo oo 1 oo <yk p — kslo
y Y _y f c p~k(s + n)l0_ Ϋ A ^
Zj Z-» i .Λ yo^ Z-i 0-0—e υ)

1 oo vfc p~kslo ι GO vk p — kslQ 1 co

=r Σ ̂ ^+\ Σ ?aV-+ίt Σ &<-"• + -,/ o f c = ι K 2k=ι k 1 2 f c = ι

where the denominator was expanded as

(49)

The logarithm in Eq. (48) was expanded by considering the integrand from a
geometric power series. For the various sums we get

/0), (50)

where Φ(z,s,α):= J] - - - is Lerch's transcendent [39, p. 32] with the expan-
sion: n =

»=o «! (m-1)!
φm— 1

(51)
(Note C(5, 1) = C(5), C(2) = π2/6 and «P(2) - Ψ(l) = 1.) Further

(52)

_ sίo)

2 fc=ι /C
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/ 00 / v p~slϋ

'0 V ,.k ^-sklo _ Ό Λy 0

e

j2 \ y e~sl°

1 1 Λ,, ,
(53)

The last two expansions are valid for (5/0)Body > 0. Furthermore no singularities
appear for χγo = — 1. Therefore we have in the case of χyo — 1 the expansion

- In <r0(s) = ~ + (s - i) In /o + const. + 0(/0), (54)
6/0

which is equivalent with Eq. (51). For χyo = — 1 things are changed and we get:

-In^ωi^.^fy + iπJ^
(55)

Therefore we have to discriminate between χγo = 1 and χγo = — 1. Let us first assume
that the character χyo corresponding to the smallest geodesic is positive or that
this can be achieved by an appropriate redefinition of the 4g generators γh yf 1

(i = 1, . . . , 2g). In the relevant combinations for sdet ( — Πm) we get

oc const., (m e Z, even, /0 -> 0),

(56)

oc const., (weZ, odd, /0 -> 0),

where the const, may depend on s. Therefore in this case the determinants are
proportional to a constant (weZ) and thus the fermionic string integrand is finite.

In the case of χyo = — 1 things are changed and we get in the limit /0 -> 0, e.g.
for m = 0,

s- l-(2iπ//o)

ίπ
oce

where again the const, may depend on s. In this case the fermionic string integrand
diverges for /0 -> 0 as in the bosonic case.

Finally let us consider the product of the superdeterminants of — Do and

-D2-,:

sdet'(-Πg) sdet'(-Π-ι)=l, (58)

which follows directly from Eqs. (37) and (42). Generalizing this interesting result
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we get (omitting zero-modes if necessary):

sdet'(- D2-J sdet'(- Dί-ι) = (- !)*->- I)2'2*, (meN). (59)
m

Let be fm= J~[ ( — kl)9'1. Redefining the superdeterminants according to

sdet'ί- D*):=sdet'(- D*)//. <«£0) and sdet'(- D2-m):=sdet'(- D2-J /m-2

(m ̂  1) I obtain the relation

sdet'(-Π2J sdet'(-Π2-ιHl, (meN). (60)

An equation like this was already stated by Baranov and Schwarz [8] by more
general considerations. I close with this result, which nicely confirms my own
considerations.

VI. Summary

In this paper the Selberg supertrace formula on super Riemann surfaces has been
discussed and some of its most important consequences. The Selberg super operator
L on ί f t f was defined and it was found that the operator L multiplies an arbitrary
Eigenfunction of Πm by the function ft, where h is only defined by the Eigenvalue
s of this Eigenfunction with respect to ΠOT

 and the integral kernel of L. It was
found that the Selberg supertrace formula reads

• g(klγ) + g(-kly)-χγ

kl g(klγ)e-kl^ + g(-kly)ekly/2 j . (1)

The inversion formula which is needed in the supertrace formula to calculate the
term /l(

0

m) = imπ(g — 1)ΦOT(0) which corresponds to the identity transformation was
calculated to be given by

oo xίii oo / /ιι i Λ i *2 y .\m/2

(2)

where 6(w) = 2coth-[^(w) — #( — M)]. A(

0

m) and the inversion formula for ΦOT(Λ;)

completed the work of Baranov et al. by explicitly stating the Λ(

0

m)-term and
the inversion formula, respectively.

Chapter IV was devoted to the discussion of the analytic properties of the two
Selberg super zeta-functions Z0 and Z1. By considering specific test functions the
analytic properties of Z0 and Zl9 respectively, could be discussed. There is
no zero of Z0(s) at s = 1 which is quite different in comparison to the usual
Selberg zeta-function. The crucial importance of 4n(

0

0) = #even(zero — modes) —
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#odd(zero — modes) of the operator Π has become clear. I could derive a functional
equation for Z0:

The corresponding functional relation for Zr turned out to be:

r- .
For both functions we obtain an infinite set of critical lines located for Z0 at
Re (s) = I — k (/ceN0) and for Z^ at Re (s) = — k (fceN0). Unfortunately no functional
equation for Z0 or Zl as for the ordinary Selberg zeta-function could be found.
However, I have argued the unlikelihood that such a relation exists, based on the
existence of the infinite number of critical lines. This appearance of an infinite
number of critical lines for the two functions Z0 and Z± is surprising, because
there is not any classical analogy for this feature. However, in view of the functional
relations for R0(Z0) and /^(Zj this is a consistent result. The functional relations
are of no use for the explicit determination of the spectrum of the Laplace-
Dirac operator Π This in turn is the same situation as in the classical case. There
is up to now no way into the critical domain of the (super) zeta-functions in the
complex plane, where the nontrivial zeros (and/or poles) are located.

By an appropriate test function h I could deduce a functional relation connecting
ZoandZ^

zΛ-^>_^

Having discussed the properties of Z0 and Zx I treated in the final chapter the
spectrum and superdeterminants of the Laplacian-Dirac operators Πm and Π™,
respectively. Denoting by Aή(™} the difference of the even and odd trivial-modes
λ of the operator Πm I discussed two scenarios for Aή(§\ i.e. ^n(

0

0) = 0 and
4tf<0°> = l - g9 respectively. For the nontrivial Eigenvalues of Πm I found that they
are determined by the nontrivial Eigenvalues of Do as X»,m = X,,o (neN,meN). The
calculation of the determinants was performed with the well-known zeta-regulariz-
ation method. The representations showed clearly that the superdeterminants are
well-defined quantities. Since the superdeterminants were regular, it could be shown
that the fermionic string integrand in the Polyakov approach is well-defined. The
remaining integral over the super moduli space reads

2π4

Unfortunately no statement about the growing properties of this expression for
increasing genus g like the analysis of Gross and Periwal could be made.

However, I could discuss what happens for the fermionic string integrand if a
pinching takes place. Here I found that divergence as well as convergence can
happen, depending on the spin structure.
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An interesting feature of the determinants is that there is a typical factor of
Z^OyZ^l). This factor does not appear in the work of Aoki, who started from
quite analogous expressions but used the functional relation of the ordinary
Selberg zeta-function instead of the functional relations for the Selberg super
zeta-functions. But this factor is an unambiguous consequence of the functional
relations which I derived in Chap. IV. I do not see any way to simplify this
characteristic factor any further by exploiting all these functional relations.
Therefore this factor gives an additional contribution in the super moduli
dependence of the superdeterminants and thus also for the fermionic string
integrand.

An interesting relation for the determinants was deduced reading

sdet'(- Π2-J sdet'(- Di-ι) = (- 1Γ >- I)2'2', (meN). (7)

These results which are all direct consequences of the Selberg super trace formula
demonstrate in an impressive way the power of the trace formula.

The fact that the fermionic string theory is, formulated in the super analysis
formulation, well-defined, is a step forward in the understanding of the whole string
theory. However, one must keep in mind that the fermionic string is as well as the
bosonic string nothing but a toy-model. To incorporate supersymmetry or to get
the standard-model gauge symmetries, the superstring or the heterotic string theory
is needed. (The higher-loop partition function for the latter has been constructed
by Moore, Nelson and Polchinski [44].) Whereas the incorporation of the
superstring can be done by the GSO-projection, it is not obvious to formulate a
Selberg trace formula for the heterotic string case and to study its consequences.
Again new surprising features may occur. I think that we must face the possibility
that we do not know up to now enough mathematics to understand this new
physics, and once again physics may be too hard for the physicists.
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