
Communications in
Commun. Math. Phys. 106, 467^80 (1986) Mathematical

Physics
© Springer-Verlag 1986

Asymptotics of the Cut Discontinuity and
Large Order Behaviour from the Instanton Singularity:
The Case of Lattice Schrδdinger Operators
with Exponential Disorder

F. Constantinescu and U. Scharffenberger

Institut fur angewandte Mathematik, Universitat Frankfurt, D-6000 Frankfurt/Main,
Federal Republic of Germany

Abstract. We discuss the relation between the singularity structure of the Borel
transform, the asymptotics of the cut discontinuity and the large order
behaviour of perturbation theory. In an explicit example - a tight binding
model with exponential disorder - we show how to obtain the first instanton
singularity from a cluster expansion in the Borel variable, and as an application
we determine the exact decay of the density of states as E-»oo. The method
opens some perspectives for similar problems arising from different models of
Mathematical Physics.

1. Introduction

Perturbation expansions in Statistical Mechanics and QFT generally do not
converge but are only asymptotic to the function under consideration. Even worse,
asymptotic expansions do not determine their sum uniquely but there is a
particularly convenient method invented by Borel, which under certain circum-
stances makes it possible to give an integral representation of the uniquely
determined sum. The following result is well known.

Theorem 1. (Watson-Nevanlinna). Let f be a function analytic in the half-plane

D(JR) = {ze(C:Rez>#}, (1.1)

and have there an asymptotic expansion with remainder estimate (for arbitrary N)

n = 0

Then the Borel transform

(1.2)

oo

B(f)= Σ^tn (1.3)
n = onl

converges (at least) in the circle {ts(C:\t\<σ~1} and has an analytic continua-
tion to the region S(σ) = {ί:dist(ί, R+)<l/σ} satisfying the bound

\B(t)\S const exp(|t| K) (1.4)
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uniformly in every S(σ') with σ'>σ. Furthermore, f is given by the absolutely
convergent integral

/(z) = zίexp(-ίz)5(ί)dί (1.5)
o

valid for all zeD(R).
For a proof see [12,15].
Next suppose that / is analytic in the larger domain

D(R,ot)= U exp(i0)D(Λ), 0 ^ α < π ,
\θ\Za

and that (1.2) holds there. If α > f, D(R, α) has to be interpreted as a multisheeted
region. From Theorem 1 it follows that the Borel transform can be analytically
continued into the larger ί-region

S(R,a)= U exp(i0)S(K),

and for zeexp(ίθ)D(R), |0|^α, the representation (1.5) is generalized to

f(z) = z °°J Bit) exp(- ίz) at = Λ f JB(ewί) exp(- Λ θ Λ. (1.6)
0 0

Certainly the constants R, A, σ can depend on α and some of them may diverge for
α->π.

If/ is analytic in D(R, π) and has an asymptotic expansion (1.2) uniformly in
every D(R, α), α < π, then as a consequence the Borel transform is analytic in the
complex ί-plane cut along the negative real axis from — oo to — ί/c for some c ̂  σ.
[Actually c~x is the radius of convergence of the series (1.3).]

An example of the above set-up is furnished by the series Σanz~n with
coefficients

b>-\ (1.7)

which alternate in sign. Note that ( — \)nan are the Stieltjes moments of a uniquely
determined positive measure dμ(x) which is easily obtained by writing

00 r, 00 /χ\b

an = {-\)ncna\ xb+ne~xdx = {-\)"-\ x" - e~xlcdx, (1.8)
0 Co \CJ

i.e. dμ{x) is absolutely continuous with density

ρ(x)=-(x/c)bexp(-x/c). (1.9)
c

The series Σ v ~ " is asymptotic to the function /(z) given by the Stieltjes formula

f{z) = z]{x + zyίdμ{x). (1.10)
0

The Borel transform B(t) can be computed from (1.5) or by using the fact that in
this case B{t) is the characteristic function of the measure dμ:

OO

B(t)= J exp(-tz)dμ(x) = aΓ(ί+b)/(l +ct)b+1. (1.11)
o
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For the particular case that b is an integer or zero B(t) has a pole at t = — c~1 and
no other singularities in the complex ί-plane. The function / is analytic in the
complex z-plane cut along the negative real axis. The cut discontinuity is given by

and using (1

Note that in

lmf(re™)=-rπρ(r),

.9) we get

Im f(reiπ) = aπ(r/c)b +1 exp( - r/c).

the case

an = {-\fanbcnn\, b integer,

which is the leading large n asymptotics of (1.7), the Borel transform can
computed exactly by summing up the generalized geometric series [18]

oo b + 1

B(t) = a Σ (-l)"nV = α Σ αm(l+cί)~m

n=0 m=0

(i.

(i

(1

alsc

.12)

.13)

.14)

• be

(1.15)

with ab + 1 =b\. As in (1.7) for b integer the dominant pole is of order b + 1 with
coefficient b\.

In the physics literature there are attempts to find the asymptotic behaviour of
the cut discontinuity from the large order behaviour of the an (see [2] for an
application), but generally Im/ cannot be determined from the asymptotics of the
an as n->oo [1]. However, we want to emphasize that both the decay of the cut
discontinuity Im/( —r) for r->oo as well as the large order asymptotics of an are
exactly determined by the singularity of the Borel transform nearest to the origin in
the complex ί-plane.

In QFT and Statistical Mechanics the singularities of B(t) on the negative real
axis are related to particles called instantons and there is much work being done on
extracting a behaviour of type (1.9) for Im/( — r), r->oo, from the instanton
structure of JB(ί) [10].

In this paper we propose a method of finding the singularity of B(t) closest to
the origin and from this the behaviour of Im/( —r), r-»oo. We find a series
representation of B(t) which converges in the cut ί-plane and thus offers a tool to
work outside the circle of convergence of the series (1.3). The method is fairly
general and can be applied at least to λP(φ) models on a lattice as well as to
disordered systems. In order not to obscure the strategy and to avoid more
involved computations, we restrict ourselves to the case of a tight-binding model
with exponentially distributed disorder although other models can be treated as
well.

2. The Exponential Model

Anderson's tight-binding model describes the motion of an electron on a regular
lattice under the influence of a random potential. The space of wave-functions is
12(ΈV) and the Hamiltonian is given by

H = H0+V, (2.1)
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where Ho is the lattice Laplacian
[2v i=j

H0(i,j) = (-A)(i,j)J -1 \i-j\ = \ (iJeZη (2.2)

[ 0 otherwise,

and the potential V consists of independent and identically distributed random
variables V(ί), i e ΊL\ with common distribution dλ(V). In order to make clear the
ideas of Sect. 1 we discuss the particularly simple case of an exponential
distribution

U I It
It is well known [11] that the spectrum of H is the positive real axis a.s. with respect
to

In this paper we shall consider the averaged Green's function

G(E;x,y)=Ux\(H-Ey1\y) Π dλ(Vd, (2.4)

where the ket|y> is shorthand for the wave-function located in y e Έv. The starting
point of our discussion is the random path expansion

(KE;χ,y)= Σ Π(2v-E + VJr
n^dλ(yj)9 (2.5)

ω:x-+y jeω

which is just a Neumann expansion of the resolvent around its diagonal part. Here
ω is a lattice path from x to y and nfω) is the number of times ω visits; e ΊLV (see [3]
for details).

It is fairly easy to prove along the lines of [4] that in the variable z= —E, G
fulfills the conditions of the Watson-Nevanlinna theorem, but we shall construct a
representation of type (1.5) directly. From now on we put z= —E. Using

oo +n- lp~(2v

e d V τ \
(n— 1)! o 1 -

we can rewrite the expansion (2.5) as (n{ω)— Σ n£ωγ\,

at, (2.6)

G(E;x,y)= Σ Π τ ~ ^ ί τ—f dt. (2.7)
ω:x^y jeω{yij—l)\ 0 1 + t

Our expansion (2.7) [or (2.5)] is similar in structure to a cluster (high-temperature-
or polymer-) expansion of Statistical Mechanics. All expansions of this type have
the form

f(z)= Σ Ug
Graphs^ i= 1

Now, if the functions fiig{z) are Laplace transforms of functions fitg(t)

l t (2.9)
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then we can hope to express f(z) as a Laplace transform, too

f(z)=]e^ Σ ( £ > - . . &)>β)(ί)Λ. (2.10)
0 Graphs*?

The convolution * is given by

If the expansion on the right-hand side of (2.10) converges absolutely we almost
have an explicit expression for the Borel transform B(t) of f(z). Note, however,
that in the Watson-Nevanlinna theorem the Laplace transform is written in
z-multiplied form. So the inverse Laplace transform f(t) of /(z) is related to B(t) by
an integration-by-parts-formula

oo oo

f(z) = z J e-»B(t)dt = B(O)+ J e-"f(t)dt (2.12)
0 0

[indeed, in our case B(0) = 0].
If /(z) obeys an expansion

/ ( * ) - Σanz~n ( z - o o ) , (2.13)
n = 0

then a local analytic germ of f(t) is given by

/(ί)= £ α ^ - V ^ - 1 ) ! (2.14)
n = l

However, it is not a priori clear that f(t) obeys some exponential bound (1.4), so
the right-hand side of (2.12) need not exist.

In the following we shall show that in the case of the exponential model
formula (2.12) is correct. Since no confusion will arise, we shall adopt the same
Borel transform for both the Watson-Nevanlinna Borel transform and the inverse
Laplace transform.

Theorem 2. In the exponential model the random path expansion of the Borel
transform

/(0= Σ (£*.. .Cι)(ί) with / l(ί)=_!_ ί»'-ie-*7(i+ί),
ω:x-+y \ni~ *)•

(2.15)

and \ω\ = # {points visited by ω} converges absolutely and uniformly in any sector
DεtR = {t:O^\t\^R9 | a r g ί | ^ π - ε } and in any circle Cε = {t: |ί|<£l -ε } , and there-
fore defines a function analytic in C\(— oo, — 1]. Furthermore f{t) is of exponential
type uniformly in every D£ ) 0 0, so the Laplace transform

(2.16)

exists and is analytic in \z\ | a r g z | < — — ε, \z\>zo(ε)\.
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Proof. We restrict ourselves to the case x = y = 0. Let argί = φ, and take the
integrations along the straight line joining 0 and t. The e~2vί-term is preserved
under convolutions and can be extracted. Putting r = \ω\ — 1 we write the
remaining convolutions as

r 7 (t-τrTr + 1~lτc T ( τ r - τ r _ 1 ) " r " 1 V Ί ( τ o - T i ) " 2 " 1 τ i 1 " 1

J dτr—- J dτr_1— ... J dτί — .
o 1 + ί — τr o l + τ r —Tr_! o ί+τ2 — τ1 l + τ x

(2.17)
The denominators are estimated by

| l + τ l - τ l _ 1 r ^ { J / ώ l W Ί > f . (2-18)
11 otherwise,

and we are left with the integrals

If I

o

• J rf|τr_j_|(|τr| — | τ r _ 1 | ) W r ... J d l τ ^ ( | τ 2 | — \^i\T2 \τi\ni

0 0

Inserting (2.18) and (2.19) into (2.15), we obtain

|ω| + l

S e " " " ( 1 2 0 )

for some c>0. (If \φ\ < f, then c = 1 and if ί e Cε, then sinφ has to be replaced by ε.)
Combining (2.20) and Vitali's theorem completes the proof. D

3. Instanton Structure for the Exponential Model

From now on we shall consider the expansion (2.15) for the case x = y — 0. f(t) is a
series of convolutions of the %ω{i) given by (2.15). Note that ^ ω ( ί ) has a simple
pole at t = — 1 which is the first instanton pole. Higher instanton poles are created
by convolution which can be made plausible by the simple integral

(3-D

Here the second instanton pole occurs at t= — 2. This reminds us of the theory of
resurgent functions which is the contents of the recent impressive work by Ecalle
[6]. A function is called resurgent if its Borel transform / has only isolated poles or
logarithmic singularities, i.e. has locally the form

f(t)=fS -10) + ln(ί - to) fάt -10) +-^—T2(t-10) + higher poles, (3.2)
I —In
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where fi9 z = 0,1,2,... are analytic in a neighbourhood of the origin. Resurgent
functions have been recently encountered in several areas of mathematical physics
including the renormalisation group approach to dynamical systems and QFT
[7,17].

The singularities of Borel transforms often exhibit some periodic structure, e.g.
they may be located at — ί0, — 2ί0, — 3ί0,... for some ίoe(C. In our case the
singularities are located at the negative integers, but since we are only concerned
with the first instanton singularity we shall not go beyond the plausibility
argument (3.1) (see [5] for some ideas).

Comparing (2.15) and (3.1) suggests that the leading singularity of/(ί) at
ί = — 1 comes from those paths where no convolution takes place. There is only
one such path, namely ω = {0}. The contribution of this path is /(0)(0 = (1 + £) ~ *

We shall now determine the behaviour of the remainder term at t = — 1. Only
the results important for Sect. 4 will be given.

Lemma 1. Let /(1)(ί) = f(t) - fi0)(t), let t be a point on the half-circle {t: Re t ̂  — 1,
|ί + l| = fi}. Then

(3.3)

(3.4)

Furthermore if t = — 1 + zε, ε real, then

Proof. Again, we perform the integrals (2.17), the path of integration taken along
the straight line joining 0 and t. Then, by using

(3.5)

the numerators are bounded by |ί|"(ω) | ω |, and we are left with

1 ¥ .. . 1 ¥ .. . 1 1fφJ
o ί — τr

iγi

0

(3.6)

Now note that Reί^ — 1, and estimate

1 1 1 / 1

\ί+τ2-τ1\\ί+τί\

(see Fig. 1).

\ί +τ2-τx
+

(3.7)

Fig. 1
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Multiplying the next term gives

1 1
H-

and

| l + τ 3 - τ 2 | | l + τ 2 - τ i | - | l + τ 3 - τ 2 | \l+τ2-τ1\'

1 1 1 / 1 1

| l + τ 3 - τ 2 | i + τ 3 —^2| \ | l + τ 3 —τ2 | | l + τ X '

1 1

- | l + τ 3 - τ 2 | Il+Til

Proceeding in the same spirit, we obtain 2r terms of the type

Ϊ W 'ίWil̂ Γ-— Γ V . .TΦII
o o \i +τi — τi_i\ o o

| f - 2

Next we are going to estimate

T o d o this let φ = π—argί, α = |τ ( — τ f_if = |τ£ | — |x f _ x | . T h e n |1 + τ ; — τ -
— 2a cos φ)112 and,

(3.8)

(3.9)

^ ί l + α 2

1-cosφ /

(compare Fig. 2). But

and (3.11)

\t\ — cosφ= —(ε2 —1 +cos 2 φ) 1 / 2 , φ small.

tgφ

Fig. 2
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So for φ->0 (the delicate case) the argument in (3.10) remains bounded by 2/ε, and
so it is not hard to see that there exists a C1 >0 such that

(3.12)
o

Obtaining a bound for the derivative runs similarly: taking derivatives in (2.17)
and making all estimates as above gives several ln(l/ε)-terms besides one of the
form

Ifl 1

1 Φl

which is evaluated according to (3.10) and gives a contribution C- -— l/|e|.

It remains to show that the expansion (2.15) with the appropriate bound for
(3.6) still converges. For this we have to estimate (recall that r = \ω\ — 1)

Σ , f^2 L_< Σ _J_(Φ>)-M
ω:fUo lyi , _1V ( N - 2 ) ! ~ co:o->o(|ω|-2)! \nl9 . . . , n H

\t\n{ω)~2 \ω\n{ω)^

- ίίo(n(ω)-\ω\y.

t | ) ' » (2v|t| M f

- 2 ) ! vtΌ JV!

S Σ L 7 9 . <oo. (3.13)

Here we have used the fact that the number of path ω having Σ n^ω) — N is
bounded by (2v)N. This completes the proof of the lemma. D

4. Exponential Decay and Large Order Behaviour

The density of states ρ(E) is defined by

ρ{E) = (2πiy1 {G(£ + io;0,0)-G(£-fo;0,0)}. (4.1)

In this chapter we shall determine the asymptotic decay of ρ(E) as £->oo. Recall
that G(E) is given as

G(-E)= f ^ a(/(0)(0 + /(i)(i))*, (4.2)

where /(0)(0 = (1 + ί) 1 and f{1)(ή = f(ή—fi0)(ή, and the representation (4.2) is
valid for |arg( — £)| < f. The contribution from / ( 0 ) can be evaluated immediately
either by using special functions or by rotating the contour of the Laplace integral
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and taking into account

{\Λ-teiπγ1-{\+te-i%y1=πδ{\Λ-t). (4.3)

The contribution of / ( 0 ) to ρ is given by

ρ(0)(E) = e-E. (4.4)

Next we estimate the contribution ρ(1) given by /(1). To do this we recall that
/(1)(0 is of exponential type uniformly in any sector {t: |argί| < π — ε}. So in (4.2) we
can rotate the contour of integration by an angle greater than f and obtain a
representation for G(E) for arg( — E) = π [and arg( — E)= —π respectively]. So if
we write G^z) for the Laplace transform of/(1)(ί) and recall that z = — E, we obtain
the following representation (f/G(0,f)):

o
e-i(τr/2 +

-, / -iπ\ f

0

where the contour C is depicted in Fig. 3.

(4.5)

(4.6)

Fig. 3

Next we recall that / ( 1 ) is analytic in C\(— oo, — 1] and the divergence of /(1)(ί)
as ί-> — 1 is of logarithmic order uniformly in {Re(ί +1)^0}. So the contour can
be deformed to pass through the singularity and

c ( 1 )

with C shown in Fig. 3. The contour C can be divided into three parts C l 5 C2, C3,
as shown in Fig. 3, and we shall evaluate their contributions separately.

The integrals over Ct and C3 can be evaluated by using the Laplace method for
complex contours [13]: For |£| large enough the integrand in (4.7) taken along
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C1 / 3 decays exponentially and the main contribution comes from the points
— 1 + iA. We obtain

1 (E-oo).

For the contribution over C2 we need the following:

Lemma 2. Let φ eI}[p, A'jnC1^, A~\. Furthermore assume that on (o, A~\

and

Then

Proof.

(x->oo).

(4.8)

(4.9)

(4.10)

(4.11)

\e±itxφ{t)dt = J e±itxφ(t)dt +
0 l/x 0

1

+ ix
»φ(ί)

l/x
J

±lXl/x
The first term is O(x 1 lnx) by (4.9) and the second is estimated by (4.10):

- j \φ'(t)\dt^C2/x f
X l/x l/x

Furthermore a substitution t->t/x yields

= O(χ-ίlnx).

ie±ttφ(t/x)dt
xo

which proves the lemma, ϋ

It is obvious how to apply Lemma 2 in our case. From Lemma 1 / ( 1 ) obeys the
conditions (4.9-10) and the integral over C2 taken in parameter representation is
just a Fourier integral of type (4.11). So

ί (E-oo). (4.12)

Collecting (4.4), (4.8), and (4.12) we have proved the following:

Theorem 3. The density of states ρ for the tight-binding model with exponential
disorder (2.3) behaves asymptotically as

(E->oo). (4.13)

Finally we want to discuss the relation between (4.13) and the large n behaviour
of perturbation theory. From the fact that /(z) = G(-z) is Laplace transform of an
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analytic function we know by Watson's lemma [13] that /(z) has an asymptotic
expansion

00

/ ( ^ Σ v i < + 1 ) (z-oo), (4.14)
n = 0

valid in the region {z:Rez>z0}. Since G is a Green's function we have another
representation

oo

i 1dk(x), (4-15)

where dk(x) is the integrated-density-of-states(ids)-measure on specH. A formal
large-z-expansion is given by

00

/(z)~ Σ (-irμπz-< n + 1 ) (z-oo), (4.16)
M = 0

where the μn are the moments of dk,

μn=lx»dk{x). (4.17)
0

We shall prove

Theorem 4. The coefficients an of (4.14) obey

) (n-oo). (4.18)

Proof. This is an easy consequence of (4.17) and (4.13). Choose x0 ̂  1 so large that
dk(x) = ρ(x)dx and \ρ(x) — e~x\^Ce~xx~1lnx for all x^x0. Then

XQ 00 JCo 00 00

(-ί)nan= J xndk(x) + f xn(x)dx= j xndk(x)+ J xne~xdx+ f x"(ρ(x)-^~x)rfx

o

= J xne~xdx+ j xw(d/c(x)-e"^dx)+ J xn(ρ(x)-e~x)dx.
0 0 Λ;0

The first integral gives the leading behaviour π!, the second is O(const"), and the
00

third can be estimated by j x"~1e~xlnxdx, which can be evaluated by iterated
1

partial integration and gives a contribution 0((n — 1)!) (n-> oo). This completes the
proof. D

5. Conclusions and Discussion

Using the random path expansion for lattice resolvents we have analyzed the
instanton structure of the averaged Green's function for a tight binding model with
exponential disorder. This enabled us to find the exponential decay of the density
of states and the large-w behaviour of the moments of the density of states. For the
model under consideration our results are better than those obtained in [9,14].

We have obtained an explicit series representation for the Borel transform, and
this enabled us to work outside the circle of convergence of the series (1.3). Our
method offers some perspectives for other models:
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- the tight binding model with Gaussian disorder. Here we should consider
the Green's function as a function of the variable z = E2. According to [9] we
expect Gaussian decay of the density of states. In the symmetric case the present
methods enable us to go further and establish a result of the form (4.13) in the
variable E2.

- exponential decay for small negative coupling constant as well as large order
behaviour of the perturbation expansion for the pressure or the two-point
functions of /LP(φ)-models on the lattice (for rigorous work see [16]).

- life-time of resonances of the anharmonic oscillator with negative coupling
and large order behaviour of the coefficients of the Rayleigh-Schrόdinger series
(see also [16]).

A remark about Lifshitz tails [8] for disordered systems is in order here. There
is much work in physics on extracting Lifshitz tails of the density of states for the
electronic problem or Griffith singularities of the free energy in disordered spin-
systems from the first instanton singularity. In the present form our method is not
applicable to this problem. We think that a different series expansion in connection
with renormalisation group ideas should be better suited for applying our method
to the problem of Lifshitz tails and Griffith singularities.

On the other hand from

{z + χ)-i= ]e~tze-txdt
o

it follows that our Borel transform is just the averaged diagonal element of the
semi-group e~tH,

Fukushima [8] has derived a Feynman-Kac formula for /(£). This enabled him
to study the large-ί behaviour of / and via a Tauberian theorem the small-E
behaviour of the integrated density of states k(E). Again it seems to be difficult to
extract from our expansion (2.15) the large-ί behaviour of f(t) needed in the
Tauberian theorem.

We finish by remarking that for the case of random Schrόdinger operators on
the lattice our method in the present form can be applied to study the exact
asymptotic behaviour of tails of the density of states at infinity (including
preexponential factors).
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