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Default Priors for the Smoothness Parameter in
Gaussian Matérn Random Fields

Zifei Han∗ and Victor De Oliveira†

Abstract. The Matérn family of covariance functions plays a prominent role in
the analysis of geostatistical data due to its ability to model different smoothness
behaviors. Although in many applications the smoothness parameter is set at an
arbitrary value, a more satisfactory approach requires data–based inference about
smoothness, especially in the light of new findings showing that the information
this type of data has about the smoothness can be considerable in some settings.
This work proposes a new class of easy–to–compute default priors for the pa-
rameters of a class of Gaussian random fields with Matérn covariance functions
with unknown smoothness parameter. This class of priors is obtained by approx-
imating a reference prior using the spectral representation of stationary random
fields. This approximate reference prior has several advantages over the exact ref-
erence prior. First, the computation of the former is more stable and considerably
less burdensome than that of the latter. Second, both the marginal prior of the
smoothness parameter and the joint posterior of all parameters are proper for the
approximate reference prior, while the status of these for the exact reference prior
is currently unknown. Third, Bayesian inferences about the covariance parameters
based on the approximate reference prior have satisfactory frequentist properties
that are superior than those based on maximum likelihood. It was also found that
a previously proposed ad–hoc prior for the smoothness and the approximate ref-
erence prior display in most cases similar statistical performance, with the former
being computationally simpler. The methodology is illustrated with an analysis
of rainfall totals in Switzerland.
MSC2020 subject classifications: Primary 62F15, 62F10; secondary 62P12.
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1 Introduction
Random fields are useful probabilistic tools for modeling and analyzing geostatistical
data that are routinely collected in the natural and earth sciences. In particular, Gaus-
sian random fields play a prominent role due to their versatility for modeling spatially
varying phenomena, and because they serve as building blocks for the construction
of some non–Gaussian random fields (De Oliveira et al., 1997; Diggle and Ribeiro,
2007; Han and De Oliveira, 2016). The Matérn family of isotropic covariance functions
(Matérn, 1986; Stein, 1999) is currently the most commonly used in applications due
to its ability to describe different smoothness behaviors.
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2 Default Priors for the Matérn Smoothness

It is common in practice to fix the smoothness of the random field at an arbitrary
value, even though knowledge about this feature is seldom available. For instance, the
smoothness parameter of the Matérn covariance function is often fixed at 0.5 or 1.5.
This practice is due to two reasons. The first involves computational challenges in the
estimation of all covariance parameters and the lack of a closed–form expression for
the derivative of the covariance function w.r.t. the smoothness parameter. For this,
De Oliveira and Han (2022) and Geoga et al. (2023) recently developed computational
tools to evaluate this derivative. The second reason involves unqualified claims in the
applied statistical literature stating that spatial data have little or no information about
the smoothness of the random field. De Oliveira and Han (2022) argued that this claim
is not true in general. It was shown that the information the data have about the
smoothness parameter varies depending on the true model and sampling design, and
this information can be substantial in some settings. These findings support the viability
of data–based inference about the smoothness of Gaussian Matérn random fields.

For the estimation of smoothness in random fields, Wu et al. (2013), Wu and Lim
(2016), Im et al. (2007) and Anderes and Stein (2008) proposed semiparametric spectral
methods, and Loh (2015) and Loh et al. (2021) proposed parametric space methods.
These methods are rarely used in practice and none of them is implemented in common
software used to fit geostatistical models. On the other hand, maximum likelihood esti-
mation (MLE) is used often and is implemented in several public software, e.g., in the R
packages geoR and georob (Ribeiro and Diggle, 2024; Papritz, 2024). But the sampling
properties of the MLE of the smoothness parameter remain largely unexplored. To in-
vestigate some of these, a simulation study is carried out in Section 3. It is found that
the MLE of the smoothness parameter of the Matérn family has poor sampling proper-
ties, as it is severely upward biased in situations of practical relevance. It is conjectured
that it might not even exist for some data sets.

When the main goal of the data analysis is spatial interpolation, the Bayesian ap-
proach offers advantages over the frequentist plug–in approach, since the former ac-
counts for parameter uncertainty while the latter does not. A challenge to implementing
the Bayesian approach is the specification of sensible prior distributions for covariance
parameters. Subjective elicitation of these priors in spatial models is challenging due to
the lack of subjective information and the difficulty in interpreting some parameters.
Early works specified priors for variance and range parameters in an ad–hoc manner (Ki-
tanidis, 1986; Handcock and Stein, 1993; De Oliveira et al., 1997), but these may yield
unwanted results, including improper posteriors. Two ad–hoc priors for the smoothness
parameter ν > 0 of the Matérn family have been proposed, but seldom used. Handcock
and Stein (1993) suggested using π(ν) = (1+ν)−2, while others suggested ν ∼ unif(0, L)
for some L large. It will be shown that the first is a good option (see below), while the
second seemingly non–informative prior can be very informative and misleading. The
limit of the Matérn covariance function in Section 2 as ν → ∞ is the square exponential
covariance function. The specification ν ∼ unif(0, 100) (say) implies that the squared
exponential covariance function has a prior probability of about 0.9, an inappropriate
belief in most applications due to the extreme smoothness of this model. We show that
both ad–hoc priors yield proper posterior distributions.
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A sound alternative to subjective and ad–hoc prior specifications consists of using
information–based default priors, and among these reference priors have been the most
studied. By default priors we mean priors that, beyond the sampling model, require
little or no input from the user. Berger et al. (2001) provided an extensive discussion
of foundational issues involving the formulation of default priors and advocated for the
use of reference priors in geostatistical models. They showed that these priors over-
come drawbacks of previously proposed priors, e.g., reference posteriors were shown to
be proper. Extensions of the methodology in Berger et al. (2001) were developed by
De Oliveira (2007), Kazianka and Pilz (2012), Ren et al. (2012) and Kazianka (2013)
for isotropic covariance models, and by Paulo (2005), Ren et al. (2013) and Gu et al.
(2018) for separable covariance models. But all of these works assumed the smoothness
of the random field is known.

In this work we derive a new class of easy–to–compute default priors for the smooth-
ness parameter in Gaussian random fields with Matérn covariance functions. These
priors approximate reference priors using the spectral approximation to stationary ran-
dom fields. They depend on an auxiliary regular design that can be tuned to improve
the approximation. Bayesian analyses based on these approximate reference priors are
considerably simpler, and their computation less onerous and more stable than those
based on exact reference priors. For models with a constant mean function, the sim-
plifications are even more substantial as the resulting approximate reference prior has
a matrix–free expression. In addition, the approximate marginal reference prior of the
smoothness parameter is proper, and the joint approximate reference posterior of all
parameters is proper as well. De Oliveira and Han (2023) used similar techniques to
derive approximate reference priors for range parameters.

Numerical experiments in Section 7 show that the proposed approximation to the
reference prior is satisfactory for a variety of designs and models, and inferences based
on the exact and approximate reference priors are practicably equivalent. But inferences
based on the latter are considerably less onerous than those based on the former. It is
also shown that Bayesian inferences on the covariance parameters based on approxi-
mate references prior and the ad–hoc prior suggested by Handcock and Stein (1993)
have similar satisfactory frequentist properties, while Bayesian inferences based on the
uniform prior are inadequate. A data set of daily rainfall totals collected in Switzerland
is used to illustrate the proposed default Bayesian analysis.

2 Data and Model
Spatial data of geostatistical type consist of triplets {(si,f(si), zi) : i = 1, . . . , n}, where
Sn = {s1, . . . , sn} is a set of sampling locations in the region of interest D, called the
sampling design, f(si) = (f1(si), . . . , fp(si))� is a p–dimensional vector of covariates
measured at si (usually f1(s) ≡ 1), and zi is the measurement of the quantity of interest
collected at si. The stochastic approach to spatial interpolation/prediction relies on
viewing the set of measurements {zi}ni=1 as a partial realization of a random field Z(·).

Let {Z(s) : s ∈ D} be a Gaussian random field with mean function μ(s) and
covariance function C(s,u), with D ⊂ R

d and d ≥ 1. It would be assumed that
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μ(s) =
∑p

j=1 βjfj(s), where β = (β1, . . . , βp)� ∈ R
p are unknown regression parame-

ters. Additionally, C(s,u) is assumed isotropic and belonging to a parametric family,{
Cθ(s,u) = σ2Kϑ(||s − u||) : θ = (σ2,ϑ) ∈ (0,∞) × Θ

}
, Θ ⊂ R

q, where Kϑ(·) is an
isotropic correlation function in R

d and ‖ · ‖ is the Euclidean norm. Among the many
possible isotropic covariance families, we focus in this work on the Matérn family with
the parametrization proposed by Handcock and Stein (1993)

Cθ(r) = σ2

2ν−1Γ(ν)

(
2
√
ν

ϑ
r

)ν

Kν

(
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√
ν

ϑ
r

)
, r ≥ 0 (2.1)

=: σ2Kϑ(r),

where r = ||s − u|| is Euclidean distance between two locations, σ2 > 0, ϑ = (ϑ, ν) ∈
(0,∞)2 are correlation parameters, Γ(·) is the gamma function and Kν(·) is the modified
Bessel function of second kind and order ν (Gradshteyn and Ryzhik, 2000, 8.40). For
this family, σ2 = var(Z(s)), ϑ (mostly) controls how fast Cθ(r) goes to zero when r
increases, and ν controls the degree of differentiability of Cθ(r) at the origin. If ν > k,
then Cθ(·) is 2k times differentiable at r = 0. Because of these properties, σ2 is called
the variance parameter, ϑ the range parameter and ν the smoothness parameter.

In applications the measurements zi often contain measurement error, in which case
they are modeled as

zi = Z(si) + εi, i = 1, . . . , n, (2.2)

where ε1, . . . , εn are i.i.d. with N(0, σ2ξ) distribution and independent of Z(·); ξ ≥ 0 is
the so–called noise–to–signal variance ratio. Then, the covariance structure of the data
is indexed by (σ2, ξ, ϑ, ν). Most applications in the literature assume ν is known and
fixed at an arbitrary value, but in this work we assume ν is unknown.

3 MLE of Smoothness: A Simulation Exploration
As mentioned in the Introduction, the sampling properties of the maximum likelihood
estimator of the smoothness parameter of the Matérn family are unknown, so in this
section we carry out a simulation study to explore them. For D = [0, 1]2, we consider two
sampling designs of size n = 225, a regular design where the sampling locations form a
15×15 equally spaced grid, and an irregular design where the sampling locations are an
i.i.d. sample from the unif((0, 1)2) distribution. We consider data following model (2.2),
with p = 1, μ(s) = 0 and Matérn covariance function (2.1) with σ2 = 1. We assume
that ϑ is 0.1 or 0.5 and ν is 0.5 or 1.5. For each combination of the above sampling
designs and models, we simulate 1000 independent data sets under the following three
scenarios for the measurement error:

I: ξ = 0 known II: ξ = 0.2 known III: ξ = 0.2 unknown.

The parameters to be estimated are (μ, σ2, ϑ, ν) for scenarios I and II, and (μ, σ2, ξ, ϑ, ν)
for scenario III. The computation of MLEs was carried out using the optim function in
R with the L-BFGS-B algorithm. We required that ν ∈ (0, 50) in the search space of the
optimization algorithm, while the other parameters were unrestricted. For all designs,
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ν = 0.5 ν = 1.5
ϑ = 0.1 ϑ = 0.5 ϑ = 0.1 ϑ = 0.5

Scenario I
Median 0.597 0.541 1.686 1.550
Mean 1.752 0.561 2.914 1.562
% of ν̂MLE ≥ 50 1.6 0 1.1 0

Scenario II
Median 0.622 0.530 1.852 1.615
Mean 3.111 0.972 6.208 6.508
% of ν̂MLE ≥ 50 4.1 0.6 6.8 8.8

Scenario III
Median 6.239 0.961 7.846 2.359
Mean 23.210 7.352 23.220 12.065
% of ν̂MLE ≥ 50 42.8 11.6 40.5 18.5

Table 1: Sampling features of ν̂MLE for each combination of model and scenario, esti-
mated from 1000 simulated data sets on the regular design.

ν = 0.5 ν = 1.5
ϑ = 0.1 ϑ = 0.5 ϑ = 0.1 ϑ = 0.5

Scenario I
Median 0.528 0.524 1.572 1.527
Mean 0.571 0.549 1.654 1.539
% of ν̂MLE ≥ 50 0 0 0 0

Scenario II
Median 0.555 0.505 1.653 1.727
Mean 0.778 0.774 4.883 7.168
% of ν̂MLE ≥ 50 0.3 0.3 4.6 10.1

Scenario III
Median 0.749 0.704 1.939 2.476
Mean 6.382 3.384 9.252 13.644
% of ν̂MLE ≥ 50 10.2 4.6 12.8 21.9

Table 2: Sampling features of ν̂MLE for each combination of model and scenario, esti-
mated from 1000 simulated data sets on the irregular design.

models and scenarios the sampling distribution of the MLE of ν, ν̂MLE, was asymmetric
with a heavy right tail, so the sampling features to be estimated are median(ν̂MLE),
E(ν̂MLE) and P (ν̂MLE ≥ 50).

Table 1 reports the estimated sampling features of ν̂MLE from the data simulated
on the regular design. The results show that for all models and scenarios ν̂MLE is both
mean and median biased, as ν̂MLE tends to overestimate ν. The magnitudes of these
biases are small when there is no measurement error (scenario I), but are large when the
data contain measurement error (scenarios II and III). Moreover, when the parameter ξ
is also estimated (scenario III), these biases are extremely large, to the point of making
ν̂MLE quite unreliable, especially when the strength of correlation is weak (ϑ = 0.1). It
also holds for scenario III that P (ν̂MLE ≥ 50) is large, suggesting that in this case the
MLE of ν could not only be extremely large, but might not even exist for some data
sets (see below).

Table 2 reports the estimated sampling features of ν̂MLE from the data simulated on
the irregular design. These features follow similar patterns as those in Table 1, but are
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Figure 1: Profile log–likelihood functions of ν (up to an additive constant) for three
simulated data sets with (μ, σ2, ξ, ϑ, ν) = (0, 1, 0.2, 0.1, 0.5) and the regular design.

Figure 2: Log–marginal posterior densities of ν (up to an additive constant) based on
the approximate reference prior for the three simulated data sets in Figure 1.

attenuated. Now ν̂MLE is close to being mean and median unbiased in scenario I, and
ν̂MLE also tends to overestimate ν in scenarios II and III, although to a lesser extent.
The biases and P (ν̂MLE ≥ 50) are still substantial when ξ is estimated. The main take
home messages from Tables 1 and 2 are that ν̂MLE tends to severely overestimate the
smoothness when the data contain measurement error, especially when its variance is
estimated, and this behavior is more severe for regular sampling designs.

To dwell more into the sampling behaviors of ν̂MLE, Figure 1 displays plots of profile
log–likelihoods of ν corresponding to three data sets simulated on the regular design
with ϑ = 0.1, ν = 0.5 and scenario III, for which the iterative algorithm indicated that
ν̂MLE ≥ 50. For each of these the algorithm stopped because the maximum number
of allowed iterations (100) was reached, suggesting convergence did not occur. Inspec-
tion of these profile log–likelihoods for values of ν larger than 5 suggest that they are
monotonically increasing, so ν̂MLE might not exist for these data sets.

A possible fix to the above undesirable behavior is using an estimation method
that penalizes large values of ν, such as penalized maximum likelihood estimation or
Bayesian estimation. Figure 2 displays the log–marginal posteriors of ν based on the
approximate reference prior to be developed in this work, for the three data sets that
were singled out in Figure 1. In stark contrast, the graphs in Figure 2 are unimodal
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with well identified maxima, so the Bayesian maximum a posteriori estimates exist and
provide sensible answers that are not far from the true value (ν = 0.5).

4 Exact Reference Prior
In this section we describe the derivation of an exact reference prior for the parameters
of a sub–class of Gaussian Matérn random fields described in Section 2. We assume the
range ϑ and noise–to–signal variance ratio ξ are known, so from now on q = 1, ϑ = ν,
Θ = (0,∞), and θ = (σ2, ν) are the unknown covariance parameters.

For deriving reference priors of spatial models, the covariance parameters θ are
typically considered of primary interest, and the regression parameters β of secondary
interest, so the reference prior is factored accordingly as πR(β,θ) = πR(β |θ)πR(θ). For
the model under study, the conditional Jeffreys prior of the secondary parameters given
the primary parameters is πR(β | θ) ∝ 1, while πR(θ) is computed using the Jeffreys
rule based on the ‘marginal model’ defined via the integrated likelihood of θ

LI(θ;z) =
∫
Rp

L(β,θ;z)πR(β |θ)dβ

∝ (σ2)−
n−p

2 |Ψν |−
1
2 |X�Ψ−1

ν X|− 1
2 exp

{
− S2

ν

2σ2

}
, (4.1)

where L(β,θ;z) is the Gaussian likelihood of all model parameters based on the data
z = (z1, . . . , zn)�, S2

ν = (z − Xβ̂ν)�Ψ−1
ν (z − Xβ̂ν), β̂ν = (X�Ψ−1

ν X)−1X�Ψ−1
ν z,

X is the known n× p design matrix with entries Xij = fj(si), and

Ψν = Σν + ξIn,

where In is the n × n identity matrix, Σν is the n × n matrix with entries (Σν)ij =
Kν(‖si − sj‖) and Kν(·) is the Matérn correlation function defined in (2.1).

Proposition 4.1 (Reference Prior). The reference prior of (β, σ2, ν) is given by

πR(β, σ2, ν) ∝ πR(ν)
σ2 , (4.2)

with

πR(ν) ∝
{

tr
[{(

∂

∂ν
Σν

)
Qν

}2
]

− 1
n− p

[
tr
{(

∂

∂ν
Σν

)
Qν

}]2} 1
2

, (4.3)

where Qν := Ψ−1
ν −Ψ−1

ν X(X�Ψ−1
ν X)−1X�Ψ−1

ν and ∂
∂νΣν is the entry–wise deriva-

tive of Σν w.r.t. ν.

The expression (4.3) is similar to the one derived in Berger et al. (2001, Theorem
2) for range parameters. For the Matérn model, evaluation of (4.3) requires computing
derivatives of the Bessel function Kν(x), both w.r.t. x and ν, where the latter lacks a
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closed–form expression valid for any ν > 0. De Oliveira and Han (2022) provide methods
to compute these derivatives.

For propriety of the posterior distribution derived from the reference prior (4.2), it
is required that the integral∫

Rp×(0,∞)2
L(β, σ2, ν;z)π

R(ν)
σ2 dβdσ2dν =

∫
(0,∞)

LI(ν;z)πR(ν)dν, (4.4)

is finite, where LI(ν;z) is the so–called integrated likelihood of ν obtained by integrating
the product of the likelihood and 1/σ2 (= πR(σ2 | ν)) over β and σ2.

Proposition 4.2 (Integrated Likelihood). The integrated likelihood of ν is given by

LI(ν;z) ∝ |Ψν |−
1
2 |X�Ψ−1

ν X|− 1
2 (S2

ν)−
n−p

2 . (4.5)

The above expression follows by direct calculation (Berger et al., 2001). The asymp-
totic behaviors of the integrated likelihood (4.5) follow from the following result.

Lemma 1. Consider the Matérn family of correlation functions in (2.1). For any ϑ > 0
and r ≥ 0 fixed, it holds that

(a) lim
ν→0+

Kν(r) = 1{r = 0} (1{A} denotes the indicator function of set A).

(b) lim
ν→∞

Kν(r) = exp
(
− (r/ϑ)2

)
.

Proof. The proof is given in Appendix A of the Supplementary Material (Han and
De Oliveira, 2024).

The results in the above lemma imply that LI(ν;z) is bounded on (0,∞) for any
z (see the proof of Theorem 6.2(b) in Section 6), and hence the finiteness of (4.4) de-
pends entirely on the integrability of πR(ν) over (0,∞). Unfortunately, determining the
asymptotic behavior of the reference prior of ν in (4.3) is quite challenging. There is no
closed–form expression for (∂/∂ν)Σν nor convenient approximations, and the asymp-
totic representation of correlations matrices in Berger et al. (2001) does not hold for
smoothness parameters. As a result, the propriety status of πR(ν) and πR(β, σ2, ν | z)
are currently unknown. Additionally, the computation of πR(ν) is quite demanding, even
for data sets of moderate size. First, its evaluation involves the computation of the n×n
matrix Ψ−1

ν which requires O(n3) operations. Second, for many families of correlation
functions, including the Matérn, the matrix Ψν is often nearly singular when either ϑ
or ν is large and ξ is small, so the computation of Ψ−1

ν will be unstable or infeasible
in these situations. It also follows from the above lemma that the prior proposed by
Handcock and Stein (1993) yields a proper posterior distribution.

In Section 6 we circumvent these theoretical and computational challenges by deriv-
ing an approximate reference prior that is more amenable for analysis and computation.
This approximation depends neither on Kν(·) nor on the inverse of large and possibly
numerically singular matrices, but instead on the spectral density function of the model.



Z. Han and V. De Oliveira 9

5 Spectral Approximation to the Integrated Likelihood
The spectral approximation to stationary random fields has been used for different
purposes by Royle and Wikle (2005), Paciorek (2007) and Bose et al. (2018), but unlike
these works this device is employed here to approximate the random field over a set
of locations that may not be the sampling design. Below we summarize the spectral
approximation for random fields in the plane (d = 2); a detailed statement of the result
and its proof are given by De Oliveira and Han (2023).

Let μ(s) and σ2Kν(r) be, respectively, the mean and covariance functions of the
random field Z(·), and σ2fν(ω) be its spectral density function. For the Matérn family
in (2.1) we have (Stein, 1999)

fν(ω) = Γ(ν + 1)(4ν)ν

πΓ(ν)ϑ2ν

(
‖ω‖2 + 4ν

ϑ2

)−(ν+1)

, ω = (ω1, ω2)� ∈ R
2. (5.1)

For M1, M2 positive even integers and Δ > 0, let UM = {u1,1,u1,2, . . . ,uM1,M2} =
{Δ, . . . ,ΔM1}×{Δ, . . . ,ΔM2} be a set of spatial locations forming a regular rectangular
grid in the plane, with M := M1M2. The set UM , called the auxiliary design, does not
need to be the sampling design Sn, but is constructed in a way that contains the convex
hull of the region of interest D. Associated with UM we define a corresponding set of
M spatial frequencies, also forming a regular rectangular grid in the plane, as

WM =
{
ω−M1

2 +1,−M2
2 +1, . . . ,ω0,0, . . . ,ωM1

2 ,
M2
2

}
= 2π

ΔM1

{
−M1

2 + 1, . . . , 0, 1, . . . , M1

2

}
× 2π

ΔM2

{
−M2

2 + 1, . . . , 0, 1, . . . , M2

2

}
;

WM ⊂ [− π
Δ , π

Δ ]2 is called the spectral design.

Now, let ZΔ(k) := Z(Δk), k = (k1, k2)� ∈ Z
2, be the discrete index random field

defined by sampling the random field Z(·) at the rate Δ. This random field has mean
function μ(Δk) and covariance function σ2Kν(Δ||k− k′||), for k,k′ ∈ Z

2 while, due to
the so–called ‘aliasing effect’, its spectral density function is given by (Yaglom, 1987)

fΔ
ν (ω) =

∑
l∈Z2

fν

(
ω + 2π

Δ l
)
, ω ∈

[
− π

Δ ,
π

Δ

]2
. (5.2)

Let z̃ :=
(
Z(ui,j) + W (ui,j) : ui,j ∈ UM

)� be the vector of (potential) observations
at the points of the auxiliary design, where W (·) is the Gaussian white noise in the
plane with variance σ2ξ. From the spectral representation of ZΔ(k), De Oliveira and
Han (2023) showed that when M1 and M2 are both large, it holds that

z̃
approx∼ N

(
X̃β, σ2(H1GνH

�
1 + ξIM )

)
, (5.3)

where X̃ is the M × p matrix whose entries involve the covariates measured at the
locations in UM , H1 := (1M ,H), with 1M the vector of ones and H the M × (M − 1)
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matrix whose columns are formed by the multiples 1, 2 or −2 of either cosines or sines
evaluated at the inner products of appropriate frequencies and auxiliary locations, and

Gν = cΔ
2M diag

((
2fΔ

ν (ωm1,m2) : (m1,m2) ∈ IC
)�

,
(
fΔ
ν (ωm1,m2) : (m1,m2) ∈ I

)�
,(

fΔ
ν (ωm1,m2) : (m1,m2) ∈ I

)�)
,

where cΔ := (2π/Δ)2 and IC and I are indices that identify subsets of the spectral
design WM ; see De Oliveira and Han (2023) for details.

5.1 Approximate Integrated Likelihood
The distribution in (5.3) provides the basis to approximate the integrated likelihood of
θ based on a special linear combination of z̃, somewhat similar to the use of restricted
likelihood for inference about variance components. In all that follows, the aliased spec-
tral density fΔ

ν (ω) is approximated by truncating the series (5.2) so that only the
terms for which max{|l1|, |l2|} ≤ T are retained, for some T ∈ N. This approximation,
denoted as f̃Δ

ν (ω), is not sensitive to T once this is large enough; see Appendix E of
the Supplementary Material for details (Han and De Oliveira, 2024).

Let L1 := H1(H�
1 H1)−1/2, where H1 is the matrix defined in the previous section,

and V 1 := L�
1 z̃. It holds that (De Oliveira and Han, 2023)

V 1
approx∼ N

(
X1β, σ

2Λ̃ν

)
, (5.4)

where X1 := L�
1 X̃ is an M × p matrix with full rank p, and Λ̃ν is the diagonal matrix

Λ̃ν = cΔdiag
((

f̃Δ
ν (ωm1,m2) : (m1,m2) ∈ IC

)�
,
(
f̃Δ
ν (ωm1,m2) : (m1,m2) ∈ I

)�
,(

f̃Δ
ν (ωm1,m2) : (m1,m2) ∈ I

)�) + ξIM . (5.5)

Because V 1 has a substantially simpler covariance structure than that of z̃, the imple-
mentation of the reference prior algorithm described in Section 4 using the likelihood
based on V 1 results in substantial simplifications. In particular, when the mean is con-
stant (so p = 1), direct calculation shows that lI(θ; z̃), the integrated log–likelihood
function of θ = (σ2, ν) based on z̃, can be approximated by

lAI(θ; z̃) = −1
2

M−1∑
j=1

(
log
(
σ2(cΔf̃Δ

ν (ωj) + ξ)
)

+
V 2
j

σ2(cΔf̃Δ
ν (ωj) + ξ)

)
+ c̃, (5.6)

where c̃ does not depend on θ, {ωj} are a re–indexing of the frequencies {ωm1,m2}
appearing in (5.5), with ω0,0 removed, and V1, . . . , VM−1 are the last M−1 components
of V 1 (De Oliveira and Han, 2023). In this case, even more substantial simplifications
accrue in the computation of approximate reference priors, since (5.6) is a matrix–free
expression, the required expectations are simplified as the Vj s are independent gamma
distributed variables, and differentiation with respect to the smoothness parameter is
simplified as lAI(θ; z̃) is devoid of Bessel functions.
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6 Approximate Reference Prior
The derivation of the approximate reference prior of ν, denoted πAR(ν), proceeds as
follows. Rather than using the exact integrated likelihood (4.1) based on the data z mea-
sured at Sn, we use the approximate integrated likelihood derived from the potential
summary (5.4) measured at UM . This summary has a substantially simpler (diagonal)
covariance matrix. This makes the computation and analysis of the resulting approxi-
mate reference prior much more manageable than that of the exact reference prior. In
what follows it is assumed that the covariates, if any, are available everywhere in the
region of interest.

Theorem 6.1 (Approximate Reference Prior). The approximate reference prior of
(β, σ2, ν) derived from (5.4) is given by πAR(β, σ2, ν) ∝ πAR(ν)

σ2 , with

πAR(ν) ∝
{

tr
[{(

∂

∂ν
Λ̃ν

)
Q̃ν

}2
]
− 1

M − p

[
tr
{(

∂

∂ν
Λ̃ν

)
Q̃ν

}]2} 1
2

, (6.1)

where Λ̃ν was defined in (5.5) and Q̃ν := Λ̃−1
ν − Λ̃−1

ν X1(X�
1 Λ̃−1

ν X1)−1X�
1 Λ̃−1

ν .

Proof. The result follows from (4.3) by replacing X with X1 and Ψν with Λ̃ν .

Note that Λ̃ν is a diagonal matrix, with diagonal elements having closed–form ex-
pressions devoid of Bessel functions, so computation of (∂/∂ν)Λ̃ν is straightforward. The
computation of Q̃ν only involves the inversion of the (small) p× p matrix X�

1 Λ̃−1
ν X1,

where the matrix X1 needs to be computed only once since H1 is fixed. The jth diag-
onal element of the diagonal matrix

(
(∂/∂ν)Λ̃ν

)
Λ̃−1

ν also has a closed–form expression
which, after some algebra, is given by

γν(ωj) := cΔ

cΔf̃Δ
ν (ωj) + ξ

(
∂

∂ν
f̃Δ
ν (ωj)

)

=
∑

l∈T2
gν(ωj(l1,l2))h(ν,ωj(l1,l2))

q(ν) +
∑

l∈T2
gν(ωj(l1,l2))

, (6.2)

where ωj is the frequency of the jth diagonal element in (5.5), l = (l1, l2), T2 :=
[−T, T ]2 ∩ Z

2, ωj(l1,l2) := ωj + 2π
Δ l, and

gν(ωj(l1,l2)) :=
(

1 +
ϑ2‖ωj(l1,l2)‖2

4ν

)−(ν+1)

h(ν,ωj(l1,l2)) := ψ(ν + 1) − ψ(ν) +
ϑ2‖ωj(l1,l2)‖2 − 4
ϑ2‖ωj(l1,l2)‖2 + 4ν − log

(
1 +

ϑ2‖ωj(l1,l2)‖2

4ν

)

q(ν) := ξΔ2Γ(ν)ν
πϑ2Γ(ν + 1) .

As a result, the computation and analysis of the approximate reference prior πAR(ν)
is substantially simpler than that of πR(ν). An important special case of Theorem 6.1
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occurs when the mean function is constant, in which case the approximate reference
prior of ν takes an even simpler matrix–free form.
Corollary 6.1 (Approximate Reference Prior–Constant Mean). Consider the model
with constant mean function. In this case the approximate reference prior of (β1, σ

2, ν)
is πAR(β1, σ

2, ν) ∝ πAR(ν)
σ2 , with

πAR(ν) ∝

⎧⎨
⎩

M−1∑
j=1

γ2
ν(ωj) − 1

M − 1

(M−1∑
j=1

γν(ωj)
)2
⎫⎬
⎭

1
2

, (6.3)

where {ωj} are the same frequencies used in (5.6) and γν(ωj) is given in (6.2).

Proof. The proof is similar to the proof in De Oliveira and Han (2023, Corollary 1).
Theorem 6.2 (Propriety). Assume the mean function μ(s) has an intercept (so f1(s) ≡
1) and the covariance function is the Matérn family in (2.1). Then

(a) πAR(ν) is a continuous function on (0,∞) that satisfies

πAR(ν) =
{
O(1), as ν → 0+

O(ν−2), as ν → ∞,

so πAR(ν) is integrable on (0,∞).

(b) The approximate reference posterior distribution based on the observed data,
namely, πAR(β, σ2, ν | z) ∝ L(β, σ2, ν;z)πAR(β, σ2, ν), is proper.

Proof. The proof is given in Appendix A of the Supplementary Material (Han and
De Oliveira, 2024).

Interestingly, the ad–hoc default prior πHS(ν) = (1 + ν)−2 mentioned in the In-
troduction has the same tail behavior as πAR(ν). But unlike πHS(ν), the behavior of
πAR(ν) near zero changes depending on the model structure (e.g., on the assumed mean
function and range parameter). It will be shown in the next section and in Appendix
C of the Supplementary Material (Han and De Oliveira, 2024) that, for most designs
and models, Bayesian inferences based on both priors are similar and have satisfactory
frequentist properties.

7 Numerical Studies
In this section, we conduct three numerical studies. We compare the marginal priors
πR(ν) and πAR(ν) for various sampling designs and model features, compare the com-
putational effort of these priors, and compare the frequentist properties of Bayesian
predictive inferences based on default priors with those derived from several variations
of plug–in prediction. Additionally, in Appendices C and D of the Supplementary Ma-
terial (Han and De Oliveira, 2024) we investigate frequentist properties of Bayesian
estimates based on several default priors, and in Appendix E of the Supplementary
Material (Han and De Oliveira, 2024) we explore further the empirical rules for hyper-
parameter tuning.
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7.1 Comparison of Exact and Approximate Reference Priors of ν

As sampling designs in D = [0, 1]2 we use a 10 × 10 equally spaced regular design and
three irregular designs of size n = 100, to be described below. For the mean function we
use μ(s) = 1 and μ(s) = 0.15−0.65x−0.1y+0.9x2−xy+1.2y2, with s = (x, y), and for the
covariance function we use the isotropic Matérn model (2.1) with σ2 = 1 and ϑ = 0.1, 0.3
and 0.5. We also use two noise–to–signal variance ratios, ξ = 0 and 0.5. To compute the
approximate reference priors, fΔ

ν (ω) is approximated by truncating the series (5.2) so
that only the terms with max{|l1|, |l2|} ≤ 4 are retained. These approximate reference
priors show very mild sensitivity to the truncation point, and T = 4 is an adequate
default value; see Appendix E of the Supplementary Material (Han and De Oliveira,
2024). To compute exact reference priors, the entries of (∂/∂ν)Σν are evaluated using
the expression derived in De Oliveira and Han (2022).

Figure 3 displays plots of the (normalized) exact and approximate reference priors of
ν based on data in the regular design without measurement error (ξ = 0). The left panels

Figure 3: Marginal densities of the exact and approximate reference priors of ν for data
without measurement error (ξ = 0) in the 10 × 10 regular design. Left: constant mean
model. Right: non–constant mean model. From top to bottom: ϑ = 0.1, 0.3 and 0.5.
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are the priors for the constant mean models, and the right panels are the priors for the
non–constant mean models. The top, middle, and bottom panels are the priors obtained
when ϑ = 0.1, 0.3 and 0.5, respectively. The solid black curves are exact reference priors,
and the broken colored curves are approximate reference priors. As the default choice
to compute πAR(ν) we use UM = Sn, i.e., we set M1 = M2 =

√
n and Δ = dmin,

the distance between adjacent sampling locations. The resulting approximate reference
priors (broken blue curves) have similar overall behaviors as the exact reference priors,
but display some discrepancies for small values of ν, especially when ϑ is small. However,
the approximation improves when M1,M2 and Δ are tuned using values M1 = M2 >

√
n

and Δ > dmin (dotted red curves), in which case the two priors are close everywhere.

Figure 4 displays plots of the (normalized) exact and approximate reference priors
of ν based on data in the regular design with measurement error (ξ = 0.5). The layout
and curve labels are the same as those in Figure 3. In this case, the default choices
of M1,M2 and Δ indicated above result in approximate reference priors that are close

Figure 4: Marginal densities of the exact and approximate reference priors of ν for data
with measurement error (ξ = 0.5) in the 10 × 10 regular design. Left: constant mean
model. Right: non–constant mean model. From top to bottom: ϑ = 0.1, 0.3 and 0.5.
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to their exact counterparts. The same behaviors were found to hold for other positive
values of ξ (not shown).

Next we consider the three irregular sampling designs displayed in Figure 5 (left pan-
els). Figure 5 (right panels) displays plots of the exact and approximate reference priors
of ν based on these irregular designs for the model with constant mean, ϑ = 0.3 and
ξ = 0. The choices of M1, M2, and Δ were made similarly as for the regular design with
a slightly larger spacing Δ. Specifically, setting M1 = M2 = 20 and Δ equal to 1.5 times
a value between the 75th to 95th percentile of {di}ni=1, with di = min{‖si−sj‖ : j �= i},
provides satisfactory approximations for practical purposes. Additionally, the plots show
that these reference priors are not sensitive to the sampling design. Similar behaviors
were found to hold for other models with non–constant mean and other values of ϑ and
ξ (not shown) Overall, the numerical explorations reported in Figures 3–5 indicate that
the approximate reference priors, after properly tuned when needed, provide satisfactory
approximations to exact reference priors for a variety of sampling designs and models.
The larger the noise–to–signal variance ratio, the less tuning is needed, and approxi-
mate reference priors without tuning provide good approximations when ξ is moderate

Figure 5: Left: Three irregular sampling designs in [0, 1]2. Right: Corresponding exact
and approximate reference priors of ν when the mean is constant, ϑ = 0.3 and ξ = 0.
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p Reference Prior n = 100 n = 400 n = 1600 n = 10000

Regular Design
1 Exact 0.82 14.54 596.17 –

Approximate 0.02 0.07 0.22 1.82

6 Exact 0.95 17.18 874.05 –
Approximate 0.11 1.07 8.04 187.45

Irregular Design
1 Exact 33.28 521.01 6310.31 –

Approximate 0.02 0.08 0.19 1.90

6 Exact 37.71 628.11 10840.67 –
Approximate 0.10 1.14 9.94 204.32

Table 3: Computational times (in seconds) for 100 evaluations of the exact and approx-
imate reference priors of ν based two types of sampling designs of different sizes, for
models with constant and non-constant mean functions and (ϑ, ξ) = (0.2, 0).

or large. In these cases, setting M1 = M2 =
√
n and Δ = dmin is recommended. Over-

all, the approximate reference prior is not overly sensitive to the choices of T , M1,M2
and Δ, and the above general recommendations provide satisfactory approximations.
Additional sensitivity explorations are provided in Appendix E of the Supplementary
Material (Han and De Oliveira, 2024).

7.2 Comparison of Computational Effort
To compare the computational complexity of exact and approximate reference priors,
we consider two types of sampling designs of size n, a

√
n × √

n equally spaced grid
and an i.i.d. sample from the unif((0, 1)2) distribution. To compute the approximate
reference prior we use M1 = M2 =

√
n and Δ = 0.1 for both design types. To com-

pute the exact reference prior for irregular designs, the derivative w.r.t. ν needs to
be evaluated n(n − 1)/2 times, while for regular designs the derivative calculations
only need to be done for pairs with distinct distances, whose total number is far less.
The computation of the exact reference prior in (4.3) also requires O(n3) operations
due to the matrix inversion, regardless of the design. On the other hand, for process
with constant mean the computation of the approximate reference prior in (6.3) only
requires O(n) operations. For processes with a non–constant mean function the compu-
tation of πAR(ν) in (6.1) requires O(n2) operations, and does not involve the evaluation
of special functions or their derivatives. The major computational cost is to evaluate
X1(X�

1 Λ̃−1
ν X1)−1X�

1 Λ̃−1
ν , where X1 only needs to be calculated once. Computing

the HS prior is almost instantaneous as it does not depend on the design or model.

Table 3 reports the timings for 100 evaluations1 of exact and approximate reference
priors of ν based on the two types of sampling designs of different sizes for models with
constant and non–constant mean functions. Depending on the sample size, design type
and mean function, the evaluation of approximate reference priors is between one to

1The computational times reported in this article are based on a MacBook Pro with 2.3 GHz Intel
Core i9 processor under the R programming language.
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three orders of magnitude faster than the evaluation of exact reference priors. And the
computational time gap increases substantially with sample size, at a higher rate for
models with constant mean. In particular, when n = 10000 the computation of exact
reference priors becomes computationally unfeasible on a personal computer due to the
challenges of storing and inverting large correlation matrices. It is also noted that, for
a given sample size, the time to compute approximate reference priors is about the
same regardless of the design type, while the time to compute exact reference priors is
considerably larger for irregular designs than for regular designs.

7.3 Comparison of Predictive Inferences

We carry out a simulation experiment to compare frequentist properties of plug–in and
Bayesian predictive inferences based on different priors. We use a 10×10 equally spaced
regular design in D = [0, 1]2 and three prediction locations s0 at (0.5, 0.5), (0.3, 0.3) and
(0.79, 0.1) (with decreasing distance to their nearest sampling locations). We consider
Gaussian random fields with μ = 0, σ2 = 1 and Matérn correlation function with
ϑ = 0.3, and ν = 0.5 or 1.5. For each of these models, we simulated 1000 independent
data sets at the 103 locations with noise–to–signal variance ratio ξ = 0 or 0.2. For
each model and data set we computed equal–tail 95% prediction intervals for Z(s0)
using plug–in and Bayesian procedures. For the plug–in procedures, we used Gaussian
predictive distributions with parameters estimated by the following variants of MLE:

• MLE: all parameters were estimated

• MLE–0.5: all parameters were estimated except ν that was fixed at 0.5.

• MLE–1.5: all parameters were estimated except ν that was fixed at 1.5.

The last two variants use a correctly specified value of ν for half of the simulated
scenarios and a misspecified value for the other half. For the Bayesian procedures, we
used a sample from the posterior distribution of ν (obtained from the algorithm in
Appendix B of the Supplementary Material (Han and De Oliveira, 2024) based on the
following default priors:

• Bayes–AR: the approximate reference prior in Corollary 6.1.

• Bayes–HS: similar as the previous one, but using πHS(ν) instead of πAR(ν).

For each model and prediction location, we evaluated the predictive performance of the
aforementioned procedures using two metrics: the frequentist coverage probability and
the interval score proposed by Gneiting and Raftery (2007). The latter is given by

Sint
0.05(l, u; Z(s0)) = (u− l) + 40

(
(l − Z(s0))1{Z(s0) < l} + (Z(s0) − u)1{Z(s0) > u}

)
,

(7.1)
where l and u are, respectively, the lower and upper bounds of the 95% prediction
interval for Z(s0). The latter criterion rewards narrow intervals and imposes a penalty
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ξ = 0 ξ = 0.2
Method Point 1 Point 2 Point 3 Point 1 Point 2 Point 3

ν = 0.5
MLE 0.944 0.922 0.857 0.946 0.926 0.889

[2.463] [2.656] [2.221] [3.377] [3.846] [4.066]
MLE–0.5 0.961 0.950 0.950 0.949 0.935 0.889

[2.352] [2.514] [1.675] [3.267] [3.657] [3.524]
MLE–1.5 0.902 0.867 0.696 0.948 0.936 0.904

[2.526] [2.958] [3.164] [3.384] [3.746] [3.830]
Bayes–AR 0.952 0.932 0.898 0.955 0.935 0.908

[2.441] [2.619] [1.980] [3.329] [3.708] [3.601]
Bayes–HS 0.954 0.938 0.911 0.952 0.939 0.908

[2.429] [2.596] [1.940] [3.317] [3.700] [3.529]
ν = 1.5

MLE 0.948 0.932 0.914 0.946 0.929 0.876
[0.963] [0.939] [0.447] [2.582] [2.946] [3.450]

MLE–0.5 0.999 0.997 1.000 0.955 0.929 0.851
[1.402] [1.327] [0.941] [2.467] [2.841] [3.659]

MLE–1.5 0.961 0.949 0.953 0.943 0.928 0.882
[0.927] [0.897] [0.398] [2.579] [2.918] [3.248]

Bayes–AR 0.958 0.942 0.936 0.951 0.930 0.892
[0.965] [0.928] [0.440] [2.559] [2.891] [3.194]

Bayes–HS 0.960 0.947 0.939 0.948 0.930 0.889
[0.968] [0.929] [0.439] [2.544] [2.874] [3.216]

Table 4: Coverage probability and [interval score] of MLE–based Wald 95% prediction
intervals and Bayesian equal–tail 95% credible intervals for prediction of Z(s0) at loca-
tions s0 = (0.5, 0.5), (0.3, 0.3) and (0.79, 0.1) (Points 1, 2 and 3, respectively).

on intervals that do not capture the true value, with the magnitude of the penalty
proportional to the gap between the true value and a boundary of the interval.

Table 4 reports, for each combination of model and procedure, the empirical fre-
quentist coverage and average interval scores for the three prediction locations. Both
Bayesian prediction intervals, derived from default priors, exhibit similar performance
in terms of coverage and interval score. Notably, the Bayesian approaches slightly out-
perform the MLE procedure (where all parameters are estimated) in these respects,
especially when ξ = 0. Additionally, the Bayesian procedures have a much better per-
formance than the MLE procedure when the value of ν is fixed and misspecified, both
in terms of coverage and interval score. On the other hand, the Bayesian procedures
have a similar or slightly worse performance than the MLE procedure when the value
of ν is fixed at the correct value. The above findings suggest that: (a) Predictive infer-
ences based on both default priors are about the same; (b) Typically, setting a fixed
smoothness adversely affects predictive performance. The only exception arises when
the selected value of ν equals the true value of the smoothness of the random field, a
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fortuitous situation that is rare in practice. We also compared the mean square pre-
diction errors of the aforementioned procedures, but all exhibited similar performances
based on this criterion (not shown).

Appendices C and D of the Supplementary Material (Han and De Oliveira, 2024)
compare frequentist properties of Bayesian inferences about covariance parameters based
on the approximate reference and HS priors. It is found that these have similar satisfac-
tory properties. The only exception appears to occur in non–smooth covariance functions
for which inference about ν based on the approximate reference prior is better.

8 Example
To illustrate the proposed default Bayesian analysis for the smoothness of random fields,
we use the rainfall data set analyzed in Diggle and Ribeiro (2007, Section 5.4.7), available
from the R package geoR (object SIC). The data consists of daily rainfall totals that felt
in Switzerland on May 8, 1986, measured in 1/10 of a millimeter, and collected over
467 stations with the coordinates of the sampling locations measured in kilometers;
see Figure 6. An exploratory analysis reveals no apparent spatial trend. The rainfall at
five stations is zero and the sampling distribution of the positive rainfall is skewed. As
Diggle and Ribeiro (2007), we replaced the zeros with 0.5 and transformed the rainfall
totals using the Box–Cox transformation with parameter λ = 0.5. The model for the
transformed data is the Gaussian random field in (2.2) with constant mean and Matérn
covariance function (2.1). Instead of fixing the smoothness of the random field at an
arbitrary value, as customarily done in geostatistical analyses, we conduct Bayesian
analyses and compare inferences based on default priors π(ν)/σ2, with π(ν) = πR(ν),
πAR(ν) and πHS(ν).

To compute πR(ν) and πAR(ν) we need to determine the range and the noise–
to–signal variance ratio. For this we use the integrated likelihood approach proposed by

Figure 6: Sampling locations of the Swiss rainfall data. The radius of each circle is
proportional to the logarithm of the rainfall amount (in 1/10 millimeter).
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Figure 7: Left: Contour plot of the integrated likelihood of (ϑ, ξ) for the rainfall data.
Right: Densities of the three priors and their corresponding posteriors of ν.

Berger et al. (2001) with the approximate reference prior. Specifically, when (ϑ, ξ) are
assumed known, the (conditional) approximate reference prior is of the form

πAR(β, σ2, ν | ϑ, ξ) = C(ϑ, ξ)πAR(ν |ϑ, ξ)
σ2 ,

where πAR(ν |ϑ, ξ) is given in (6.3), with the dependence on the parameters (ϑ, ξ)
now being explicit, and C(ϑ, ξ) :=

( ∫∞
0 πAR(ν |ϑ, ξ) dν

)−1. If ϑ = (ϑ, ν) denotes the
correlation parameters, then the integrated likelihood of (ϑ, ξ) is given by

m(z |ϑ, ξ) =
∫
Rp×(0,∞)2

L(β, σ2, ξ, ϑ, ν;z)πAR(β, σ2, ν |ϑ, ξ) dβdσ2dν

∝
∫ ∞

0
|Ψϑ,ξ|−

1
2 |X�Ψ−1

ϑ,ξX|− 1
2 (S2

ϑ,ξ)−
n−p

2 C(ϑ, ξ)πAR(ν |ϑ, ξ) dν,

where Ψϑ,ξ and S2
ϑ,ξ are defined circa (4.1), but now we make their dependence on

ν, ϑ and ξ explicit. Then (ϑ, ξ) are chosen as the values that maximizes m(z |ϑ, ξ),
with z set at the observed data. Figure 7 (left) displays the contour plot of the in-
tegrated likelihood of (ϑ, ξ) for the rainfall data, showing that the maximum occurs
around (ϑ, ξ) = (82, 0.052). Additionally, to compute πAR(ν) we approximate f̃Δ

ν (ωj)
by truncating the series (5.2) so that only the terms for which max{|l1|, |l2|} ≤ 4 are
retained and, following the guidelines discussed in Section 7.1, set M1 = M2 = 32 and
Δ = 7 (= 75th percentile of the distances between nearest sampling locations).

We carry out Bayesian analyses based of the aforementioned three default priors,
using the Monte Carlo algorithm described in Appendix B of the Supplementary Ma-
terial (Han and De Oliveira, 2024). For each analysis, we run a simulation of size 12000
from the posterior distribution of (β1, σ

2, ν), and the first 2000 draws are discarded as
burn–in. Figure 7 (right) displays the three priors of ν and their corresponding marginal
posteriors. All three priors place large and small probability masses in about the same
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Prior β̂1 σ̂2 ν̂
(95% CI) (95% CI) (95% CI)

Exact Reference 19.790 127.517 0.888
(10.776, 28.535) (79.190, 174.109) (0.565, 1.390)

Approximate Reference 19.779 131.310 0.946
(11.539, 29.224) (82.594, 177.237) (0.589, 1.424)

HS 19.828 125.257 0.851
(10.312, 28.172) (78.541, 170.664) (0.561, 1.346)

Table 5: Parameter estimates from the rainfall data using three different priors. The
estimate ν̂ is the posterior mode, σ̂2 is the posterior median and β̂1 is the posterior
mean. The 95% credible intervals are the HPD.

regions of the parameter space, but some discrepancies exist when ν is small. Neverthe-
less, the posterior distributions corresponding to the exact and approximate reference
priors are quite close, while that corresponding to the HS prior is slightly less similar.
Table 5 reports the Bayesian estimates of the model parameters and their corresponding
95% highest posterior density (HPD) credible intervals, showing that inferences based
on the three priors are similar. The posterior of ν using the HS prior is slightly more
concentrated than the other two and, as a result, the credible intervals are slightly
narrower.

9 Conclusions and Discussion
This work proposes an easy–to–compute default prior for a class of Gaussian Matérn
random fields with unknown smoothness parameter. The prior is obtained by approxi-
mating a reference prior using the spectral approximation to stationary random fields.
This approximate reference prior has several advantages over the exact reference prior.
First, the computation of the former is more stable and considerably less burdensome
than that of the latter. Yet, results from extensive simulation experiments in Section 7.3,
Appendix C of the Supplementary Material (Han and De Oliveira, 2024) and a data
analysis in Section 8 suggest that Bayesian inferences based on both priors are practica-
bly equivalent and have satisfactory frequentist properties. Second, both the marginal
prior of the smoothness parameter and the joint posterior of all parameters are proper
for the approximate reference prior, while the status of these for the exact reference
prior is unknown. This enables the use of approximate reference priors for covariance
function selection using Bayes factors, as described in Berger et al. (2001), a very helpful
property since few tools are available for this purpose, and covariance selection is often
done casually. Recommendations were given for the tuning of the approximate reference
prior in terms of quantities that depend of the sampling design. The resulting prior is
just mildly sensitive to the tuning choices.

To the best of our knowledge, the proposed default prior for the smoothness param-
eter is the first based on first principles. Interestingly, the ad–hoc HS prior has similar
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overall and tail behaviors, so it is also a reasonable default prior for the smoothness
parameter. On the other hand, we advise against using the seemingly ‘non–informative’
uniform prior with a large subjective upper bound, since Bayesian inferences based on it
have poor frequentist properties; see Appendix C of the Supplementary Material (Han
and De Oliveira, 2024).

It was also found that the MLE of the smoothness parameter has poor sampling
properties when the data contain measurement error. This estimator tends to severely
overestimate the smoothness and may not even exist for some data sets. In contrast, the
estimator of the smoothness parameter obtained by maximizing its marginal posterior
based on the approximate reference prior has good sampling properties as this prior
penalizes large smoothness values. This finding resembles that in Gu et al. (2018) who
showed that estimators of range parameters obtained by maximizing their marginal
posteriors based on reference priors have better sampling properties than those of MLEs.

A drawback of the proposed methodology is that requires assuming the range and
noise–to–signal variance ratio are known. This is partly mitigated by choosing these
parameters by maximizing their integrated likelihood, as described in Section 8. These
estimators are expected to be reasonable for most data sets, and typically better than
ML estimators; see Berger et al. (1999). The developments in this work and that in
De Oliveira and Han (2023) are expected to serve as the basis for the construction of
a default prior for the case when all four parameters of the Matérn covariance function
are unknown.
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