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In this paper, we introduce new, easily implementable designs for draw-
ing causal inference from randomized experiments on networks with interfer-
ence. Inspired by the idea of matching in observational studies, we introduce
the notion of considering a treatment assignment as a “quasi-coloring” on a
graph. Our idea of a perfect quasi-coloring strives to match every treated unit
on a given network with a distinct control unit that has identical number of
treated and control neighbors. For a wide range of interference functions en-
countered in applications, we show both by theory and simulations that the
classical Neymanian estimator for the direct effect has desirable properties
for our designs.

1. Introduction. In this paper, we construct and analyze new designs for estimating
treatment effects from randomized experiments in networks with interference. With the pro-
liferation of network data and the steady increase in the number of experiments conducted
on networks, understanding the behavior of individuals in a network has become an impor-
tant issue in many scientific fields. Epidemiologists study the transmission of disease over
social networks [1], computer scientists are interested in information diffusion in large com-
puter networks [9, 26] and sociologists study the effects of school integration on friendship
networks [17]. While much of the early statistical work on networks focused on models for
understanding network formation [10, 12], there has been a recent surge in drawing causal
inference from experiments on networks [7, 21–24].

A time-honored approach to performing causal inference from randomized experiments
entails the following steps [11, 18, 19]: (i) define the population of units, (ii) define the treat-
ment assignment and (iii) define the quantity (or estimand) of interest. When an experiment is
conducted on a network, we must revisit each of these elements. First, the object of inference
can be the network, the edges of the network or the nodes of the network. We focus on the
case where the nodes are the experimental units and our population is just the observed units.
Next, the treatment assignment mechanisms proposed in this paper are conditional on a given
network and thus the events that any two units receive treatment are not independent. This
choice is in stark contrast to usual Bernoulli-type randomization mechanisms where treat-
ment is assigned to units independently or with very weak dependence. Finally, our estimand
of interest is the direct treatment effect—that is, the effect of treatment on the treated unit
irrespective of the treatment status of the rest of the network—discussed below.

Much of the recent work on causal inference on networks studies generic Bernoulli-type
randomization schemes and construct various estimators for minimizing their Mean-Squared
Error (MSE); notable exceptions are the recent papers [7, 8]. In contrast, we fix an estimator
of interest and focus on the design of treatment assignments. We study the classical Neyma-
nian estimator that takes the difference between the means of the outcome for treated nodes
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and the control nodes. Our approach is motivated by two key observations. First, the Neyma-
nian estimator is ubiquitously used. It is a natural estimator for the direct effect and improves
on reweighted versions of it (such as Horvitz–Thompson, Hajek, etc.) due to its prima facie
interpretability. Second, it has been emphasized by many researchers that for objective causal
inference, “design trufmps analysis” [20]. It is known that the Neymannian estimator is bi-
ased under standard designs such as Bernoulli trials (every unit has probability of treatment
p) and a completely randomized design (a fraction p of the units is assigned to treatment). We
consider a more natural randomization scheme that works to remove the effects of interfer-
ence by balancing relevant distributions of interference-relevant parameters between treated
and untreated nodes.

Conceptually, our main contribution is the idea of considering a treatment assignment as a
“quasi-coloring” of a graph (see Definition 5.1). Roughly speaking, a treatment assignment is
a perfect quasi-coloring,1 if for every treated vertex v (represented by black dots, say), there
is a nontreated vertex v′ (represented by white dots) that has the same number of treated and
nontreated neighbors as that of v. Thus having a perfect quasi-coloring on a graph G ensures
that one can color the graph in such a way that for every black vertex, there exists a distinct
white vertex with identically colored neighbors. Figure 1 shows two ways to color the nodes
of a square, where one coloring is a perfect quasi-coloring and the other is not.

Our notion of perfect quasi-colorings is inspired by the notion of covariate balance in
the context of matching in observational studies. For any given network, if a treatment as-
signment mechanism satisfies our notion of quasi-coloring, we prove that the Neymanian
estimator for the direct treatment effect is unbiased for a wide range of families of interfer-
ence effects encountered in practice. This result replicates the behavior of the Neymanian
estimator in classical randomized experiments.

It turns out that, for many graphs, perfect quasi-colorings are not available or may be very
difficult to construct. To circumvent this issue, we develop treatment assignment mechanisms
that correspond to “approximately perfect quasi-colorings.” The closer an approximately per-
fect quasi-coloring is to a perfect quasi coloring, the smaller its bias. Based on this notion, we
develop a new restricted randomization design that reduces bias and variance. In networks in
which a perfect quasi-coloring is not possible, we provide easily implementable algorithms to
construct designs with desirable properties—see the “partitioning by degree” design in Defi-
nition 6.1. This design implements a stratified sampling method—where vertices are stratified
by degree—to ensure similarity between the treated and control groups. In settings with ad-
ditional covariates, vertices can be stratified by this additional information as well to ensure
balancedness in covariates between the treated and control groups—see Section 7.

We derive upper bounds on the bias and variance of our estimator under a few different
settings of approximate quasi-colorings. These results are then used to prove the asymptotic

FIG. 1. The coloring of G on the left is a perfect quasi-coloring, since both the black vertices and the white
vertices have exactly two neighbors of opposite colors. The coloring of G on the right is not a perfect quasi-col-
oring because both the black vertices have two white neighbors where as both the white vertices have two black
neighbors.

1The word coloring is reserved for something specific in graph theory; thus we use the phrase “quasi-coloring.”
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consistency of the Neymannian estimator for our proposed randomization schemes in both
dense and sparse asymptotic regimes for network growth. We further show that our results
persist in settings in which interference effects depend on covariates for suitable stratified
sampling schemes. We demonstrate the efficacy of our proposed randomization scheme in a
series of simulations, varying both the type of interference and the network. Our proofs are
different in the cases of dense and sparse graphs and are thus of independent interest in the
two cases.

1.1. Background and literature. In situations in which the experimental units are con-
nected in a network, some of the usual assumptions used in other settings are not likely to
hold. For example, the stable unit treatment value assumption [18] requires that the outcome
for a unit only depends on its own treatment, and in particular is independent of the treat-
ment assignment mechanism. For networks this condition can be violated in several ways: it
is likely that either the outcomes of units are associated with the treatment of their network
neighbors (interference) or that the treatment effect passes temporally across the network
(contagion). Further complications arise due to the likely similarity in behavior of connected
units (homophily). It has been previously demonstrated that while interference and contagion
can affect causal inference on a network differently, they are difficult, if not impossible, to
distinguish [21]. These complications lead to a difficulty in specifying an estimand of inter-
est [13]. The four main estimands in the presence of a network are (i) the effect of treatment
were it applied to the whole network versus no one in the network (total network treatment
effect), (ii) the direct effect of treatment on the treated unit irrespective of the treatment status
of the rest of the network (direct treatment effect), (iii) the spillover effect of treatment of the
network on a single unit irrespective of its treatment (indirect treatment effect) and (iv) the
sum of the direct and indirect effect (total nodal treatment effect).

Different estimands lead to different inference procedures—both from a design and an
analysis point of view. We focus on the design of experiments targeting the direct treatment
effect. Other recent work has targeted different estimands. In [2], the authors consider differ-
ent reweighting and post-stratification estimators for settings where the interference is char-
acterized by an exposure mapping. In particular, they require the probability of all possible
exposures (the combination of a unit’s treatment with the interference the unit experiences) of
a unit to be greater than zero. This positivity assumption may not be tenable as the number of
exposures grows, such as if the true interference is linear in the number of treated neighbors.
In [6], the author studies estimators for monotone treatment effects and constructs asymp-
totically consistent bounds for such estimates. The paper [7] studies total network effects by
considering a cluster-randomized-design in conjunction with Horvitz–Thompson and Hajek
estimators. In [22], the authors construct unbiased estimators for direct and indirect treatment
effects for a fixed design. Of particular interest here is Theorem 6.5 of [22] that demonstrates
that the post-stratified estimator has minimal integrated variance under strong symmetry con-
ditions (on the graph and on the design). We explore the performance of this estimator in a
completely randomized design in Section 9.

The aforementioned papers study the effects of interference on estimation and many make
the common assumption that the interference is limited to the immediate neighborhood of a
node, or at least employ functions of the adjacency matrix in specifying the procedure for
estimating effects. When interference can be arbitrary, the performance of these procedures
depends on the deviation of the true interference structure from multi-hop neighborhood in-
terfere. We will also make this assumption, but our work can be easily generalized to different
patterns of interference (see Section 10). Another simplifying assumption that is frequently
made requires the interference effect to be symmetric—that is, that each interfering unit con-
tributes the same indirect effect. We demonstrate results under several classes of interference
patterns in which this assumption fails.
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1.2. Paper guide. In Section 2, we introduce a basic model for interference and the Ney-
manian estimator. In Section 3, we discuss some restricted randomizations. In Section 4, we
describe a symmetric interference model. In Section 5, we define our notion of quasi-coloring.
We derive the bounds for the MSE of the Neymanian estimator in Section 6. In Section 7,
we relax the assumption that interference is symmetric. In Section 8, we study the effects of
(possibly latent) heterogeneity in baseline covariates on the treatment effect estimation. The
results from a simulation study are given in Section 9. We close with a short discussion. The
proofs are given in the appendices.

1.3. Notation. Fix n ∈ N and let G be a graph with |V (G)| = rn. The treatment units are
nodes of G. We treat pn nodes of G and leave qn nodes as controls—where p + q = r—so
p
r

fraction of the nodes are treated.
Throughout the paper, we will assume that G has no isolated vertices. Let N (v) denote

the set of neighbors of a vertex v ∈ V (G) and let d(v) = |N (v)| denote the degree of v. Also
define the minimum and maximum degrees

(1.1) dmin = min
v∈V (G)

d(v), dmax = max
v∈V (G)

d(v).

We will denote by
(V (G)

k

)
the family of all k-element subsets of V (G). Similarly, for 1 ≤

mi ≤ rn with
∑

mi = rn, define(
V (G)

m1, . . . ,mk

)
= {

(A1, . . . ,Ak),Ak ⊂ V (G), |Ak| = mk,Ak ∩ A� = ∅,∀k �= �
}
.

In particular,
(V (G)
r,...,r

)
denotes the set of all partitions of V (G) into sets of size r . For r ∈ N,

the set {1,2, . . . , r} is denoted by [r]. For sets A,B ⊂ V (G), A�B denotes the symmetric
set difference.

For T ⊂ V (G), let 1T(·) denote the indicator function

1T(v) =
{

1 if v ∈ T,

0 if v /∈ T .

For T ⊆ V (G) and v ∈ V (G), let

χT
v =

{
q if v ∈ T,

−p if v /∈ T.

For the reader’s convenience, we finish this section with a table (Table 1) of notation for
the key quantities introduced in future sections.

2. The model and the estimator. For each vertex v ∈ V (G), let xv, tv ∈ R be constants
and let fv : 2N (v) → R be a function such that fv(∅) = 0 for all v ∈ V (G). We study the
linear model

(2.1) yv = xv + 1T(v)tv + fv

(
T ∩N (v)

)
, v ∈ V (G),

where T ⊂ V (G) denotes the treatment group. The quantity xv reflects the outcome for node
v under control. The function fv denotes the interference effect. For every vertex v, it is only
a function of its treated neighbors T ∩N (v).

This model (without observed covariates) is a member of the class of neighborhood inter-
ference models introduced by [22]. In particular, they demonstrate that this parametrization
is equivalent to the potential outcomes notation of [18] under specific assumptions on the ad-
ditivity and symmetry of the effects. In particular, equation (2.1) corresponds to the additivity
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TABLE 1
Table of notation

xv : covariate of v

tv : direct treatment effect on v

yv : observed outcome for v

fv : interference function for v

t̂Neyman: Neymannian estimator
tideal: Neymannian estimator ignoring interference
B: set of possible bidegrees
f : interference function in a symmetric model
d: metric on B
�dT: T-bidegree
Bπ : set of possible bidegrees of vertices in π

fπ : interference function in a symmetric model with types
dπ : metric on Bπ

of main effects assumption (ANIA), the second-most-general model in [22]. That is, xv is the
baseline, tv is the direct treatment effect (defined as the effect of treatment on node v when
no one else is treated) and fv is the interference effect. While new estimators for the aver-
age treatment effect were constructed in [22], we focus on better designs for the Neymanian
estimator defined below.

Formally, we define the average direct treatment effect as

(2.2) t̄ = 1

rn

∑
v∈V (G)

tv,

which is our estimand of interest. When |T| = pn, define the Neymanian estimator

(2.3) t̂Neyman = 1

pqn

(
q
∑
v∈T

yv − p
∑

v∈V (G)\T

yv

)
= 1

pqn

∑
v∈V (G)

χT
v yv.

When p = q = 1 and r = 2, the estimator t̂Neyman has the usual form

t̂Neyman = 1

n

(∑
v∈T

yv − ∑
v∈V (G)\T

yv

)
.

Define the quantity

(2.4) tideal = 1

pqn

(
q
∑
v∈T

(xv + tv) − p
∑

v∈V (G)\T

xv

)
.

The difference2

(2.5) ξ = t̂Neyman − tideal = 1

pqn

∑
v∈V (G)

χT
v fv

(
T ∩N (v)

)
is the “net interference effect” on the Neymannian estimator. We first show that bounds on
|ET(ξ)| lead to bounds on the bias of t̂Neyman. Here, ET denotes that the expectation is taken
over the treatment assignment mechanism.

LEMMA 2.1. Suppose that T ⊂ V (G) is selected in a fashion so that P(v ∈ T) = p
r

for
all v ∈ V (G). Then, ET(̂tNeyman) − t̄ = ET(ξ).

2The quantity ξ is a function of the treatment T, but we suppress this dependence for notational convenience.
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PROOF. The quantity tideal in (2.4) can be written as

tideal = 1

pqn

∑
v∈V (G)

χT
v

(
xv + 1T(v)tv

)
.

Since P(v ∈ T) = p
r

for all v ∈ V (G), we obtain that

ET(tideal) = 1

pn

∑
v∈V (G)

P(v ∈ T )tv + 1

pqn

∑
v∈V (G)

xvET
(
χT

v

)= t̄ .

Thus, we have

ET(̂tNeyman) − t̄ = ET(tideal + ξ) − t̄ = ET(ξ),

proving the lemma. �

3. Restricted randomizations. Throughout this paper, we consider groups of r ex-
perimental units; in each group, p units are assigned to treatment. Fix a partition P =
(S1, . . . , Sn) ∈ ( V

r,...,r

)
of the vertices V into sets Si = {w1

i , . . . ,w
r
i }. Define a random vec-

tor �B = (B1, . . . ,Bn) ∈ ([r]
p

)n
with Bi i.i.d. uniform on

([r]
p

)
. Conditional on the partition P ,

we define our treatment assignment mechanism to be

(3.1) T �B,P = {
w

j
i | j ∈ Bi

}
.

Thus, we give treatment to the vertex w
j
i when j ∈ Bi .

The standard completely randomized design (CRD) for treatment assignments is recovered
when P is sampled uniformly from the set

(V (G)
r,...,r

)
. In this section, we obtain bounds for the

bias of t̂Neyman with treatment assignment T �B,P—for a fixed partition P ∈ (V (G)
r,...,r

)
.

3.1. General upper bound on bias. The following definition introduces a useful frame-
work for quantifying the variability of the interference effect fv across the units.

DEFINITION 3.1. For v ∈ V (G), the function fv is called Kv-Lipschitz if

(3.2)
∣∣fv(A) − fv(B)

∣∣≤ Kv|A�B|
d(v)

for Kv > 0 and all A,B ⊂ N (v).

Thus, the Lipschitz constant Kv provides an upper bound on the amount that treating a
proportion of the neighbors of v can affect yv .

EXAMPLE 3.2. The linear interference function fv(A) = γ |A| is |γ |d(v)-Lipschitz.
Moreover, the normalized linear interference function fv(A) = γ

|A|
d(v)

is |γ |-Lipschitz.

The following lemma bounds the bias of t̂Neyman with treatment T �B,P when fv is Lipschitz.
The strategy of the proof is to apply Lemma 2.1 to reduce to bounding the expectation of ξ .
The Lipschitz condition yields a termwise bound on ξ in (2.5). Given v ∈ V , we let

(3.3) Pv = Si where v ∈ Si

denote the element of P to which v belongs.
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LEMMA 3.3. Suppose the function fv is Kv-Lipschitz. Then for the partition P and the
treatment assignment in (3.1), we have

(3.4)
∣∣ET(ξ)

∣∣≤ 1

nr(r − 1)

∑
v∈V (G)

|Pv ∩N (v)|
d(v)

Kv.

Lemma 3.3 yields the following important observation.

LEMMA 3.4. If every element of P is an independent set in G—that is, if {v, v′} /∈ E(G)

whenever {v, v′} ⊆ Si—and T = T �B,P , then ET(̂tNeyman) = t̄ .

PROOF. Indeed, in this case, the right-hand side of Lemma 3.3 has no terms in this case.
Thus, we have |ET(ξ)| = 0 and the proof follows from Lemma 2.1. �

Lemma 3.4 implies that if we choose clusters (Si) of independent sets and then randomize
within those clusters for the treatment assignment, then t̂Neyman will be unbiased. Thus, a
design principle will be to ensure that elements of P do not contain too many edges of G

using appropriate randomizations.

3.2. Random choices of P . In this section, we assume that the function fv is Kv-
Lipschitz. Define the average Lipschitz constant

(3.5) K̄ = 1

rn

∑
v∈V (G)

Kv.

EXAMPLE 3.5. Let fv(A) = γ |A| for some γ . Then fv is Kv-Lipschitz with Kv =
|γ |d(v). When the underlying graph G has average degree m, we have that K̄ = |γ |m.

Choosing P randomly can help reduce the bias, as the following proposition shows. As
will be seen in the sequel, it will be helpful to restrict the randomization of P to reduce the
MSE.

PROPOSITION 3.6. When P is sampled uniformly from
(V (G)
r,...,r

)
, we have

EP
∣∣E �B(ξ | P)

∣∣≤ K̄

rn − 1
,

where K̄ is as in (3.5).

The following result is immediate from Proposition 3.6.

COROLLARY 3.7. When T is sampled uniformly from
(V (G)

pn

)
, we have

∣∣ET(ξ)
∣∣≤ K̄

rn − 1
.

Corollary 3.7 generalizes a result in [14] for the case of fv(S) = γ |S| and p = q = 1. As
mentioned in Example 3.5, when G has average degree m, we have that K̄ = γm. Thus, by
Corollary 3.7, we obtain that |ET(ξ)| ≤ γm

2n−1 .
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4. Symmetric interference model. In this section, we introduce a simple—but natu-
ral—type of interference function where the interference effect on a vertex depends only on
the numbers of its neighbors that are not treated. Let

d
(
V (G)

)= {
d(v), v ∈ V (G)

}
denote the set of degrees of vertices in G and let

(4.1) B = {
(a, b) ∈ Z

2≥0 | a + b ∈ d
(
V (G)

)}
denote the set of pairs of natural numbers that sum to elements of d(V (G)). Hence, B is
the set of possible bi-degrees of vertices in G (for a partition of the vertices of G into two
subsets).

DEFINITION 4.1. The collection of functions {fv : v ∈ G} is called a symmetric interfer-
ence model without types if there is a function f : B →R such that

(4.2) fv(S) = f
(|S|, ∣∣N (v) \ S

∣∣)
for all v ∈ V (G).

In Definition 4.1, all vertices share the same interference function. Moreover, the interfer-
ence effect on a vertex depends only on the numbers of its neighbors that are (not) treated—
not the identities of its treated neighbors. In the next section, we will allow different types of
vertices to have different interference functions.

EXAMPLE 4.2. The family of interference functions fv(S) = γ |S| is achieved in a sym-
metric interference model without types when f (a, b) = γ a in Definition 4.1. A similar
related example is that fv(S) = γ

|S|
d(v)

is achieved in a symmetric inference model when
f (a, b) = γ a

a+b
in Definition 4.1.

EXAMPLE 4.3. In many natural examples, treating neighbors beyond a certain thresh-
old number of treated neighbors does not change the interference effect. This interference
pattern can be captured in our model by setting fv(S) = γ min{|S|, k}—corresponding to
interference only due to the first k treated neighbors—and fv(S) = γ min{ |S|

d(v)
,p/r}—

corresponding to interference by only the first p/r proportion of treated neighbors. Both
of these cases are examples of symmetric interference models.

For T ⊆ V (G) and v ∈ V (G), let

�dT(v) = (∣∣T ∩N (v)
∣∣, ∣∣N (v) \ T

∣∣)
denote the T-bidegree of v, which is the pair of the number of treated and number of untreated
neighbors of v. Let �0(B) denote the space of finite, signed measures on B of total mass 0.
When |T| = pn, define the measure DT ∈ �0(B) by

(4.3) DT(u) = 1

pqn

∑
v∈V

χT
v δ �dT(v)

(u) for u ∈ B,

where B is as defined in (4.1). Here, we write δ �dT(v)
for a Dirac mass at �dT(v) ∈ B. Clearly,

DT(B) =∑
u∈B DT(u) = 0. In symmetric interference models without types, the quantity ξ

in equation (2.5) can be expressed compactly as

(4.4) ξ =
∫
B

f dDT = ∑
u∈B

f (u)DT(u).

Hence, DT is the kernel that yields the net interference effect ξ when integrated against f .
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5. Perfect quasi-colorings and designs for symmetric interference model. In this sec-
tion, we introduce our idea of perfect quasi-colorings, which we use to construct designs for
the symmetric interference model. Throughout this subsection, we will assume that r = 2 and
p = q = 1, so that the target treatment fraction is 1

2 .
The following notion of perfect quasi-coloring lets us identify the treatment groups so that

the interference effect ξ is identically zero.

DEFINITION 5.1. A perfect quasi-coloring is a set Q ∈ (V (G)
n

)
that satisfies DQ = 0.

The following result implies that ξ = 0 for the treatment groups T = Q and T = V (G) \Q

if and only if Q is a perfect quasi-coloring.

PROPOSITION 5.2. Let Q ∈ (V (G)
n

)
. The following are equivalent in a symmetric model.

• Q is a perfect quasi-coloring.
• V (G) \ Q is a perfect quasi-coloring.
• If T = Q, for every function fv of the form (4.2), we have ξ = 0.
• If T = V (G) \ Q, for every function fv of the form (4.2), we have ξ = 0.
• If the treatment T is chosen uniformly and randomly between Q and V (G) \ Q, for every

function fv of the form (4.2), we have ξ = 0.

REMARK 5.3. Intuitively, randomizing between T = Q and T = V (G) \ Q when Q is a
perfect quasi-coloring makes t̂Neyman unbiased because (1) interference effects cancel and (2)
each vertex is treated with probability 1

2 —so each treatment effect enters the estimate with
probability 1

2 .

PROOF OF PROPOSITION 5.2. First, we show that Q is a perfect quasi-coloring if and
only if V (G) \ Q is. Define τ : B → B by τ(a, b) = (b, a). Let τ∗DQ be the push forward
measure of DQ by the function τ . By construction, we have τ∗DQ = −DV (G)\Q. Thus we
conclude that DQ = 0 if and only if DV (G)\Q = 0.

Next, we prove that Q is a perfect quasi-coloring if and only if ξ = 0 for all f when
T = Q. Since, ξ = ∫

B f dD by equation (4.4), this assertion is immediate. The lemma follows
because the distribution of ξ with T chosen uniformly at random between Q and V (G) \
Q is a 1

2 – 1
2 mixture of point masses at the values of ξ with T = Q and T = V (G) \ Q.

�

The following example shows that highly homogeneous graphs admit perfect quasi-
colorings.

EXAMPLE 5.4 (Perfect quasi-colorings exist in graphs consisting of many disjiont copies
of a smaller graph). Let H be an arbitrary graph with |V (H)| > 1. Let G = H ×{0,1}V (H)

denote the disjoint union of 2|V (H)|-many copies of H . To be precise, the set of vertices of G

is

V (G) = {(
v, (εw)w∈V (H)

) | v ∈ H and εw ∈ {0,1} for all w ∈ V (H)
}
,

and there is an edge between (v, (εw)w∈V (H)) and (v′, (ε′
w)w∈V (H)) in G if and only if

{v, v′} ∈ E(H) and εw = ε′
w for all w ∈ V (H). We claim that

Q = {(
v, (εw)w∈V (H)

) | εv = 1
}

is a perfect quasi-coloring of G. To see this, define an involution ψ : V (G) → V (G) by

ψ(v, ε) = (
v, (εV (H)\{v},1 − εv)

)
.
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Note that, for all w ∈ V (G), exactly one of w and ψ(w) is in Q and w and ψ(w) have the
same number of neighbors in Q (resp. V (G) \ Q). It follows that DQ = 0.

The class of graphs considered by Example 5.4 is quite specific. Unfortunately, not even
2k-regular graphs need to admit a perfect quasi-coloring, as the following example shows.

EXAMPLE 5.5 (A hexagon does not have a perfect quasi-coloring). Let G be a hexagon.
Thus V (G) = {1,2, . . . ,6} with an edge drawn between i and i + 1 modulo 6 for all i. Let
B ∈ (V (G)

3

)
.

We claim that B is not perfect. Indeed, if B contains three consecutive elements of V (G),
then the support of DB contains (2,0). If B does not contain any three consecutive elements
of V (G), then the support of DB contains (0,2). In either case, we have DB �= 0. This ex-
ample motivates studying other estimators in addition to t̂Neyman; see Section 10 for more on
this point.

Example 5.5 suggests that it might not be fruitful to search for perfect quasi-colorings in
arbitrary graphs. In general, we can only hope to control the size of ξ . Proposition 5.2 yields
that ξ = 0 for a perfect quasi-coloring. It is then natural to ask whether an “almost perfect
quasi-coloring” will imply that the corresponding ξ is close to zero. In the next section, we
show that this intuition indeed holds, quantify it, and use it constructing new designs.

5.1. Quantifying the notion of perfect quasi-coloring. Our strategy is to use the Wasser-
stein norm to quantify the approximation DT ≈ 0. Let d be a pseudo-metric on B. For
f : B →R, define the Lipschitz norm

‖f ‖d = sup
u1,u2∈B,u1 �=u2

|f (u1) − f (u2)|
d(u1, u2)

.

For a measure D ∈ �0(B), define the Wasserstein norm

‖D‖dw = sup
‖f ‖d≤1

∥∥∥∥∫B f dD

∥∥∥∥.
Since the total mass is 0 for any D ∈ �0(B), we have that

‖D‖dw ≤ 1

2
diam(B)‖D‖TV,

where ‖ − ‖TV denotes the total variation norm. From equation (4.4), we can deduce that if
the interference function f : B →R is Lipschitz with respect to a metric d, then

(5.1) |ξ | ≤ ‖f ‖d · ‖DT‖dw .

For a treatment assignment T that is a perfect quasi-coloring, we have DT = 0 and thus ξ = 0.
Equation (5.1) shows that ξ is continuous in ‖DT‖dw .

While (5.1) holds for any pseudo-metric d, we use the following pseudo-metric d = dK .

DEFINITION 5.6. Fix K = (K1,K2) with K1 ≥ 0 and K2 > 0. Define a pseudo-metric
dK on B by

(5.2) dK

(
(a, b), (c, d)

)= K1
|a + b − c − d|

dmax
+ K2

∣∣∣∣ a

a + b
− c

c + d

∣∣∣∣
for all (a, b), (c, d) ∈ B, where dmax is as in (1.1).
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REMARK 5.7. Since we assume that G does not have any isolated vertices, dK is indeed
a well-defined pseudo-metric on B.

REMARK 5.8. The choice of a metric is crucial for our estimates. The main point here
is that the chosen metric must capture the key features of the interference model. To measure
the similarity of two vertices, the metric dK in (5.2) just takes the differences in the fraction
of the treated neighbors and the differences of the degrees between the vertices. This choice
is justified in our setting, because the symmetric interference model by definition depends
only on these quantities. Different metrics could be used for other settings.

For P = (S1, . . . , Sn) ∈ (V (G)
r,...,r

)
, define a constant

(5.3) CP = 2

dmax(r − 1)

n∑
i=1

∑
{v,v′}⊆Si

∣∣d(v) − d
(
v′)∣∣.

The following proposition bounds the L2 norm of ‖DT‖dw .

PROPOSITION 5.9. Fix P ∈ (V (G)
r,...,r

)
and let T = T �B,P as in (3.1). We have√

E �B‖DT‖2
dw

≤ K1√
pqn

CP + 4K2

rn

∑
v∈V (G)

1√
d(v)

+ K2

pqn

∑
v∈V (G)

|Pv ∩N (v)|
d(v)

,

where Pv is as in (3.3).

The idea behind the proof of Proposition 5.9 is to bound the contributions of each vertex
to the left-hand side, and use the fact that T ∩ Si and T ∩ Sj are independent for i �= j , where
P = (S1, . . . , Sn).

Proposition 5.9 and equation (5.1) imply the following upper bound on the L2 norm of ξ

for the randomization scheme T = T �B,P .

COROLLARY 5.10. Let the interference function f : B → R be such that ‖f ‖dK
≤ 1.

Then √
E �B |ξ |2 ≤ K1√

pqn
CP + 1

rn

∑
v∈V (G)

4K2√
d(v)

+ K2

pqn

∑
v∈V (G)

|Pv ∩N (v)|
d(v)

for all P when T = T �B,P .

REMARK 5.11. In the case of a complete graph on rn vertices, we have CP = 0 and
hence √

E �B |ξ |2 ≤ 4K2√
rn − 1

+ K2r(r − 1)

pq(rn − 1)
≤ 4K2√

rn − 1
+ K2r

pqn
,

where the second inequality holds because r−1
rn−1 ≤ 1

n
. Thus, for fixed p, q , r , we have√

E �B |ξ |2 = O(n−1/2).

6. New designs and MSE for ̂tNeyman. In this section, we use the idea of perfect quasi-
coloring and Proposition 5.9 to construct new designs and derive bounds for the MSE of
t̂Neyman. We study the dense (dmin → ∞ as n → ∞) and sparse (dmax = o(

√
n) as n → ∞)

cases separately, as our methods and assumptions are different for dense vs. sparse graphs. We
note that sparsity is essentially an asymptotic property and so for a single observed network it
is not immediately apparent which regime to consider. In cases where the network is collected
prior to an experiment, the sampling procedure can inform which regime is more appropriate
by providing evidence for the rate of growth of dmin and dmax.
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6.1. Dense graphs. A key term appearing in the right-hand side of Proposition 5.9 is the
constant CP , which is solely a function of the partition P . Thus, we seek designs that lead
to smaller values of CP . To this end, we introduce the following new design, which we call
“partitioning by degree.”

DEFINITION 6.1. Let {w∗
i },1 ≤ i ≤ rn be an enumeration of the vertices of G such that

d(w∗
i ) ≥ d(w∗

i′) whenever i > i ′. Choose

Si = {
w∗

j , (i − 1)r + 1 ≤ j ≤ ir
}

for 1 ≤ i ≤ n. Finally set

(6.1) P∗ = (S1, . . . , Sn).

Thus, the partition P∗ is chosen by first ordering the vertices by degree and then grouping
vertices of similar degree. The randomization scheme T �B,P∗ is therefore obtained by approx-
imately stratifying vertices by degree. The following is a key observation.

LEMMA 6.2. For P∗ chosen according to partitioning by degree as in Definition 6.1, we
have

(6.2) CP∗ ≤ r,

where CP∗ in the corresponding constant in Corollary 5.10.

PROOF. Breaking each appearance of d(v) − d(v′) in (5.3) into a sum of terms of the
form d(w∗

k ) − d(w∗
k+1), we have

CP∗ = 2

dmax(r − 1)

n∑
i=1

∑
1≤j<j ′≤r

(
d
(
w∗

r(i−1)+j

)− d
(
w∗

r(i−1)+j ′
))

≤ 2

dmax(r − 1)

n∑
i=1

∑
1≤j<j ′≤r

(
d
(
w∗

r(i−1)+1
)− d

(
w∗

ri

))

= 2

dmax(r − 1)

n∑
i=1

[
r(r − 1)

2

(
d
(
w∗

r(i−1)+1
)− d

(
w∗

ri

))]

= r

dmax

n∑
i=1

(
d
(
w∗

r(i−1)+1
)− d

(
w∗

ri

))]
≤ r

dmax

(
d
(
w∗

1
)− d

(
w∗

rn

))≤ r

dmax
· dmax = r,

as desired. �

As an immediate consequence of Lemmata 3.3 and 6.2, Proposition 5.9, and Corol-
lary 5.10, we have the following bound.

THEOREM 6.3. When T = T �B,P∗ ,√
ET‖D‖2

dw
≤ K1r√

pqn
+ 4K2√

dmin
+ rK2 min{r − 1, dmin}

pq · dmin
,
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where dmin is as in (1.1). If in addition, the interference function f satisfies ‖f ‖dK
≤ 1, then

|ETξ | ≤ min{r − 1, dmin}(K1 + K2)

(r − 1)dmin
,

√
ETξ2 ≤ K1r√

pqn
+ 4K2√

dmin
+ rK2 min{r − 1, dmin}

pq · dmin
.

Theorem 6.3 immediately yields that interference does not affect the consistency of the
estimator t̂Neyman for our randomized design when G grows to be sufficiently large and dense.

COROLLARY 6.4. Let T = T �B,P∗ and fix p,q, r ∈ N. If ‖f ‖d ≤ 1, then

|ETξ | = O

(
K1 + K2

dmin

)
,

ETξ2 = O

(
K2

1

n2 + K2
2

dmin

)
.

In particular, if dmin → ∞ and n → ∞, then ETξ2 → 0.

The following example shows that the restricted randomization T �B,P∗ , where P∗ is ob-
tained by partitioning by degree as in (6.1), can substantially outperform the CRD in terms
of reducing the mean squared error of t̂Neyman.

EXAMPLE 6.5. Let p = q = 1. Let V (G) = {v1, . . . , v2k,w1, . . . ,w2k}, and let the edges
of G be {vi, vj }. Thus, G is the disjoint union of a complete graph on 2k vertices V =
{v1, . . . , v2k} with 2k additional vertices W = {w1, . . . ,w2k}. Consider a symmetric linear
interference model f (a, b) = γ a.

Fix T ∈ (V (G)
n

)
and let α = α(T ) = |T ∩ V |. It is straightforward to verify that

ξ = γ (α(α − 1) − (2k − α)α)

2k
= γ

2k
α(2α − 2k − 1).

When T is chosen uniformly and randomly from
(V (G)

2k

)
, by the Central Limit Theorem, we

have
α − k√

k
→D N (0,1/2)

as k → ∞. While ETξ → 0 as n → ∞, it can be verified using the formulae for higher
moments of normal distributions that(

ET|ξ |2)1/2 ∼ γ
√

k

as n → ∞.
On the other hand, note that any P∗ according to (6.1) consists of a partition of V into

pairs and a partition of W into pairs. Therefore, when T = T �B,P∗ , we have α = k and hence
ξ = −γ

2 .
Of course in the above example, the graph G contains isolated vertices {w1, . . . ,w2k}.

The conclusions noted above are qualitatively the same if we add some small number of
edges among {w1, . . . ,w2k} and between {v1, . . . , v2k} and {w1, . . . ,w2k}, with dmin → ∞ at
a sufficiently slow rate.

Example 6.5 illustrates that our treatment design can improve on the completely random
design when there is a high degree of heterogeneity in the degrees of vertices.
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6.2. Sparse graphs. For sparse graphs, the bias and MSE bounds implied by Theorem 6.3
are a bit weak. In this setting, it is helpful to randomize over all choices of P∗ in order
to reduce bias. To this end, we introduce the following randomized version of the design
introduced in Definition 6.1.

DEFINITION 6.6. Let S ⊆ V (G) be such that no r vertices in S have the same degree
and the number of vertices in V (G) \ S of each degree is divisible by r . Let P∗∗

0 be sampled
uniformly from the set of partitions of V (G) \ S into sets of r vertices of the same degree.
Let S = {w1, . . . ,wrk} with

d(w1) ≥ d(w2) ≥ · · · ≥ d(wrk).

Let

P∗∗ = ({w1, . . . ,wr}, . . . , {wrk−r+1, . . . ,wrk},P∗∗
0
)
.

Thus the main difference between designs in Definitions 6.1 and 6.6 is that in the latter,
we randomize over all vertices with the same degree instead of merely fixing an ordering. We
now give the L2 bounds on ξ for the randomization scheme T �B,P∗∗ .

PROPOSITION 6.7. If ‖f ‖d ≤ 1, then

|ETξ | ≤ K1r

pqn
+ 3K2(dmax − dmin)

n

(
r

pqdmin
+ 3

r

)
,

√
ETξ2 ≤ K1r

pqn
+ K2(dmax − dmin)r

pqndmin
+ 6K2

√
r2d2

max + 1√
n · dmin

+ rK2 min{r − 1, dmin}
√

r2d2
max + 1

pq
√

n · dmin
,

where T = T �B,P∗∗ and P∗∗ is as in Definition 6.6.

To prove Proposition 6.7, we decompose ξ into effects from each of the parts of P∗∗.
Sparsity ensures that there is not too much dependence between the contributions of the
various parts. The following two simple lemmata in probability then imply a bound on the
variance of ξ , which, when coupled with Lemma 3.3, yields an L2 bound.

LEMMA 6.8. For a sequence of random variables X1, . . . ,Xk ,

Var

(
k∑

i=1

Xi

)
≤

k∑
i,j=1

Var(Xi)
∣∣Corr(Xi,Xj )

∣∣.
PROOF. For all x, y ≥ 0, we have 2

√
xy ≤ x + y. It follows that

2 Cov(Xi,Xj ) = 2 Corr(Xi,Xj )
√

Var(Xi)
√

Var(Xj )

≤ ∣∣Corr(Xi,Xj )
∣∣(Var(Xi) + Var(Xj )

)
for all i, j . Thus, we have

Var

(
k∑

i=1

Xi

)
=∑

i,j

Cov(Xi,Xj )
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≤ 1

2

∑
i,j

∣∣Corr(Xi,Xj )
∣∣(Var(Xi) + Var(Xj )

)

=
k∑

i,j=1

Var(Xi)
∣∣Corr(Xi,Xj )

∣∣,
as desired. �

LEMMA 6.9. Let X1, . . . ,Xn be real valued random variables. Suppose that for each i,
there exist at most κ indices j such that Xi and Xj are not independent. Then, we have

Var

(
n∑

i=1

Xi

)
≤ κ

n∑
i=1

Var(Xi).

PROOF. Since independent random variables are uncorrelated, for each index i, there
exist at most κ indices j such that Corr(Xi,Xj ) �= 0. It follows that

∑k
j=1 |Corr(Xi,Xj )| ≤ κ

for all i. The lemma thus follows from Lemma 6.8. �

Proposition 6.7 immediately yields the following MSE bounds for t̂Neyman in the sparse
regime.

COROLLARY 6.10. Let T = T �B,P∗∗ and fix p,q, r ∈ N. If ‖f ‖d ≤ 1, then

|ET ξ | = O

(
K1

n
+ K2(dmax − dmin)

n

)
,

ETξ2 = O

(
K2

1

n2 + K2
2d2

max

ndmin

)
.

In particular, if n → ∞ with dmax = o(
√

n), then the MSE of t̂Neyman is o(1).

7. Interference with types. In this section, we generalize the symmetric interference
model from Section 4 to incorporate heterogeneity in susceptibility to interference, and derive
the MSE bounds for t̂Neyman under this extension. More precisely, we allow the interference
function f to depend on an exogenously specified “type” of a vertex.

DEFINITION 7.1. The function fv is a symmetric interference model with types if there
exists a partition � of V (G) into sets of size divisible by r such that there are functions
(fπ)π∈� with

fv(S) = f�v

(|S|, ∣∣N (v) \ S
∣∣)

for all v ∈ V (G). Here, fπ is real-valued with domain

Bπ = {
(a, b) ∈ Z

2≥0 | a + b ∈ d(π)
}
.

REMARK 7.2. The case of � = {V (G)} recovers the symmetric interference model
(without types) in Definition 4.1.

Let �0(Bπ) denote the space of finite, signed measures on Bπ of total mass 0. When
π ⊆ V (G) is such that |T ∩ π | = p|π |

r
, let

�0(Bπ) � Dπ = Dπ
T = 1

pqn

∑
v∈π

χT
v δ �dT(v)

.
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Intuitively, Dπ measures the contribution of π to D. Indeed, we have

ξ = ∑
π∈�

∫
Bπ

fπ dDπ.

7.1. Perfect quasi-colorings for interference with types. The structure of perfect quasi-
colorings extends to the setting of interference models with types. For this subsection, we
assume that p = q = 1, so the target treatment fraction is 1

2 . The analogue of Definition 5.1
is the following definition.

DEFINITION 7.3. A perfect quasi-coloring of G with respect to the type partition � is a
set B ∈ (V (G)

n

)
that satisfies Dπ

B = 0 and |B ∩ π | = |π |/2 for all π ∈ �.

Definition 7.3 recovers Definition 5.1 by taking � = {V (G)}. The analogue of Proposi-
tion 5.2 is the following result.

PROPOSITION 7.4. Let B ∈ (V (G)
n

)
be such that |B ∩ π | = |π |/2 for all π ∈ �. The

following are equivalent in a symmetric model with types.

• B is a perfect quasi-coloring.
• V (G) \ B is a perfect quasi-coloring.
• ξ = 0 for all (fπ)π∈� with treatment T = B .
• ξ = 0 for all (fπ)π∈� with treatment T = V (G) \ B .
• ξ = 0 for all (fπ)π∈� with treatment chosen uniformly and randomly between B and

V (G) \ B .

The proof of Proposition 7.4 is similar to the proof of Proposition 5.2. Example 5.5 shows
that perfect quasi-colorings need not exist in general, while the following example generalizes
Example 5.4 to exhibit a class of graphs and type partitions in which perfect quasi-colorings
exist.

EXAMPLE 7.5 (Perfect quasi-colorings exist in the graph consisting of copies of a smaller
graph). Let H be an arbitrary graph with |V (H)| > 1, and let �0 be a partition of the
vertices of H . Let G = H × {0,1}V (H), and define a partition � of V (G) by

� = {
π × {0,1}V (H) | π ∈ �0

}
.

It is straightforward to verify that

B = {
v, (εw)w∈V (H) | uv = 1

}
is a perfect quasi-coloring of G with respect to the type partition �.

7.2. Semi-restricted randomization. We consider a stratified sampling scheme. For each
π ∈ �, let Tπ be drawn uniformly and randomly from

( π
p|π |/r

)
, with (Tπ)π∈� independent.

Define T� = ⋃
π∈� Tπ . Intuitively, T� is a stratified sampler based on a stratification of

vertices by type (i.e., the partition �).
We can represent the stratified sampler treatment group in terms of a restricted random-

ization treatment group as follows. To fix notation, given a partition � of V (G), let
( �
r,...,r

)
denote the set of partitions P = (S1, . . . , Sn) of V (G) into sets of size r such that Si lies in
an element of � for every i. That is,

( �
r,...,r

)
is the set of partitions of V (G) into sets of size

r that refine �. Let P be sampled uniformly from
( �
r,...,r

)
(independently of �B). Then, T �B,P

has the same distribution as T�.
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7.3. MSE bounds. In this section, we prove bounds on the L2 norm of ξ for the random-
ization scheme T = T�. We will use the following metric d = dK .

DEFINITION 7.6. Fix K > 0, define the metric d on Bπ by

dK

(
(a, b), (c, d)

)= K

∣∣∣∣ a

a + b
− c

c + d

∣∣∣∣
for all (a, b), (c, d) ∈ Bπ .

The analogue of Proposition 5.9 in this setting is the following result.

PROPOSITION 7.7. For all P ∈ ( �
r,...,r

)
, we have√√√√E �B

[(∑
π∈�

∥∥Dπ
∥∥

dw

)2]
≤ 1

rn

∑
v∈V (G)

4K√
d(v)

+ K

pqn

∑
v∈V (G)

|Pv ∩N (v)|
d(v)

when T = T �B,P . If ‖fπ‖d ≤ 1 for all π ∈ �, then√
ETξ2 ≤ 1

rn

∑
v∈V (G)

4K√
d(v)

+ K

pqn

∑
v∈V (G)

|Pv ∩N (v)|
d(v)

when T = T �B,P .

Proposition 7.7 also implies a bound on the L2 norm of ξ when T = T�.

COROLLARY 7.8. If ‖fπ‖d ≤ 1 for all π ∈ �, then√
ETξ2 ≤ 1

rn

∑
v∈V (G)

4K√
d(v)

+ K

pqn

∑
v∈V (G)

(r − 1)|�v ∩N (v)|
(|�v| − 1)d(v)

when T = T�.

PROOF. Recall that the distribution of T� is the distribution of TP when P is chosen
uniformly at random from the set

( �
r,...,r

)
of partitions. In this case, we have that

EP
∣∣Pv ∩N (v)

∣∣= ∑
w∈N (v)

PP [w ∈ Pv] = ∑
w∈N (v)

1�v(w)
r − 1

|�v| − 1

= (r − 1)|�v ∩N (v)|
|�v| − 1

.

The result follows. �

As in Section 6, Corollary 7.8 implies a consistency result for the Neymannian estimator.

COROLLARY 7.9. Let T = T� and fix p,q, r ∈ R. If ‖fπ‖d ≤ 1 for all π ∈ �, then

ETξ2 ≤ O

(
K2

dmin

)
.

In particular, if dmin → ∞, then ETξ2 → 0.

The analogue of Proposition 6.7 is the following result.
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PROPOSITION 7.10. If ‖fπ‖d ≤ 1 for all π ∈ �, then

|ETξ | ≤ K|�|
rn

,√
ETξ2

K
≤

√
2|�|√

nr · dmin
+ 4

√
r2d2

max + 1√
n · dmin

+ r min{r − 1, dmin}
√

r2d2
max + 1

pq
√

n · dmin

when T = T�.

As in Section 6, Proposition 7.10 implies a consistency result for the Neymannian estima-
tor.

COROLLARY 7.11. Let T = T� and fix p,q, r ∈ R. If ‖fπ‖d ≤ 1 for all π ∈ �, then

|ETξ | = O

(
K|�|

n

)
,

ETξ2 = O

(
K2|�|
ndmin

+ K2d2
max

ndmin

)
.

In particular, if n → ∞ with dmax = o(
√

n) and |�| = o(
√

n), then ETξ2 → 0.

Thus, in the sparse setting, it is important that � is not too large, that is, that degree
heterogeneity is not too large. The analogous condition in Corollary 6.10 is that there are
not too many different degrees in the graph, which follows from the requirement that dmax =
o(

√
n).

8. Nodal similarity and types. In this section, we directly bound the MSE of t̂Neyman
in a model that allows covariate similarity between vertices within elements of �. We state
results solely assuming that individuals of similar types have similar outcomes while condi-
tioning on the graph. This allows us to control for (possibly latent) heterogeneity among the
outcomes of individuals in the graph. As a specific example, if the graph is homophilous and
the elements of � include individuals who are more likely to connect to each other, then our
approach provides an avenue for considering both homophily and interference.

For π ∈ �, let

xπ = 1

|π |
∑
v∈π

xv, tπ = 1

|π |
∑
v∈π

tv,

be the average covariate effect and average treatment effect respectively within a type. For
v ∈ V (G), let

εv = xv − x�v + q

r
(tv − t�v )

be the discrepancy between an individual node’s behavior and their type average. Then

σ 2 = 1

rn

∑
v∈V (G)

ε2
v

captures the sum of squared differences between nodes and their type averages within a graph.
Thus σ 2 has an inverse relationship with the similarity of individuals within elements of �.
The following result, which generalizes Lemma 2.1, bounds the MSE of tideal.
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PROPOSITION 8.1. For all partitions � of V (G) into sets of size divisible by r , we have

ETtideal = t̄ ,

VarT(tideal) ≤ 2rσ 2

pqn

when T = T�.

Coupling Proposition 8.1 with bounds on ξ yields the following bias and MSE bounds for
t̂Neyman.

COROLLARY 8.2. If ‖fπ‖d ≤ 1 for all π ∈ �, then

|ET t̂Neyman − t̄ | ≤ K|�|
n

,√
ET(̂tNeyman − t̄ )2 ≤ 1

rn

∑
v∈V (G)

4K√
d(v)

+ K

pqn

∑
v∈V (G)

(r − 1)|�v ∩N (v)|
(|�v| − 1) · d(v)

+ σ
√

2r√
pqn

when T = T�.

PROOF. Follows from Corollary 7.8 and Proposition 8.1. �

The results of this section are closely related to the work of Basse and Airoldi [4] on
optimal design with network correlated outcomes that are induced by homophily but no in-
terference. Furthermore, if the types are unknown, homophily is suspected (i.e., individuals
with similar covariates and outcomes are more likely to form connections), and it is suspected
that individuals with similar baseline characteristics have similar interference functions then
the types can be estimated from the graph. This will incur an additional penalty due to the
estimation error of the types (we do not pursue this here).

9. Simulations. In this section we conduct a series of simulations to demonstrate the
efficacy of our approach. We vary the type of the network and strength and method of the
interference. For each of the simulations we consider the model

yv = xv + tv1v∈T + fv

(
T ∩N (v)

)
,

where xv
i.i.d.∼ N(0,1) and tv

i.i.d.∼ N(2,0.25). That is, the baseline outcome for all of the in-
dividuals in the graph is centered at 0 with a variance of 1, while the treatment effect for
everyone is centered at 2 with a variance of 0.25. We consider three treatment regimes: our
approach (described in Section 6), a variant on our approach that further ensures that indi-
viduals within the same partition are not connected by an edge3 and the completely random-
ized design (CRD) where exactly half of all units are treated randomly. We report log mean

3This approach minimizes two terms in the bound in Corollary 5.10. To minimize the term∑
v∈V (G)

|Pv∩N (v)|
d(v)

, we note that the only nonzero contribution is from individuals who are both neighbors and
are within the same partition. In the simulations, we first construct a partition and then check if any nodes within a
partition are connected by an edge. If such nodes exist we swap one of them with a node of the same degree from
a different partition. This process is repeated in a greedy fashion until either all partitions are neighbor-free or no
further improvements can be made. By only swapping nodes with equal degree, we maintain all of the results of
Section 6.
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FIG. 2. Simulation results for different randomization schemes and estimators. × refers to the Neymanian esti-
mator coupled with a completely randomized deisign. ∗ refers to the stratified estimator after a completely ran-
domized design. ⊕ refers to the Neymanian estimator after ordering by degree only and � refers to the Neymanian
estimator after ordering by degree and ensuring that partitions do not overlap with the edges of the graph.

squared errors (log MSE) for the Neymanian estimator for the three randomizations as well as
log MSE for the estimator the post-stratifies on treated degree after a CRD randomization in
Figure 2. The MSEs are calculated over 10,000 simulated randomizations for each approach.

9.1. Erdős–Renyi graphs. In the first simulation, we generate a graph G ∼ ER(N,p)

with N nodes and overall density p. The Erdős–Renyi model ER(N,p) is an independent-
edge random graph model where an edge between node v and v′ exists with probability p.
We consider two graph sizes, 100 and 200, and three graph densities, 0.05, 0.1 and 0.5.
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An important property of Erdős–Renyi graphs is that they are extremely dense (expected
degree is Np) and the degrees of their nodes concentrate [16]. Because of this trait, a ran-
domization scheme based on the degree distribution of the graph is unlikely to perform well.
Our proposed procedure behaves similarly to the standard completely randomized design. We
consider the symmetric linear interference function fv(A) = γ |A|. The parameter γ controls
the amount of linear interference experienced by any unit with larger values meaning more
interference. It varies from 0.1 to 2. Figure 2(a) demonstrates that the estimators based on
degrees only and CRD randomization have approximately the same log MSE, with the CRD
even exhibiting better behavior for denser graphs and higher levels of interference (such as
p = 0.5, γ = 2). The partition scheme based on degrees that further tries to reduce the number
of edges within partition sets outperforms both. For symmetric linear interference the post-
stratified estimator performs very well since it correctly identifies the exposure function. We
also considered the symmetric fractional interference functions

fv(A,B) = γ |A|/(|A| + |B|), fv(A,B) = p × N × γ |A|/(|A| + |B|)
where under the latter, the expected interference is approximately the same as in the linear
interference setting. In both settings, we observe behavior similar to the linear interference—
this conclusion is easily explained by the concentration of degrees in an Erdős–Renyi graph,
which entails that the fractional and linear interference functions lead to equivalent perfor-
mance for the different estimators.

9.2. Preferential attachment graphs. In a second simulation, we generate a graph G ∼
PA(N,pow,m) with N nodes, pow power of the preferential attachment (PA) and m new
edges at each step of the graph growth [3]. These graphs are constructed by staring with a
single vertex and adding one new vertex at a time. The new vertex forms an edge with an
existing vertex v with probability proportional to d(v)pow. Each new vertex forms m new
edges. This process continues until there are N vertices in the graph. These graphs have
power law degree distributions and hence are sparse with many small degree nodes and a few
large hubs.

As the power parameter grows, the density of the graph and the number of nodes with the
same degree grow with it. Because of this property, we expect an increase in log MSE as
a function of power. It is clear that log MSE increases with power since it produces denser
graphs that are more likely to have too many nodes with the same degree. The difference
between the performance of estimators based on the CRD and the restricted randomization is
likely explained by the special behavior of super-linear preferential attachment [15]. The re-
sults of these simulations are presented in Figure 2(b). When pow = 4 and m = 4 most graphs
have four central nodes that are connected to everyone else. As such, only these central nodes
induce any form of interference on the other nodes and so the restricted randomization ide-
ally allocated treatment. The CRD does not take this structure into account and so frequently
is likely to allocate all of the central nodes to treatment or control, leading to increased bias
and variance. When m = 6 there are enough perturbations in the system to lead to poorer
performance by the restricted randomization. On the other hand, when pow ∈ (1,2], small m

frequently lead to the creation of an odd (not even) number of central nodes (in which case or-
dering by degree requires pairing at least one very high degree node with a low degree node),
while a large m produces a large amount of heterogeneity in the degrees. In this setting, the
restricted randomization approach prefers more heterogeneity as it balances the interference
among nodes. In all of these settings, the CRD performs worse than the restricted random-
ization. We note that as in Section 9.1, the interference function is linear so the post-stratified
estimator correctly identifies the exposure function and so is able to perform very well.



700 R. JAGADEESAN, N. S. PILLAI AND A. VOLFOVSKY

9.3. Small world graphs. In a third simulation (whose results are depicted in Fig-
ure 2(c)), we generate a graph G ∼ SW(N,n,p) with N nodes, n neighbors on the original
lattice and p = 0.2 the probability of rewiring [25]. These graphs have both a small diam-
eter and high local connectivity. We consider a fractional interference function fv(A,B) =
γ |A|/(|A| + |B|) where A are the treated neighbors and B are the untreated neighbors of a
unit. Our design that only considers degrees performs well, though as γ increases it’s im-
provement over the other approaches decays. On the other hand, our design that both treats
degrees and eliminates connected edges from the partitions does not suffer as much as γ

increases. Of note here is that the post-stratified estimator performs very poorly as it is not
robust to different interference functions. This behavior is consistent across different values
of n.

9.4. Stochastic blockmodel graphs and homophily. In a fourth simulation (whose results
are depicted in Figure 2(d)), we generate a graph G ∼ SBM(N,2,p) with N nodes, 2 groups,
with the probability of an edge between members of group one being 0.5 + p and the prob-
ability of an edge between members of group two being 0.5 − p. The probability of an edge
between members of the two groups is 0.1. The first group includes 25% of individuals
while the second group includes 75%. The interference function in this setting is taken to
be fv(A) = γ |A|/dmax where this normalization keeps the interference on the order of the
treatment effect. Lastly, for this simulation only, we shift xv to be centered at −2 for group
one and 2 for group two. That is, individuals with similar baseline information are more
likely to be connected (and hence interfere with each other). Our randomization approach
that accounts for both degree and reduces the number of edges within partitions performs
substantially better than the naive and post-stratified estimators after a CRD. This demon-
strates that the presence of homophily reduces the efficacy of the post-stratification estimator
even when the interference function has the same form as the estimator. This behavior is
consistent across values of p.4 Lastly, we note that when p = 0.2 (Figure 3 in Appendix E)
the two groups have equal average degree (this is an often studied regime in the stochastic
blockmodel literature [5]); in this case the stratified estimator conflates people in group 1 with
people in group 2 even though they have extremely different baselines, leading to extremely
poor performance. The other approaches behave similarly to the Erdős–Renyi setup.

9.5. Ego networks and individualized interference. In a fifth simulation (whose results
are depicted in Figure 2(e)), we generate graphs of size N = 100 made up of separate K-
stars (for K = 5,10). This structure is frequently observed in social networks, in which the
central node in each K-star can represent an influencer. As such, we consider an “influencer”
interference function—if a central node is treated, he interferes with those connected to him,
but he is never interfered with. This interference function is further individualized by letting
each influencer interfere at a random rate of (sampled from Gamma(2,2)). In this setting,
a CRD completely ignores the structure of the network and so is extremely likely to end up
with randomizations in which all of the central nodes are treated (this is not corrected by post-
stratifying on treated degree). We see that our proposed randomization appropriately accounts

4Our design that does not eliminate connected edges from the partitions appears to be more volatile (additional
figures in Appendix E): when p = 0.1 there are more edges within groups and the groups have substantively
different average degrees, making the behavior of the naive estimator under this randomization similar to its
behavior in the Erdős–Renyi setting (as similar degree people are likely to be connected). On the other hand,
when p = 0.3, the larger group has almost the same probability of within group connections as it does out-of-
group connections, meaning that similar degree individuals have a large probability of not being connected. In
Figure 3 in Appendix E we see that for other graphs generated from the same SBM regime this approach can
have substantively different results. On the other hand the randomization that accounts for degrees and eliminates
edges within partitions has consistent results (in terms of log MSE).
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for this structure and while the theory of Section 4 does not apply to this type of interference
function, we still see good performance in this simulation. This behavior is consistent across
values of K .

10. Discussion. This article provided a new approach to bounding the bias and mean
squared error of the Neymanian estimator of the average treatment effect under interference.
It introduced the notion of quasi-coloring to better understand the balance needed in the
randomization scheme to account for interference. Based on quasi-colorings, we developed
a restricted randomization scheme that has good theoretical properties and performs well in
simulations.

There are a number of directions for future research. The general notion of perfect quasi-
colorings provides intuition for the construction of other linear unbiased estimators. For ex-
ample, we can construct a partial-perfect-quasi-coloring by only treating one node. This treat-
ment produces the unbiased estimator Ytreated − Ȳc, where Ȳc is the average outcome of all the
control units that are not neighbors of the treated unit. The weights associated with treated
and control units are still interpretable.

It is also possible to extend the machinery of this paper to other estimands and estimators
of interest. For example, one estimand is the interference effect of having exactly one treated
neighbor. Following the strategy taken in this paper, Neyman-type estimators, such as the dif-
ference in outcomes of control (resp. treated) nodes with one treated neighbor and no treated
neighbors, can be developed. In turn, restricting the randomization scheme appropriately may
reduce bias and variance of the estimate. Our methodology can be further extended to more
general effects.

APPENDIX A: BOUNDS ON BIAS

For v ∈ V (G) and T ⊆ (V (G)
n

)
, let

ξv = χT
v fv

(
T ∩N (V )

)
denote the interference effect on v, so that ξ in (2.5) can be expressed as

ξ = 1

pqn

∑
v∈V (G)

ξv.

Given v,w ∈ V (G), define the weight of w on v as

(A.1)
Wv(w) = sup

A⊆N (v)\{w}
∣∣fv(A) − fv

(
A ∪ {w})∣∣ if w ∈ N (v)

= 0 otherwise.

LEMMA A.1. For a partition P = {S1, . . . , Sn} ∈ (V (G)
r,...,r

)
and the treatment assignment

mechanism T �B,P given in (3.1), we have

∣∣E �B(ξ)
∣∣≤ 1

nr(r − 1)

n∑
i=1

∑
{w,w′}∈(Si

2 )

(
Ww

(
w′)+ Ww′(w)

)
.

The full generality of Lemma A.1 may be of use in a weighted interference model, as
the formalism of weights allows one to capture the fact that different connections may have
different strengths. Including a weak connection (low weight edge) in P will affect the bias
less than including a strong connection. The following result will imply Lemma A.1.
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LEMMA A.2. For all j = 1, . . . , n and v ∈ Sj , we have∣∣EBj
[ξv | B1, . . . ,Bj−1,Bj+1, . . . ,Bn]

∣∣≤ pq

r(r − 1)

∑
w∈Sj \{v}

Wv(w)

when T = T �B,P .

PROOF. Without loss of generality, assume that j = 1 and v = w1
1. When 1 ∈ B1, define

a random variable B ′
1 with values in

([r]
p

)
by choosing B ′

1 uniformly from{
A ∈

([r]
p

) ∣∣∣ B1 \ A = {1}
}
.

Let B ′
i = Bi for i �= 1. Denote by ξ ′ (resp. ξ ′

v) the interference effect ξ (resp. the interfer-
ence effect ξ ′

v on v) for the treatment group T′ = T �B ′,P .
When 1 ∈ B1, we have

pξv + qξ ′
v = pq

(
fv

(
T ∩N (v)

)− fv

(
T′ ∩N (v)

))
,

so that ∣∣pξv + qξ ′
v

∣∣≤ pq
∣∣fv

(
T ∩N (v)

)− fv

(
T′ ∩N (v)

)∣∣≤ Wv(w),

where T�T′ = {v,w}. Taking expectations with respect to B ′
1, it follows that, when 1 ∈ B1,

we have

EB ′
1

[∣∣pξv + qξ ′
v

∣∣ | �B]≤ pq

r − 1

∑
w∈S1\{v}

Wv(w)

so that

(A.2)
∣∣∣∣EB1

[
pξv + qξ ′

v

r

∣∣ {1 /∈ B1},B2, . . . ,Bn

]∣∣∣∣≤ pq

r(r − 1)

∑
w∈S1\{v}

Wv(w)

by the triangle inequality.
Note that L(B1 | 1 /∈ B1) = L(B ′

1 | 1 ∈ B1), where L denotes the law of a random variable.
It follows that

(A.3) EBj
[ξv | 1 /∈ B1,B2, . . . ,Bn] = EB ′

1

[
ξ ′
v | 1 ∈ B1,B2, . . . ,Bn

]
.

Combining (A.2) and (A.3) and using the fact that

Pr[1 ∈ B1 | B2, . . . ,Bn] = p

r
,

we obtain the lemma. �

PROOF OF LEMMA A.1. It follows from Lemma A.2 that

|E �Bξv| ≤ pq

r(r − 1)

∑
w∈Sj \{v}

Wv(w).

Summing over v ∈ V (G), we have

|E �Bξ | ≤ 1

pqn

∑
v∈V (G)

|E �Bξv| ≤ 1

nr(r − 1)

n∑
i=1

∑
{w,w′}∈(Si

2 )

(
Ww

(
w′)+ Ww′(w)

)
,

as desired. �
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PROOF OF LEMMA 3.3. From (A.1) and (3.2), it follows that

Wv(w) ≤ Kv

d(v)
,

with Wv(w) = 0 if {v,w} /∈ E(G). The lemma therefore follows from Lemma A.1. �

PROOF OF PROPOSITION 3.6. By the linearity of expectation, we have

EP

[ ∑
v∈V (G)

|Pv ∩N (v)|
d(v)

Kv

]

= ∑
v∈V (G)

Kv

d(v)

∑
v∈e∈E(G)

P(e ⊆ Si for some i)

= ∑
v∈V (G)

Kv

d(v)

∑
v∈e∈E(G)

r − 1

rn − 1
= ∑

v∈V

Kv

d(v)
· d(v) · r − 1

rn − 1

= r − 1

rn − 1

∑
v∈V (G)

Kv.

The proposition follows, by Lemma 3.3. �

APPENDIX B: BOUNDS ON MSE: DENSE CASE

The following L2 bound is the key to the proofs of all of the MSE bounds.

LEMMA B.1. For all P = (S1, . . . , Sn) ∈ (V (G)
r,...,r

)
and all v, v′ ∈ Sj , we have√

E �B
[
d
( �d(v), �d(v′))2 | v ∈ T and v′ /∈ T

]
≤ K1

dmax

∣∣d(v) − d
(
v′)∣∣

+ K2

r

(√
2pq√
d(v)

+
√

2pq√
d(v′)

+ q · 1E(G)({v, v′})
d(v)

+ p · 1E(G)({v, v′})
d(v′)

)
when T = T �B,P .

PROOF. Note that

dK

( �dT(v), �dT
(
v′))= K1

dmax

∣∣d(v) − d
(
v′)∣∣+ K2

r
|F |,

where

F = r|T ∩N (v)|
d(v)

− r|T ∩N (v′)|
d(v′)

.

Thus, it suffices to prove that√
E �B
[
F 2 | v ∈ T and v′ /∈ T

]≤ √
2pq√
d(v)

+
√

2pq√
d(v′)

+ q · 1E(G)({v, v′})
d(v)

+ p · 1E(G)({v, v′})
d(v′)

.
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For w ∈ V (G), let

Fw = χT
w

(
1N (v)(w)

d(v)
− 1N (v′)(w)

d(v′)

)
.

Note that

E �B
[(

χT
w

)2 | v ∈ T and v′ /∈ T
]=

⎧⎪⎨⎪⎩
pq if w /∈ Sj ,

pqr − p2 − q2

r − 2
if w ∈ Sj .

In particular, we have

E �B
[(

χT
w

)2 | v ∈ T and v′ /∈ T
]≤ pq.

It follows that

E �B
[
F 2

w | v ∈ T and v′ /∈ T
]≤ pq

(
1N (v)(w)

d(v)
− 1N (v′)(w)

d(v′)

)2

≤ pq
1N (v)(w)

d(v)2 + pq
1N (v′)(w)

d(v′)2 .

For all i, let

Fi = r|T ∩ Si ∩N (v)| − p|Si ∩N (v)|
d(v)

− r|T ∩ Si ∩N (v′)| − p|Si ∩N (v′)|
d(v′)

.

For i �= j and w,w′ ∈ Si with w �= w′, we have

Corr
(
χT

w,χT
w′ | v ∈ T and v′ /∈ T

)= − 1

r − 1
.

By Lemma 6.8, we have

VarBi

(
Fi | v ∈ T and v′ /∈ T

)
≤ ∑

w,w′∈Si

VarBi

(
Fw | v ∈ T and v′ /∈ T

)∣∣CorrBi

(
Fw,Fw′ | v ∈ T and v′ /∈ T

)∣∣
≤
(∑

w∈Si

VarBi

(
Fw | v ∈ T and v′ /∈ T

))(
1 + r − 1

r − 1

)

= 2
∑
w∈Si

VarBi

(
Fw | v ∈ T and v′ /∈ T

)
.

It follows that

EBi

[
F 2

i | v ∈ T and v′ /∈ T
]≤ 2

∑
w∈Si

E �B
[
F 2

w | v ∈ T and v′ /∈ T
]

≤ 2pq|Si ∩N (v)|
d(v)2 + 2pq|Si ∩N (v′)|

d(v′)2 .

Similarly, for w,w′ ∈ Si \ {v, v′} with w �= w′ we have

Corr
(
χT

w,χT
w′ | v ∈ T and v′ /∈ T

)= − 1

r − 3
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for w,w′ ∈ Sj \ {v, v′}. By Lemma 6.8, we have

VarBj

(
Fj − Fv − Fv′ | v ∈ T and v′ /∈ T

)
≤ ∑

w,w′∈Sj \{v,v′}
VarBj

(
Fw | v ∈ T and v′ /∈ T

)
× ∣∣CorrBj

(
Fw,Fw′ | v ∈ T and v′ /∈ T

)∣∣
≤
( ∑

w∈Sj \{v,v′}
VarBj

(
Fw | v ∈ T and v′ /∈ T

))(
1 + r − 3

r − 3

)

= 2
∑

w∈Sj \{v,v′}
VarBj

(
Fw | v ∈ T and v′ /∈ T

)
.

It follows that

E �B
[
(Fj − Fv − Fv′)2 | v ∈ T and v′ /∈ T

]
≤ 2

∑
w∈Sj \{v,v′}

E �B
[
F 2

w | v ∈ T and v′ /∈ T
]

≤ 2pq|Sj ∩N (v) \ {v′}|
d(v)2 + 2pq|Sj ∩N (v′) \ {v′}|

d(v′)2 .

As B1, . . . ,Bn are independent (even conditioned on the event that v ∈ T and v′ /∈ T), it
follows that

E �B
[(∑

i

Fi − Fv − Fv′
)2 ∣∣ v ∈ T and v′ /∈ T

]
≤ 4pq

d(v)
+ 4pq

d(v′)
,

so that √√√√E �B
[(∑

i

Fi − Fv − Fv′
)2 ∣∣ v ∈ T and v′ /∈ T

]
≤

√
2pq√
d(v)

+
√

2pq√
d(v′)

.

Noting that F = ∑
i Fi and using the fact that |Fv| ≤ q·1E(G)({v,v′})

d(v)
and |Fv′ | ≤

p·1E(G)({v,v′})
d(v′) , it follows that√

E �B
[
F 2 | v ∈ T and v′ /∈ T

]
≤

√
2pq√
d(v)

+
√

2pq√
d(v′)

+ q · 1E(G)({v, v′})
d(v)

+ p · 1E(G)({v, v′})
d(v′)

and the proof is finished. �

For v ∈ Si , define

Dv
T = 1T(v)

(
qδ �d(v)

− ∑
w∈Si\T

δ �d(w)

)
.

Intuitively, Dv
T is the contribution of v to DT if v is treated and is 0 if v is not treated. Note

that

Dv
T = ∑

w∈Si\{v}
1T(v)1V (G)\T(w)(δ �d(v)

− δ �d(w)
).
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By the triangle inequality, we have

(B.1)

√
E �B
[∥∥Dv

T

∥∥2
d
]

≤
√

pq

r(r − 1)

∑
w∈Si\{v}

√
E
[
d
( �d(v), �d(w)

)2 | v ∈ T and w /∈ T
]

≤
√

pq

r − 1

∑
w∈Si\{v}

√
E
[
d
( �d(v), �d(w)

)2 | v ∈ T and w /∈ T
]
.

PROOF OF PROPOSITION 5.9. By Lemma B.1 and (B.1), we have√
E �B
[∥∥Dv

T

∥∥2
d
]

≤ K1
√

pq

(r − 1)dmax

∑
w∈Si\{v}

∣∣d(v) − d(w)
∣∣+ 2K2pq

r
√

d(v)

+ ∑
w∈Si\{v}

2K2pq

r(r − 1)
√

d(w)
+ K2

√
pq

r(r − 1)

∑
w∈Si∩N (v)

(
q

r · d(v)
+ p

r · d(w)

)

≤ K1
√

pq

(r − 1)dmax

∑
w∈Si\{v}

∣∣d(v) − d(w)
∣∣+ 2K2pq

r
√

d(v)

+ ∑
w∈Si\{v}

2K2pq

r(r − 1)
√

d(w)
+ K2

∑
w∈Si∩N (v)

(
q

r · d(v)
+ p

r · d(w)

)
.

Noting that DT = 1
pqn

∑
v∈V (G) D

v
T, the triangle inequality implies that

√
E �B
[‖DT‖2

d
]≤ 1

pqn

∑
v∈V (G)

√
E �B
[∥∥Dv

T

∥∥2
d
]

≤ K1√
pqn

CP + 1

rn

∑
v∈V (G)

4K2√
d(v)

+ K2

pqn

∑
v∈V (G)

|Pv ∩N (v)|
d(v)

,

as claimed. �

PROOF OF PROPOSITION 7.7. By Lemma B.1 and (B.1), we have√
E �B
[∥∥Dv

T

∥∥2
d
]≤ 2Kpq

r
√

d(v)
+ ∑

w∈Si\{v}

2Kpq

r(r − 1)
√

d(w)

+ K
∑

w∈Si∩N (v)

(
q

r · d(v)
+ p

r · d(w)

)
.

Noting that Dπ
T = 1

pqn

∑
v∈π Dv

T, we have

(B.2)
√
E �B
[∥∥Dπ

T

∥∥2
d
]≤ 1

rn

∑
v∈π

4K√
d(v)

+ K

pqn

∑
v∈π

|Pv ∩N (v)|
d(v)

.
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Summing over π ∈ �, it follows that√√√√E �B
[(∑

π∈�

∥∥Dπ
T

∥∥
d

])
]2 ≤ ∑

π∈�

√
E �B
[∥∥Dπ

T

∥∥2
d
]

≤ 1

rn

∑
v∈V (G)

4K√
d(v)

+ K

pqn

∑
v∈V (G)

|Pv ∩N (v)|
d(v)

,

as claimed. �

APPENDIX C: BOUNDS ON MSE: SPARSE CASE

As Proposition 3.6 shows, introducing randomness can help reduce bias. We will first need
a generalization of Proposition 3.6 to a class of semi-restricted randomizations.

Assume that the function fv is Kv-Lipshitz and define the quantity

(C.1) Kmax = max
v∈V (G)

Kv.

PROPOSITION C.1. Fix a partition � of V (G) into sets of size divisible by r . When P is
sampled uniformly from

( �
r,...,r

)
, we have

EP
∣∣E �B(ξ |P)

∣∣≤ 2Kmax|�|
rn

when T = T �B,P .

PROOF. By the linearity of expectation, we have

EP

[ ∑
v∈V (G)

|Pv ∩N (v)|
d(v)

Kv

]

= ∑
v∈V (G)

Kv

d(v)

∑
v∈e∈E(G)

P(e ⊆ Si for some i)

≤ ∑
π∈�

∑
v∈π

Kv

d(v)

∑
v∈e∈E(g)

r − 1

|π | − 1
= ∑

π∈�

∑
v∈π

Kv

d(v)
· d(v) · r − 1

|π | − 1

≤ (r − 1)Kmax
∑
π∈�

|π |
|π | − 1

≤ 2(r − 1)Kmax|�|.

The proposition follows, by Lemma 3.3. �

C.1. With types. The following lemma will be used in the proof of Proposition 7.10.
Recall Kmax and dmin from equations (C.1) and (1.1) respectively.

LEMMA C.2. When P is sampled uniformly from
( �
r,...,r

)
, we have

EP
(
E �B(ξ | P)

)2 ≤ 2K2
max|�|

nr · dmin

when T = T �B,P .
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PROOF. The proof of Proposition C.1 shows that

EP

[ ∑
v∈V (G)

Kv · |Pv ∩N (v)|
d(v)

]
≤ 2(r − 1)Kmax|�|.

We have

EP

[{ ∑
v∈V (G)

|Pv ∩N (v)|
d(v)

Kv

}2]

≤ EP

[ ∑
v∈V (G)

Kv · |Pv ∩N (v)|
d(v)

]
· max
P∈( �

r,...,r)

[ ∑
v∈V (G)

Kv · |Pv ∩N (v)|
d(v)

]

≤ 2(r − 1)Kmax|�| · nr(r − 1)Kmax

dmin

= 2nr(r − 1)2K2
max|�|

dmin
.

The lemma follows, by Lemma 3.3. �

PROOF OF PROPOSITION 7.10. Let P = (S1, . . . , Sn) be sampled uniformly from
( �
r,...,r

)
and let T = T �B,P . For i = 1,2, . . . , n, define

ξi = ∑
v∈Si

ξv.

Note that if ξi and ξj are dependent given P and i �= j , then either there is an edge between
Si and Sj or there exists k such that there are edges between Si and Sk and between Sk and
Sj . In particular, for fixed i, there are at most r2d2

max + 1 values of j such that ξi and ξj are
dependent given P . By Lemmata B.1 and 6.9, it follows that

Var �B(ξ |P) ≤ (r2d2
max + 1

) n∑
i=1

Var �B(ξi | P)

≤ (r2d2
max + 1

) n∑
i=1

E �B
[∥∥DSi

T

∥∥2
d | P].

By (B.2) in the proof of Proposition 7.7, it follows that

Var �B(ξ | P)

K2 ≤ (r2d2
max + 1

) n∑
i=1

(
1

rn

∑
v∈Si

4√
d(v)

+ 1

pqn

∑
v∈Si

|Pv ∩N (v)|
d(v)

)2

≤ r2d2
max + 1

n2

n∑
i=1

(
4√
dmin

+ r min{r − 1, dmin}
pq · dmin

)2

= r2d2
max + 1

n

(
4√
dmin

+ r min{r − 1, dmin}
pq · dmin

)2
.

Taking square roots yields that

√
Var �B(ξ | P) ≤ 4K

√
r2d2

max + 1√
n · dmin

+ rK min{r − 1, dmin}
√

r2d2
max + 1

pq
√

n · dmin
.
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The bound on |ET ξ | is given by Proposition C.1. It remains to prove the bound on ETξ2.
Lemma C.2 and the previous paragraph together imply that√

ETξ2 =
√
EPE �B(ξ | P)2 +EP Var(ξ | P)

≤ K
√

2|�|√
nr · dmin

+ 4K
√

r2d2
max + 1√

n · dmin
+ rK min{r − 1, dmin}

√
r2d2

max + 1

pq
√

n · dmin
,

as desired. �

C.2. Without types. The key to the proof of Proposition 6.7 is to note that the treatment
group T �B,P∗∗ has the same distribution as the treatment group T� for a suitably chosen �.

PROOF OF PROPOSITION 6.7. Let D = d(V (G) \ S). For d ∈ D, let Vd = {v ∈ V (G) \
S | d(v) = d}. Define

� = (
S1, . . . , Sk, (Vd)d∈D

)
.

By construction, we have that |�| ≤ 2(dmax − dmin) + 1 ≤ 2dmax and that k ≤ dmax − dmin.
For d ∈ D, define gVd

= f |Vd
. For 1 ≤ i ≤ k, define

gSi
(a, b) = f

(⌊
a · maxv∈Si

d(v)

a + b

⌋
,

⌈
b · maxv∈Si

d(v)

a + b

⌉)
.

It is straightforward to verify that f and g�(v) agree on {(a, b) ∈ Z
2≥0 | a + b = d(v)} for all

v /∈ S and ∣∣f (a, b) − g�(v)(a, b)
∣∣≤ K1

|a + b − maxv∈Si
d(v)|

dmax
+ K2

dmin
.

Define an auxiliary random variable

ζT
v = χT

v g�(v)

( �dT (v)
)

and let

ζ = 1

pqn

∑
v∈V (G)

ζT
v .

The discussion of the previous paragraph shows that ζT
v = ξT

v for all v ∈ V (G) \ S. It follows
that

|ζ − ξ | ≤∑
v∈S

∣∣ζT
v − ξT

v

∣∣
≤ K1

dmax

k∑
i=1

∑
u∈Si

∣∣∣d(u) − max
v∈Si

d(v)
∣∣∣+ K2

dmin

n∑
i=1

|Si |

≤ K1r

dmax

k∑
i=1

∣∣∣max
v∈Si

d(v) − min
v∈Si

d(v)
∣∣∣+ K2rk

dmin

≤ K1r + K2r(dmax − dmin)

dmin
.

Because |�| ≤ 2dmax, the proposition then follows by bounding ζ for the treatment T = T�

using Proposition 7.10. �
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APPENDIX D: HOMOPHILY

PROOF OF PROPOSITION 8.1. The first assertion follows from Lemma 2.1 because
P(v ∈ T) = p

r
for all v ∈ V (G).

Note that

tideal = 1

pqn

∑
v∈V (G)

χT
v yv = 1

pqn

∑
v∈V (G)

χT
v

(
xv + 1T(v)tv

)
.

As |T ∩ π | = p|π |
r

for all π ∈ �, we have that
∑

v∈π χT
v = 0 for all π ∈ �. It follows that∑

v∈V (G)

χT
v

(
x�v + q

r
t�v

)
= ∑

π∈�

(
xπ + q

r
tπ

)∑
v∈π

χT
v = 0.

Hence, we have that

tideal = 1

pqn

∑
v∈V (G)

χT
v

(
xv − x�v − q

r
tπv + 1T(v)tv

)

= 1

pqn

∑
v∈V (G)

χT
v

(
εv + 1T(v)tv − q

r
tv

)
.

If v ∈ T, then we have that

χT
v

(
1T(v)tv − q

r
tv

)
= qtv − q2

r
tv = pq

r
tv,

while if v /∈ T, then we have that

χT
v

(
1T(v)tv − q

r
tv

)
= −p

(
−q

r
tv

)
= pq

r
tv.

It follows that

tideal = 1

pqn

∑
v∈V (G)

χT
v εv + 1

pqn

∑
v∈V (G)

pq

r
tv = t̄ + 1

pqn

∑
v∈V (G)

χT
v εv.

Note that Corr(χT
v ,χT

w) = − 1
r−1 if v �= w lie in a single part of � and Corr(χT

v ,χT
w) = 0

if v and w lie in different parts of �. Thus, we have∑
w∈V (G)

∣∣Corr
(
χT

v ,χT
w

)∣∣= 2

for all v ∈ V (G). By Lemma 6.8, it follows that

Var(tideal) ≤ 1

p2q2n2

∑
v∈V (G)

2 Var
(
χT

v

)
ε2
v = 2rσ 2

pqn
,

as desired. �

APPENDIX E: ADDITIONAL SIMULATION RESULTS

Figure 3 provides further results for the stochastic blockmodel simulation of Section 9.4.
We note that the behavior of the Neymanian estimator after ordering by degree and ensuring
that partitions do not overlap with the edges of the graph maintains its behavior between the
two graphs, while the approach that only accounts for degrees exhibits different behavior
conditional on the graph.
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FIG. 3. Simulation results for different randomization schemes and estimators across two different baseline
graphs. × refers to the Neymanian estimator coupled with a completely randomized deisign. ∗ refers to the
stratified estimator after a completely randomized design. ⊕ refers to the Neymanian estimator after ordering by
degree only and � refers to the Neymanian estimator after ordering by degree and ensuring that partitions do not
overlap with the edges of the graph.
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