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Estimating a high-dimensional sparse covariance matrix from a limited
number of samples is a fundamental task in contemporary data analysis. Most
proposals to date, however, are not robust to outliers or heavy tails. Toward
bridging this gap, in this work we consider estimating a sparse shape matrix
from n samples following a possibly heavy-tailed elliptical distribution. We
propose estimators based on thresholding either Tyler’s M-estimator or its
regularized variant. We prove that in the joint limit as the dimension p and the
sample size n tend to infinity with p/n → γ > 0, our estimators are minimax
rate optimal. Results on simulated data support our theoretical analysis.

1. Introduction. The covariance matrix � of a p-dimensional random variable X is a
central object in statistical data analysis. Given n samples {xi}ni=1, an accurate estimate of
� is needed in many tasks including PCA, clustering and discriminant analysis (Anderson
(2003), Mardia, Kent and Bibby (1979)). The sample covariance matrix, which is the standard
estimator for �, is quite accurate when X is sub-Gaussian and p � n.

In several contemporary applications, however, the number of samples n and the dimen-
sion p are comparable, and the data may be heavy tailed. To accurately estimate the covari-
ance matrix when n and p are comparable, additional assumptions, such as its approximate
sparsity are typically made. Over the past decade, several sparse covariance matrix estima-
tors were proposed and analyzed (Bickel and Levina (2008), Cai and Liu (2011), El Karoui
(2008), Lam and Fan (2009), Rothman, Levina and Zhu (2009)). In addition, minimax rates
for estimating high-dimensional sparse covariance matrices were established (Cai and Zhou
(2012a, 2012b), Cai, Ren and Zhou (2016)).

With respect to heavy-tailed data, a popular model which we consider in this work is the el-
liptical distribution (Cambanis, Huang and Simons (1981), Fang, Kotz and Ng (1990), Frahm
(2004), Kelker (1970)). An elliptical distribution is characterized by a p × p shape or scatter
matrix Sp , which is proportional to the population covariance matrix, when the latter exists.
When the elliptical distribution is heavy tailed, the sample covariance is a poor estimate of the
population covariance (Falk (2002)). Moreover, the elliptical distribution might be so heavy
tailed as to not even have finite second moments, in which case its population covariance
does not exist. Yet due to the structure of the elliptical distribution, even with heavy tails it is
nonetheless possible to accurately estimate its shape matrix. This is useful in various appli-
cations, since the shape matrix preserves the directional properties of the distribution, such
as its principal components.

Following Huber’s pioneering work (Huber and Ronchetti (2009)), over the past decades
several robust estimators of the covariance and shape matrix were proposed and theoreti-
cally studied; see Dümbgen, Nordhausen and Schuhmacher (2016), Dümbgen, Pauly and
Schweizer (2015), Kent and Tyler (1991), Maronna (1976), Maronna and Yohai (2017) and
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references therein. For elliptical distributions, Tyler (1987a) proposed a robust M-estimator
for the scatter matrix Sp and an iterative scheme to compute it. Tyler’s M-estimator has found
widespread use in various applications involving heavy-tailed data. However, as it is defined
only for p < n, in recent years several regularized variants, applicable also for p > n were
proposed and analyzed (Abramovich and Spencer (2007), Chen, Wiesel and Hero (2011),
Ollila and Tyler (2014), Pascal, Chitour and Quek (2014), Sun, Babu and Palomar (2014),
Wiesel (2012)). The spectral properties of Maronna’s M-estimators and specifically Tyler’s
M-estimator and its regularized variants, in high dimensions as n,p → ∞ with p/n → γ

were studied by Dümbgen (1998), Couillet, Pascal and Silverstein (2014, 2015), Couillet,
Kammoun and Pascal (2016), Couillet and McKay (2014), Zhang, Cheng and Singer (2016),
among others. For a recent survey on Tyler’s M-estimator and its variants, see Wiesel and
Zhang (2014).

In this paper, we study the combination of heavy-tailed data with a “large p–large n”
setting. As formulated in Section 2, we consider robust estimation of the shape matrix of
an elliptical distribution, assuming it is approximately sparse. We address the following two
challenges: (i) design a computationally efficient and statistically accurate estimator of the
shape matrix Sp , that is adaptive to its unknown sparsity parameters; (ii) provide theoretical
guarantees on its accuracy, in the large p large n regime.

We make the following contributions. First, in Section 3 we propose simple and computa-
tionally efficient estimators for the sparse shape matrix of an elliptical distribution. These are
based on thresholding either Tyler’s M-estimator (TME) or its regularized variant. Second,
we provide theoretical guarantees on their accuracy in the limit n,p → ∞ with p/n → γ .
Theorems 1 and 2 show that the estimator Ê based on thresholding either TME for γ < 1 or
its regularized variant for any γ ∈ (0,∞), converges in spectral norm to a sparse shape matrix
Sp at rate ‖Ê − Sp‖ = OP ((logp/n)(1−q)/2), where q is the sparsity parameter of Sp . Esti-
mating a sparse shape matrix under a heavy-tailed elliptical distribution is thus possible with
the same asymptotic error rate as estimating a sparse covariance matrix under sub-Gaussian
distributions. Moreover, our estimators are rate optimal, as this rate coincides with the mini-
max rate for sparse covariance estimation with sub-Gaussian data (Cai and Zhou (2012a)).1

Our proofs follow the approach of Bickel and Levina (2008), with required modifications
given that we analyze Tyler’s M-estimators. Theorem 1, which concerns the TME and is thus
valid for p < n, is proven in Section 5. The proof is relatively simple and heavily relies on
Zhang, Cheng and Singer (2016), who studied the spectral properties of Tyler’s M-estimator
when n,p → ∞. Theorem 2 considers the thresholded regularized TME, and is thus appli-
cable also for p > n. As detailed in Section 6, its proof is far more involved, and combines
a careful analysis of the regularized TME with several results in random matrix theory. Sec-
tion 7 presents simulation results that support our theoretical analysis. With an eye toward
practitioners, given that regularization is common also when p < n, we focus on the regular-
ized TME. With Gaussian data, our thresholded TME estimator is as accurate as thresholding
the sample covariance. In contrast, in the presence of heavy tails it is far more accurate. We
also illustrate its potential utility in handling outliers. In addition, our estimator is quite fast
to compute in practice, requiring only few seconds on a standard PC, say for p = n = 1000.

Our work is related to several recent papers, that also considered sparse shape or covari-
ance matrix estimation with heavy-tailed data. Han, Lu and Liu (2014) considered a general-
ization of the elliptical distribution, denoted as the pair-elliptical distribution, with moderate

1Technically, the minimax rate was proven under the assumption that p/nβ → c with β > 1; see Remark 5 in
Cai and Zhou (2012a). However, from personal communication with Professors Cai and Zhou, the same minimax
rate should hold also when β = 1.
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tails so the population covariance matrix exists. They proposed an estimator for the popu-
lation covariance and derived finite sample approximation bounds, which depend on vari-
ous properties of the distribution. For well-behaved elliptical distributions with an exactly
sparse covariance matrix, their estimator is minimax rate optimal under the Frobenius norm.
Soloveychik and Wiesel (2014) considered estimating a covariance matrix from a convex
subset of all positive semidefinite matrices. They added a convex regularization term to the
TME and solved the resulting optimization problem by a semidefinite program (SDP). They
proved the existence of their estimator and its asymptotic consistency for fixed dimension
p and n → ∞. However, their SDP-based method is computationally demanding even for
moderate values of n and p. Sun, Babu and Palomar (2016) considered a wider nonconvex
class of matrices, and derived an SDP-based algorithm with lower time complexity.

Chen, Gao and Ren (2018) considered an elliptical distribution, corrupted by an ε-
contamination model. They proposed several estimators for the shape matrix of the elliptical
distribution, based on a generalization of Tukey’s depth function. Under a notion of sparsity
different from the one considered here, they proved their estimator is minimax rate optimal
when n,p → ∞ and (logp)/n → 0. However, from a practical perspective this depth func-
tion estimator has a significant limitation—it is intractable to compute. Balakrishnan et al.
(2017) considered an ε-contamination model for a Gaussian distribution with sparse covari-
ance matrix �, such that ‖� − I‖0 ≤ s for a fixed s ≥ 0. They proposed a polynomial-time
algorithm to robustly estimate � under this model and established an upper bound on its er-
ror under Frobenius norm, assuming n,p → ∞ and (logp)/n → c ≥ 0. Our work in contrast
provides a computationally efficient and rate optimal estimator for an approximately sparse
shape matrix of a potentially heavy-tailed elliptical distribution in the high-dimensional set-
ting p,n → ∞ with p/n → γ . Finally, Avella-Medina et al. (2018) developed rate optimal
robust sparse covariance estimators for heavy-tailed distributions via a different approach
than the one presented here, based on various robust pilot estimators. Further discussion and
directions for future research appear in Section 8.

2. Problem setting. With precise definitions below, given n i.i.d. observations from an
elliptical distribution, the problem we study is how to estimate its p × p shape matrix Sp .
Of particular interest to us is the high-dimensional regime, where both p,n are large and
comparable. Following previous works, to be able to accurately estimate the shape matrix in
this regime we assume that it is approximately sparse. For completeness, we first introduce
some notation, briefly review the elliptical distribution and the class of approximately sparse
shape matrices we consider.

Notation. We denote vectors by bold lowercase letters as in v, and matrices by bold up-
percase letters as in A. For a vector v ∈ R

n, ‖v‖ is its Euclidean norm, ‖v‖∞ = maxi |vi |,
and BR(u) = {v ∈ R

n|‖v − u‖∞ ≤ R}. The unit sphere in R
p is denoted S

p−1. The identity
matrix is I and 0 and 1 are the vectors of zeros and ones respectively, with dimensions clear
from the context. For a matrix A = (aij ), ‖A‖ denotes its spectral norm, ‖A‖F its Frobe-
nius norm, ‖A‖max = maxi,j |aij | and ‖A‖∞ = maxi

∑
j |aij |. We denote the set of p × p

symmetric positive semidefinite and definite matrices by S
p
+ and S

p
++, respectively. We say

that an event occurs with high probability (abbreviated w.h.p.), if its probability is at least
1 − C exp(−cp) for constants c,C > 0 independent of p.

Elliptical distribution and its shape matrix. A random vector x ∈ R
p follows an elliptical

distribution with location vector μ if it has the form

x = μ + uS
1
2
pξ = μ + uz,(1)

where ξ is drawn uniformly from S
p−1, Sp ∈ S

p
++ and u is an arbitrary random or determin-

istic nonzero scalar, independent of ξ .
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In equation (1), Sp is not unique, as it can be arbitrarily scaled with u absorbing the inverse
scaling factor. Without loss of generality, we thus fix

tr(Sp) = p,

and refer to Sp as the shape matrix. This normalization is natural in the sense that the mean
variance of the p coordinates of z is one. If the distribution is elliptical and the population
covariance � exists, then � = cSp for some constant c > 0; see, for example, Soloveychik
and Wiesel (2014).

An important property of the elliptical distribution is that if x1,x2 are independent ran-
dom vectors from (1), then x1 − x2 has an elliptical distribution with the same shape matrix
Sp but with a zero location vector μ = 0. When the goal is to estimate the shape matrix
Sp , this allows to remove the typically unknown location vector by a symmetrization prin-
ciple (Dümbgen (1998)). Specifically, all xi − xj are elliptically distributed with location
vector μ = 0, and one may estimate the shape matrix using all of these pairwise differ-
ences (Dümbgen (1998), Sirkiä, Taskinen and Oja (2007)). As discussed by Nordhausen and
Tyler (2015), such a procedure is beneficial also for nonelliptical distributions. The result-
ing O(n2) pairs are, however, dependent which may complicate the analysis of the resulting
estimator. For simplicity, we shall thus assume to have initially observed 2n i.i.d. samples
x̃1, . . . , x̃2n from model (1) and in what follows consider the n differences xi = x̃2i − x̃2i−1
for i = 1, . . . , n which form an i.i.d. sample from the elliptical distribution (1) with location
vector μ = 0.

Approximate sparsity of the shape matrix. Following Bickel and Levina (2008), we con-
sider the following class of row/column approximately sparse shape matrices with fixed pa-
rameters 0 ≤ q ≤ 1,M > 0 and sp > 0:

U(q, sp,M) =
{
A ∈ S

p
++ : aii ≤ M,

p∑
j=1

|aij |q ≤ sp,1 ≤ i ≤ p

}
.

Problem statement. Let {xi}ni=1 be n i.i.d. samples from the model (1) with location vector
μ = 0 and a sparse shape matrix Sp ∈ U(q, sp,M). We consider the following two problems:
(i) without explicit knowledge of q, sp and M , design a computationally efficient and statis-
tically accurate estimator of the shape matrix Sp; (ii) provide theoretical guarantees on its
accuracy, in the asymptotic limit as p,n → ∞ with p/n → γ ∈ (0,∞).

3. Sparse shape matrix estimation. If the elliptical distribution is sub-Gaussian, then
thresholding the sample covariance matrix, proposed by Bickel and Levina (2008) and El
Karoui (2008), yields an accurate estimate of Sp up to a multiplicative scaling. As illustrated
in Section 7, however, in the presence of heavy tails, thresholding the sample covariance may
give a poor estimate of the shape matrix.

To handle heavy tails, we propose the following approach: compute Tyler’s M-estimator
(TME) or its regularized variant, and threshold it. In Section 3.1, we review TME and its reg-
ularized variant. We prove that computing the latter is computationally efficient. Section 3.2
presents our proposed estimators. A theoretical analysis of their accuracy appears in Sec-
tion 3.3.

3.1. TME and its regularized variant. TME, proposed by Tyler (1987a) for elliptical
distributions with a known location vector, which w.l.o.g. is assumed to be 0, is a p × p

matrix �̂ which satisfies the nonlinear equation

p

n

n∑
i=1

xix
T
i

xT
i �̂

−1
xi

= �̂.(2)
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Here, samples xi lying at the origin are ignored as they provide no information on the scatter
matrix, and n is the number of samples not at the origin. As solutions to (2) can be multiplied
by an arbitrary constant, Tyler (1987a) considered the normalization tr(�̂) = p, and sug-
gested to solve equation (2) by the following iterations, starting from an arbitrary �̂1 ∈ S

p
++:

�̂k+1 = p

n∑
i=1

xix
T
i

xT
i �̂

−1
k xi

/
tr

(
n∑

i=1

xix
T
i

xT
i �̂

−1
k xi

)
.

Kent and Tyler (1988), Theorems 1 and 2, showed that if any linear subspace in R
p of

dimension 1 ≤ d ≤ p − 1 contains less than nd/p of the data samples, then there exists a
unique solution to equation (2), and the above iterations converge to it. With n i.i.d. observa-
tions from an elliptical distribution, no samples lie at the origin and this condition holds with
probability 1.

TME enjoys several important properties: First, it may equivalently be defined as the min-
imizer of the following cost function, over all positive definite matrices with the constraint
tr(R) = p,

(3) L(R) = p

n

n∑
i=1

log
(
xT

i R−1xi

) + log
(
det(R)

)
.

Equation (3) implies that �̂ is the maximum likelihood estimator of the shape matrix of
the angular central Gaussian distribution (Tyler (1987b)) and of the generalized elliptical
distribution (Frahm and Jaekel (2010)). Second, for data i.i.d. from a continuous elliptical
distribution with p fixed, it is the “most robust” estimator of the shape matrix as n → ∞
(Tyler (1987a), Remark 3.1). TME outperforms the sample covariance in a variety of appli-
cations, including finance (Frahm and Jaekel (2007)), anomaly detection in wireless sensor
networks (Chen, Wiesel and Hero (2011)), antenna array processing (Ollila and Koivunen
(2003)) and radar detection (Ollila and Tyler (2012)).

As the TME does not exist when p > n, several regularized variants have been proposed
and analyzed (Abramovich and Spencer (2007), Chen, Wiesel and Hero (2011), Pascal, Chi-
tour and Quek (2014), Sun, Babu and Palomar (2014), Wiesel (2012)). Even when p ≤ n, it is
common to add small regularization to the TME. Following Sun, Babu and Palomar (2014),
we consider the following regularized TME �̂(α), defined as the solution of

�̂(α) = 1

1 + α

p

n

n∑
i=1

xix
T
i

xT
i �̂(α)−1xi

+ α

1 + α
I ,(4)

where α is a regularization parameter. If α = 0, equation (4) reverts to equation (2). While
regularization toward general target matrices is possible (Wiesel (2012)), here for simplicity
we consider only regularization toward the identity. In contrast to the TME of equation (2),
where solutions can be multiplied by an arbitrary positive scalar, any solution to equation (4)
satisfies tr(�̂(α)−1) = p, for any value of α (Pascal, Chitour and Quek (2014), Proposition
III.1).

Sun, Babu and Palomar (2014), Theorem 11 and Proposition 13, derived a sufficient and
necessary condition for existence of a unique positive definite matrix which solves equation
(4). Again, ignoring samples at the origin, the condition is that any linear subspace in R

p of
dimension 1 ≤ d ≤ p − 1 contains less than (1 + α)nd/p of the samples. Since α > 0, this
condition is weaker than for the original TME. In particular, with data i.i.d. from a continuous
distribution, equation (4) has a unique solution for α > max(0,p/n − 1); see also Pascal,
Chitour and Quek (2014), Theorem III.1. With n i.i.d. samples from an elliptical distribution,
these conditions hold with probability 1.
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Sun, Babu and Palomar (2014), Proposition 18, further showed that starting from any
positive definite initial guess, the following iterations

�̂k+1(α) = 1

1 + α

p

n

n∑
i=1

xix
T
i

xT
i �̂k(α)

−1
xi

+ α

1 + α
I(5)

converge to the unique solution. Various properties of TME and its regularized variant, in the
limit as p,n → ∞ with p/n → γ , were proven by Couillet, Kammoun and Pascal (2016),
Couillet and McKay (2014), Dümbgen (1998), Zhang, Cheng and Singer (2016).

The following lemma, proven in the Appendix, shows that if α is sufficiently large and
�̂(α) exists, then the iterations (5), starting with �̂1(α) = αI/(1 + α), have a uniform linear
convergence rate from the first iteration. As far as we know, this result is new and is of
independent interest.

To state the lemma, let ek = ‖�̂(α)− �̂k(α)‖ be the error after k iterations, X̃ be the p×n

matrix whose columns are {xi/‖xi‖}ni=1 and let

C(X̃) = p

n

∥∥X̃X̃
T ∥∥ = p

n

∥∥∥∥∥
n∑

i=1

xix
T
i

‖xi‖2

∥∥∥∥∥.
Note that for a given data set, C(X̃) is fixed and can be computed a priori.

LEMMA 1. Let {xi}ni=1 be a data set in R
p with constant C(X̃) and let 0 < R < 1.

Suppose that α > max((3 + R−1)C(X̃) − 1,0) and let �̂(α) be a solution of (4). Then the
iterations of equations (5), starting from �̂1(α) = α

1+α
I , uniformly and linearly converge to

�̂(α) with the ratio R. That is,

(6) ek+1 ≤ Rek ≤ Rke1 for all k ≥ 1.

A straightforward calculation yields the bound C(X̃) ≥ p/n. Hence, the above assump-
tions on α imply that α > max(0,p/n − 1), and consequently guarantee the existence and
uniqueness of �̂(α) in our setting.

Lemma 1 implies that for sufficiently large α, calculating �̂(α) is computationally effi-
cient. Specifically, for accuracy ε with convergence ratio R, at most 	logR−1(ε−1)
 itera-
tions are needed. If n > p, then at each iteration, the matrix inversion costs O(p3) oper-
ations and the other operations are O(np2). For n < p, one may first perform an SVD of
the data and calculate �̂(α) restricted to the subspace W = Span(xi ) whose dimension is at
most n. This suffices, since for any v⊥W , by definition �̂(α)v = α/(1 + α)v. Each iteration
then costs at most O(n3). Therefore, the total cost of computing �̂(α) within accuracy ε is
O(log(ε−1)(n + p)min(n,p)2).

Our theoretical analysis below studies the regularized TME as p,n → ∞ and p/n → γ ∈
(0,∞), but with a fixed value of α. The next lemma shows that for data sampled from an
elliptical distribution, with high probability C(X̃) is bounded by a constant that depends on
‖Sp‖ and on the ratio p/n.

LEMMA 2. Let x1, . . . ,xn be i.i.d. from equation (1) with μ = 0 and shape matrix Sp .
Then, with probability > 1 − exp(−cp), where c = c(‖Sp‖) > 0,

(7) C(X̃) ≤ 2‖Sp‖(1 + 2
√

p/n)2.



92 J. GOES, G. LERMAN AND B. NADLER

3.2. TME-based thresholding estimators. One possible approach to construct a sparse
and robust estimator for the shape matrix is to add a suitable penalty to the original cost
functional equation (3) of the TME. For various structural assumptions on the shape matrix,
this was proposed by Soloveychik and Wiesel (2014) and by Sun, Babu and Palomar (2016).

With a sparsity inducing penalty, however, this approach in general leads to a nonconvex
and potentially difficult to optimize objective. Instead, we opt for thresholding the (regular-
ized) TME, which as discussed above, can be computed efficiently in practical polynomial
time.

For a matrix A = (aij ) and threshold t > 0, define the entry-wise hard-thresholding oper-
ator by

τt (A) = (
1
(|aij | > t

)
aij

)
.

For n > p, where the TME �̂ exists and by definition has unit trace, our proposed estimator
for the shape matrix Sp takes the form

(8) Ŝp = τt (�̂),

where the threshold t = t (p,n) is specified below. Similarly, for general p,n, our estimator
based on the regularized TME is

(9) Ŝp = τt

(
p

�̂(α) − α
1+α

I

tr(�̂(α) − α
1+α

I )

)
.

Note that both �̂ in equation (8) and the argument matrix prior to thresholding in equation
(9) have rank at most min(n,p).

3.3. Accuracy of the thresholded TME. The following Theorems 1 and 2, proved in Sec-
tions 5 and 6, respectively, establish the asymptotic accuracy of equations (8) and (9) as
estimates of the shape matrix Sp .

THEOREM 1. Consider a sequence (n,p,Sp) where n → ∞, p = pn → ∞ with p/n →
γ ∈ (0,1), and Sp ∈ U(q, sp,M). For each triplet (n,p,Sp), let �̂ be the TME of n i.i.d.
samples {xi}ni=1 ⊂ R

p from the elliptical distribution (1). Then there exists a constant M ′
depending only on γ such that for any fixed M ′′ > M ′, the thresholded TME of equation (8)
with threshold tn = M ′′√logp/n, approaches Sp in spectral norm at a rate

∥∥τtn(p�̂) − Sp

∥∥ = OP

(
sp ·

(
logp

n

)(1−q)/2)
.

THEOREM 2. Consider a sequence (n,p,Sp) as in Theorem 1, here with p/n → γ ∈
(0,∞) and with the additional assumption that ‖Sp‖ ≤ smax. For α > max(0, γ − 1 +
smax(1 + √

γ )2), let �̂(α) be the regularized TME of n i.i.d. samples {xi}ni=1 ⊂ R
p from

the elliptical distribution (1). Then there exists a M ′ depending only on γ and α such that
for any fixed M ′′ > M ′, the estimator of equation (9) with tn = M ′′√logp/n, converges in
spectral norm to Sp at rate

∥∥∥∥τtn

(
p

(�̂(α) − α
1+α

I )

tr(�̂(α) − α
1+α

I )

)
− Sp

∥∥∥∥ = OP

(
sp

(
logp

n

)(1−q)/2)
.

Several remarks regarding Theorem 2 are in place.
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REMARK 1. As noted by Bickel and Levina (2008), page 2580, if Sp ∈ U(q, sp,M) then
‖Sp‖ ≤ M1−qsp which may grow with p. Since we analyze the regularized TME with a fixed
value of α, we explicitly require that ‖Sp‖ ≤ smax independent of p. If ‖Sp‖ grows to infinity
with p, then the regularization α should also grow to infinity with p, such that α > c‖Sp‖
for some constant c > 0. While beyond the scope of this paper, we believe an analogue of
Theorem 2 should hold in this case.

REMARK 2. The convergence rate in Theorems 1 and 2 coincides with the minimax rate
for sparse covariance estimation with sub-Gaussian data, derived by Cai and Zhou (2012a).
Since the Gaussian distribution is a particular case of an elliptical distribution, our estimators
are thus minimax rate optimal. Furthermore, in light of Lemmas 1 and 2, computing the
regularized TME and subsequently thresholding it, is computationally efficient.

REMARK 3. Several authors proposed the regularized Tyler’s M-estimator as is (without
modification), as an estimate of the shape matrix. In this case, choosing the value of the reg-
ularization constant is crucial (Chen, Wiesel and Hero (2011), Couillet and McKay (2014)).
Setting the regularization parameter is also important to maximize the detection probability
in various signal processing applications (Kammoun et al. (2018)). In contrast, as we subtract
the regularization α/(1 + α)I prior to thresholding, at least asymptotically, the precise value
of α is unimportant, provided it is sufficiently large. This is also evident in the simulations
in Section 7. From a practical perspective, we thus suggest to use a value of α as described
in Lemma 1, with say R = 1/2, which is not only sufficient for existence but also guarantees
fast convergence of the iterations that compute the regularized TME.

4. Preliminaries. In proving Theorems 1 and 2, we shall make frequent use of the fol-
lowing auxiliary lemmas. The first is a simple inequality. Let A,B be nonnegative random
variables. Then for any c > 0 and λ > 0,

(10) Pr(AB > c) ≤ Pr(A > λc) + Pr(B > 1/λ).

Next is the following well-known result, which states that TME and regularized TME are
unable to distinguish an elliptical distribution from a Gaussian one. Its proof (omitted) follows
directly from the fact that (regularized) TME for data xi is identical to that of data tixi , where
ti are arbitrary positive real valued numbers.

LEMMA 3. TME or regularized TME with α > max(0,p/n − 1) under an elliptical dis-
tribution with zero location vector and shape matrix Sp has the same distribution as under a
zero mean Gaussian distribution with covariance Sp .

The following two results from random matrix theory, concerning the spectral norm of
a Wishart matrix and concentration of quadratic forms will also be of use; see, for exam-
ple, Davidson and Szarek (2001), Theorem 2.13 and Rudelson and Vershynin (2013), Theo-
rem 1.1.

LEMMA 4. Let {ξ i}ni=1 ⊂ R
p be i.i.d. N(0, I ), and let T n = 1

n

∑
i ξ iξ

T
i . Then,

E[‖T n‖] ≤ (1 + √
p/n)2 and

Pr
(‖T n‖ > (1 + √

p/n + t)2) ≤ exp
(−nt2/2

)
.

LEMMA 5. Let A ∈R
p×p and ξ ∼ N(0, I ). Then there exist absolute constants c1, c2 >

0 such that for all ε > 0,

Pr
(∣∣ξT Aξ − tr(A)

∣∣ > ε
) ≤ 2 exp

(
−c1 min

{
c2

2ε
2

‖A‖2
F

,
c2ε

‖A‖
})

.
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Finally, the following auxiliary lemma, proved in the supplemental article (Goes, Ler-
man and Nadler (2020)), is a slight modification of a result by Bickel and Levina (2008),
page 2583.

LEMMA 6. Assume B ∈ U(q, sp,M). Let A be a matrix such that

‖A − B‖max ≤ C1

√
logp/n,

for some C1 > 0. Suppose we threshold A at level t = K
√

logp/n, with K > C1. Then there
exists a constant C2 = C2(C1,K,q) < ∞ such that∥∥τt (A) − B

∥∥ ≤ C2sp(logp/n)(1−q)/2.

5. Proof of Theorem 1. Let Ŝ be the sample covariance of {xi}ni=1. In light of Lemma 3,
we may assume that xi are all i.i.d. N(0,Sp). The proof proceeds in three steps: (i) reducing
to a bound on ‖�̂ − Ŝ‖max; (ii) expressing �̂ as a weighted covariance matrix whose weights
are all uniformly close to a constant, with high probability; and (iii) bounding ‖�̂ − Ŝ‖max.

5.1. Step 1: Reduction from ‖τtn(�̂) − Sp‖ to ‖�̂ − Ŝ‖max. By Lemma 6, it suffices to
prove that ‖�̂ − Sp‖max =OP (

√
logp/n). By the triangle inequality,

‖�̂ − Sp‖max ≤ ‖�̂ − Ŝ‖max + ‖Ŝ − Sp‖max.

Since the proof of Theorem 1 of Bickel and Levina (2008) shows that

‖Ŝ − Sp‖max = OP (
√

logp/n)

it thus suffices to show that

‖�̂ − Ŝ‖max =OP (
√

logp/n).(11)

5.2. Step 2: The weights of TME. By Zhang, Cheng and Singer (2016), Lemma 2.1, TME
can be written as a weighted covariance matrix,

�̂ = p

n∑
i=1

wixix
T
i

/
tr

(
n∑

i=1

wixix
T
i

)
,

where the weights wi are the unique solution of

arg minwi>0,
∑

wi=1 −
n∑

i=1

lnwi + n

p
ln det

(
n∑

i=1

wixix
T
i

)
.(12)

This characterization is important because of the following result.

LEMMA 7. Consider a sequence (n,p,Sp) where n,p → ∞ with p/n → γ ∈ (0,1),

and Sp ∈ S
p
++. For every triplet (n,p,Sp), let xi

i.i.d.∼ N(0,Sp) and let {wi}ni=1 be the corre-
sponding weights of equation (12). Then there exist positive constants C,c and c′ depending
only on γ such that for any 0 < ε < c′, and sufficiently large n,

Pr
[
max

i
|nwi − 1| ≥ ε

]
≤ Cne−cε2n.(13)

The case Sp = I was proved by Zhang, Cheng and Singer (2016), Lemma 2.2. Its gener-
alization to an arbitrary Sp ∈ S

p
++ is proved in the supplemental article (Goes, Lerman and

Nadler (2020)).
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5.3. Step 3: Bounding ‖�̂ − Ŝ‖max. The proof concludes by applying the following
lemma which establishes equation (11). Its proof is in Appendix A.2.

LEMMA 8. Let �̂ and Ŝ be the TME and the sample covariance matrix of x1, . . . ,xn

i.i.d. from N(0,Sp), where Sp ∈ U(q, sp,M) with tr(Sp) = p. Assume that p,n → ∞, with
p/n → γ ∈ (0,1). Then there exist positive constants C,c and c′ that depend only on γ , such
that for all ε ∈ (0, c′) and n sufficiently large

Pr
(‖�̂ − Ŝ‖max ≥ ε

) ≤ Cne−cε2n.

6. Proof of Theorem 2. We first introduce and prove a slightly modified version of
Theorem 2. We then show how Theorem 2 follows from it. The modified theorem uses the
following proposition, proved in Appendix A.3.

PROPOSITION 1. Let y, ξ1, . . . , ξn−1 ∈ R
p be i.i.d. N(0, I ) and denote

Q = Q(r) = 1

p
yT

(
1

n

n−1∑
j=1

ξ j ξ
T
j + α

n

p

1

r
S−1

p

)−1

y,

where Sp ∈ S
p
++ with ‖Sp‖ ≤ smax. Assume that α > max(0,p/n − 1 + smax(1 + √

p/n)2),
and define

rmin = n

p

α

1 + α − p/n
, rmax = n

p

α

1 + α − p/n − smax(1 + √
p/n)2

.

Then there exists a unique r = r(p,n,α,Sp) ∈ [rmin, rmax], such that

(14) E
[
Q(r)

] = 1

1 + α − p/n
,

where the expectation is over y and ξ1, . . . , ξn−1.

6.1. A reformulation of the main result. We now introduce the modified theorem.

THEOREM 3. Consider the setting of Theorem 2. Then there exists an M ′ depending
only on γ and α such that for any fixed M ′′ > M ′, the estimator τtn(�̂(α)−αI/(1+α)) with

tn = M ′′
√

logp
n

, converges in spectral norm to a multiple of Sp ,

∥∥∥∥τtn

(
�̂(α) − α

1 + α
I

)
− p

n

r

1 + α
Sp

∥∥∥∥ =OP

(
sp

(
logp

n

)(1−q)/2)
,

where the scalar r = r(p,n,α,Sp) is specified in Proposition 1.

6.2. Proof of Theorem 3. By Lemma 3, we may assume xi
i.i.d.∼ N(0,Sp). Following the

argument in Section 5.1, combining Lemma 6 with the fact that by Proposition 1, r < rmax,
it suffices to show that∥∥∥∥

(
�̂(α) − α

1 + α
I

)
− p

n

r

1 + α
Ŝ

∥∥∥∥
max

= OP (
√

logp/n).(15)

To establish equation (15), we first express �̂(α) as the sum of α
1+α

I and weighted xix
T
i

terms, where the weights are the root of some equation. Next we show that this root is con-
centrated near the vector r1/n, with r specified in Proposition 1.
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Following the definition of the regularized TME, we write �̂(α) as

�̂(α) = 1

1 + α

p

n

n∑
i=1

wixix
T
i + α

1 + α
I ,(16)

where the weight vector w = (w1, . . . ,wn)
T satisfies

wi = 1

xT
i �̂(α)−1xi

= 1

xT
i ( 1

1+α
p
n

∑n
j=1 wjxjx

T
j + α

1+α
I )−1xi

.(17)

Next consider the function g : Rn →R
n whose n components are

g(v)i = vi − 1

xT
i ( 1

1+α
p
n

∑n
k=1 vkxkx

T
k + α

1+α
nI )−1xi

.(18)

Comparing equation (18) to equation (17), since �̂(α) is unique (Sun, Babu and Palo-
mar (2014), Theorem 11), then the n nonlinear equations g(v) = 0 have a unique solu-
tion, which is thus nw. The next three lemmas state properties of g used to prove that as
p,n → ∞, with p/n → γ , this root concentrates around u = r1, with r given in Proposi-
tion 1. Lemma 9 is proven in Appendix A.4 and the other two in the supplemental article
(Goes, Lerman and Nadler (2020)). All three lemmas assume the setting of Theorem 3, and
their generic constants depend only on γ,α and smax. Our analysis of the weights wi follows
the pioneering works of Couillet, Pascal and Silverstein (2014, 2015), who proved that the
weights in Maronna’s M-estimators converge to suitable constants, and Zhang, Cheng and
Singer (2016), who derived concentration results for the weights of Tyler’s M-estimator as
p,n → ∞ with p/n → γ < 1.

LEMMA 9. There exist C,c > 0 such that for any ε ∈ (0,1)

Pr
(∥∥g(u)

∥∥∞ > ε
)
< Cpe−cpε2

.

LEMMA 10. There exist c′, cL,C, c > 0 such that

Pr
(∃v ∈ Bc′(u),

∥∥∇g(v) − ∇g(u)
∥∥

max > cL‖v − u‖∞
)
< Cp2e−cp.

LEMMA 11. There exist cH ,C, c > 0 such that

Pr
(∥∥(∇g(u)

)−1∥∥∞ > cH

)
< Cpe−cp.(19)

Lemmas 9 and 10 show that w.h.p. g(u) is small and ∇g is Lipschitz near u. These two
properties are consistent with the root of g being close to u. To rigorously prove this, fol-
lowing Zhang, Cheng and Singer (2016), we consider the function f (v) = (∇g(u))−1g(v).
Lemma 11 shows that the matrix (∇g(u))−1 is w.h.p. not extremely large. Finally, the fol-
lowing lemma combines these properties of g to infer that its root is close to u.

LEMMA 12. Let f : Rn →R
n, u ∈ R

n and C > 0. Assume that:

1. ∇f (u) = I ;
2. ‖∇f (v) − ∇f (u)‖max ≤ C‖v − u‖∞ for all ‖v − u‖∞ ≤ 3‖f (u)‖∞;
3. ‖f (u)‖∞ < min{1/(9C),1/3}.

Then there exists a ṽ ∈ R
n such that f (ṽ) = 0 and ‖ṽ − u‖∞ < 3‖f (u)‖∞.
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Lemma 12 is slightly stronger than Lemma 3.1 of Zhang, Cheng and Singer (2016), as
it has a weaker requirement that the Lipschitz condition in Lemma 12 holds in a smaller
ball ‖v − u‖∞ ≤ 3‖f (u)‖∞, instead of the original requirement ‖v − u‖∞ < 1 in their
Lemma 3.1. A careful inspection shows that their original proof is still valid under this weaker
assumption.

To apply Lemma 12 to f (v) = (∇g(u))−1g(v), we verify that the three conditions of the
lemma hold with high probability. The first condition is trivially satisfied. For the other two
conditions, by Lemmas 9 and 11, w.h.p.∥∥f (u)

∥∥∞ ≤ ∥∥(∇g(u)
)−1∥∥∞ · ∥∥g(u)

∥∥∞ ≤ cH ε.

Similarly, by Lemmas 10 and 11, for all ‖v − u‖∞ ≤ c′, w.h.p.∥∥∇f (v) − ∇f (u)
∥∥

max ≤ ∥∥(∇g(u)
)−1∥∥∞ · ∥∥∇g(v) − ∇g(u)

∥∥
max ≤ cHcL‖v − u‖∞.

Since for sufficiently small ε, cH ε < min{1/(9cLcH ),1/3}, both the second and third condi-
tions of Lemma 12 are thus satisfied with constant C = cLcH .

To conclude, with probability at least 1 − Cp2e−cpε2
all three conditions of Lemma 12

hold, so there exists ṽ ∈ R
n such that f (ṽ) = 0 and ‖ṽ − u‖∞ ≤ 3‖f (u)‖∞ < 3cH ε. Since

nw is the unique root of g(v) and also of f (v),

Pr
(‖nw − r1‖∞ > 3cH ε

)
< Cp2e−cpε2

.(20)

Next we use equation (20) to bound the LHS of equation (15). First, by equation (16),∥∥∥∥
(
�̂(α) − α

1 + α
I

)
− 1

1 + α

p

n
rŜ

∥∥∥∥
max

= 1

1 + α

p

n

∥∥∥∥∥
n∑

i=1

wixix
T
i − r

1

n

n∑
i=1

xix
T
i

∥∥∥∥∥
max

≤ 1

1 + α

p

n
‖nw − r1‖∞

∥∥∥∥∥1

n

n∑
i=1

xix
T
i

∥∥∥∥∥
max

.

Using this inequality and equation (10) with λ = 1/[smax(1 + 2
√

γ )2],

Pr
(∥∥∥∥

(
�̂(α) − α

1 + α
I

)
− 1

1 + α

p

n
rŜ

∥∥∥∥ > ε

)

≤ Pr
(

1

1 + α

p

n
‖nw − r1‖∞‖Ŝ‖ > ε

)

≤ Pr
(
‖nw − r1‖∞ > ε

n(1 + α)

psmax(1 + 2
√

γ )2

)

+ Pr
(‖Ŝ‖ > smax(1 + 2

√
γ )2)

.

Since Ŝ = S
1/2
p ( 1

n

∑
i ξ iξ

T
i )S

1/2
p with ξ i ∼ N(0, I ), by Lemma 4 the second term is exponen-

tially small in p. By equation (20), the first term is bounded by C ′p2e−cpε2
. Hence, equa-

tion (15) holds, which concludes the proof of Theorem 3.

6.3. Concluding the proof of Theorem 2. Similar to Theorems 1 and 3, to prove Theo-
rem 2 it suffices to show that

(21)
∥∥∥∥p

(
�̂(α) − α

1 + α
I

)/
tr

(
�̂(α) − α

1 + α
I

)
− Ŝ

∥∥∥∥
max

=OP (
√

logp/n).
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Equation (15) combined with Proposition 1 imply that for r > rmin > 0,

(22)
∥∥∥∥ n

p

1 + α

r

(
�̂(α) − α

1 + α
I

)
− Ŝ

∥∥∥∥
max

= OP (
√

logp/n).

Since tr(Ŝ) is tightly concentrated around p, we may replace Ŝ in equation (22) by pŜ/ tr(Ŝ).
Equation (21) follows by the following lemma, proven in the supplemental article (Goes,
Lerman and Nadler (2020)), combined with the fact that w.h.p. ‖Ŝ‖max ≤ 2‖Sp‖max ≤ 2M .

LEMMA 13. Let B ∈ S
p
+ with tr(B) = p and ‖B‖max ≤ bmax. Suppose that A ∈ S

p
+

satisfies ‖A − B‖max < ε ≤ 1/2. Then

(23)
∥∥∥∥ pA

tr(A)
− B

∥∥∥∥
max

≤ 2(1 + bmax)ε.

7. Numerical experiments. Focusing on the regularized TME, we present simulations
that support our theoretical analysis. Section 7.1 compares the regularized TME, the sample
covariance and their thresholded versions. Section 7.2 considers the sensitivity of the pro-
posed estimator to α. Section 7.3 demonstrates a modified estimator to cope with outliers.

7.1. Comparison of thresholded TME with covariance estimators. We considered the
following shape matrix, also used by Bickel and Levina (2008):

Sp = (sij ) = (
0.7|i−j |).

Note that excluding the diagonal all rows of this matrix have �1 norm bounded by 2/(1 −
0.7) − 2 = 14/3. Hence, by the Gershgorin disk theorem, for any p, this matrix has a finite
spectral norm, ‖Sp‖ ≤ smax = 1 + 14/3 = 17/3. This is in accordance with our assumptions
in Theorem 2.

We generated data from a Gaussian scale mixture, which is a particular case of equation
(1). Here, u and ξ are independent, with ξ ∼ N(0, I ). We considered three different choices
for the random variables ui : (i) ui = 1, so {xi}ni=1 are i.i.d. N(0,Sp); (ii) ui ∼ Laplace(0,1),
a heavy-tailed distribution with finite moments; and (iii) ui ∼ Cauchy(0,1), so the distribu-
tion does not even have a well-defined mean or covariance.

We computed four estimators for the shape matrix: (i) SampCov: the sample covariance
scaled to have trace p, pŜ/ tr(Ŝ); (ii) th-SampCov: the thresholded version of SampCov,
τt (pŜ/ tr(Ŝ)); (iii) RegTME: the regularized TME, normalized to have trace p,

p(�(α) − α
1+α

I )

tr(�(α) − α
1+α

I )
;

and (iv) th-RegTME: the thresholded version of RegTME in equation (9). We choose α = 10,
and threshold at level t = √

(logp)/n. Our stopping rule for (5) is ‖p�̂k+1/ tr(�̂k+1) −
p�̂k/ tr(�̂k)‖F < 10−12, or k = 1400 iterations.

We measured the accuracy of an estimator Ŝp by the logarithm of its averaged relative error
(LRE). That is, for 100 different realizations, we independently generated n i.i.d. samples in
R

p , and each time estimated (Ŝp)i , where i = 1, . . . ,100. The LRE was then computed as
follows:

LRE = log

(
1

100

100∑
i=1

‖(Ŝp)i − Sp‖
‖Sp‖

)
.

We considered sample sizes n ∈ [100,1000] and the following three ratios p/n ∈ {0.5,1,2}.
Figure 1 shows the LRE of the four estimators. As expected theoretically, for ui ≡ 1 thresh-
olding the sample covariance or the regularized TME yield similar errors. In contrast, for
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FIG. 1. Comparison of the LRE of the four estimators with data i.i.d. from a Gaussian scale mixture. The rows

correspond to p/n = 0.5,1,2. The columns correspond to ui ≡ 1, ui
i.i.d.∼ Laplace(0,1) and ui

i.i.d.∼ Cauchy(0,1).

heavy-tailed data the thresholded sample covariance performs poorly, whereas the thresh-
olded regularized TME is still an accurate estimate of Sp . Note that since the regularized
TME is invariant to the scaling ui , the resulting errors of the regularized TME and its thresh-
olded version (the blue squares and triangles) are the same for all three distributions of ui .

7.2. Sensitivity of regularized TME to choice of α. Next we study how the error and
runtime of th-RegTME depend on the regularization parameter α. We consider the Gaussian
model with covariance Sp , and explore the behavior of th-RegTME for the following values
of α: 0.2, 0.4, 0.6, 0.8, 1, 2, 3, . . . ,20 and the following three cases: (p,n) = (800,400),
(p,n) = (800,200) and (p,n) = (400,200). Even though the regularized TME does not exist
if α < max(0,p/n − 1), our algorithm, with a stopping criterion based on scaled matrices
converged for all considered values of α. For a similar property upon scaling scatter matrices,
see Chen, Wiesel and Hero (2011). The left panel of Figure 2 shows the LRE of th-RegTME
as a function of α. The maximal LRE occurs at p/n − 1 and larger values of α yield slightly
smaller errors, which are nearly identical for all large values of α. This is in accordance with
Theorem 2, which states that asymptotically all large values of α yield the same error rate.
The right panel of Figure 2 displays the logarithm of the runtime of th-RegTME as a function
of α, showing a sharp increase in runtime as p/n − 1 approaches α.

Next we explore the behavior of th-RegTME for p = 480, α = 1,2,3,4 and n =
60,64,68, . . . ,300. The left panel of Figure 3 shows the error of th-RegTME as a func-

FIG. 2. LRE and log-runtime of th-RegTME on elliptical data for different choices of α and three choices of p

and n.
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FIG. 3. LRE and log-runtime of th-RegTME versus number of samples n, at p = 480 and α = 1,2,3,4.

tion of n. Again, in accordance with theory, α has little effect on the accuracy. Of particular
interest is the runtime, seen in the right panel of Figure 3. Here, we see a sharp increase in
runtime as p/n − 1 approaches α. For n ≥ p

α+1 , the runtime decreases as α increases.
These experiments indicate that one may generally prefer larger α, particularly for faster

runtime. We propose to choose a value of α close to the bound in Lemma 1 for some R ∈
(0,1), which guarantees fast convergence.

7.3. Regularized TME in the presence of outliers. We conclude the numerical section
with an illustrative example of the ability of the regularized TME to detect outliers, and upon
their removal and thresholding, to provide a robust and accurate estimate of a sparse shape
matrix. For a related rigorous study on the ability of Maronna’s M-estimator to detect outliers,
see Morales-Jimenez, Couillet and McKay (2015).

To this end, we consider the following ε-contamination mixture model: (1 − ε)n of the
observed data, the inliers, follow an elliptical distribution with the same sparse shape matrix
Sp as above. The remaining εn of the samples, the outliers, follow an elliptical distribution
with shape matrix U(pD/ tr(D))U ′, where U is a unitary matrix, uniformly distributed with
Haar measure, and D is a diagonal matrix. In our first experiment, the diagonal entries dii

are all i.i.d. uniformly distributed over [1,5], so the outliers are rather diffuse. In our second
experiment d11 = p,d22 = p/2 and all other dii = 1, so the outliers are nearly on a 2-d
randomly rotated subspace.

Given n samples from this ε-contamination model, and without knowledge of ε, the task is
to accurately estimate the shape matrix Sp . Since both the inliers and outliers have potentially
heavy-tailed distributions, it might not be possible to detect the outliers by simple schemes,
such as those based on the norm of a sample or the number of its neighbors in a given radius.
However, recall that by our theoretical analysis, in the absence of outliers (ε = 0), the cor-
responding weights wi in the regularized TME are all approximately equal. For ε � 1, with
all samples normalized to have unit norm, we thus expect the inliers to still all have similar
weights, and the outliers to have quite different weights, hopefully smaller though not nec-
essarily so. With further details in Appendix A.5, our proposed procedure for robustness to
outliers is to estimate the mean and standard deviation of the inliers’ weights. Then exclude
all samples whose weights are outside, say, the mean plus or minus two standard deviations,
recompute the regularized TME on the remaining samples and threshold it.

Figure 4 illustrates the robustness of this procedure to outliers in two different settings.
From left to right, for ε = 0.2 and ε = 0.4, it shows the weights of the n normalized sam-
ples xi/‖xi‖, sorted so the first εn of them are the outliers. The blue horizontal line is a
robust estimate of the mean weight of the inliers, and the two red lines are this estimated
mean plus and minus two standard deviations. The top row corresponds to the first outlier
model with dii ∼ U [1,5]. The second row corresponds to our second outlier model with
D = diag(p,p/2,1, . . . ,1). Note that this outlier shape matrix has a spectral norm O(p),
which does not satisfy our requirement that ‖D‖ ≤ smax. As indeed observed empirically, the
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FIG. 4. The TME weights for ε = 0.2,0.4 and the log relative error (LRE) of thresholding the regularized TME,
before and after outlier removal, versus ε. Top row Dii ∼ U [1,5]. Bottom row D = diag(p,p/2,1, . . . ,1).

weights of the outliers do not so tightly concentrate around some value. Yet, our outlier exclu-
sion procedure still succeeds to exclude most of these outliers. The error of the thresholded
TME with outliers removed, compared to that of thresholding the original TME is shown in
the right column of Figure 4.

This simple example illustrates the potential ability of TME to screen outliers in high-
dimensional settings, at least for small contamination levels. A detailed study of this issue is
an interesting topic for future research.

8. Summary and discussion. In this paper, we proposed simple estimators for the shape
matrix of possibly heavy-tailed elliptical distributions, assuming the shape matrix is approxi-
mately sparse. We further analyzed their error, showing that under the spectral norm they are
minimax rate optimal in a high-dimensional setting with p/n → γ .

There are several directions for future research. One direction is to study whether our pro-
posed approach, of thresholding a regularized TME provides accurate estimates of a sparse
covariance matrix for other heavy-tailed distributions beyond the elliptical distribution. An-
other direction is to extend our results to the case p = nβ , with β > 1. Our current analysis
assumed the regularization parameter α of TME is fixed, whereas if p = nβ with β > 1, just
to ensure its existence would require α → ∞. Handling this case thus requires extending our
analysis to allow α to grow with n and p.

A question of practical interest is how to set the threshold parameter in a data-driven
fashion. Bickel and Levina (2008), Section 3, proposed a cross validation procedure to set the
threshold. Rigorously proving that this provides a good estimate in the case of (regularized)
TME is an interesting topic for future research.

While our work focused on approximate sparsity of the shape matrix, robust inference
under other common assumptions can also be studied. For example, one might assume that
the first few leading eigenvectors of � are sparse, also known as sparse-PCA, or that � is the
combination of a low rank and a sparse matrix. In particular, a robust sparse-PCA estimator
may be constructed by applying a sparse-PCA procedure to Tyler’s M-estimator.

Finally, another direction for future work is to develop a computationally efficient algo-
rithm for sparse covariance estimation in the presence of a small fraction of arbitrary outliers.
This setting was considered in Chen, Gao and Ren (2018), but without a computationally
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tractable estimator. Our promising preliminary results in Section 7.3 suggest to study whether
the regularized TME offers such robustness, and under which outlier models.

APPENDIX A: PROOFS

A.1. Complexity of calculating the regularized TME.

PROOF OF LEMMA 1. We arbitrarily fix a solution �̂(α) of (4). Since �̂(α) is invariant
to scaling of the data, we assume that ‖xi‖ = 1, 1 ≤ i ≤ n. We first analyze the quantity
e1 = ‖�̂(α) − �̂1(α)‖. To this end, let λmax = ‖�̂(α)‖. Taking the spectral norm in equation
(4), together with the fact that 1

xT �̂(α)−1x
≤ λmax for any vector x with ‖x‖ = 1,

λmax ≤ 1

1 + α

∥∥∥∥∥p

n

n∑
i=1

xix
T
i

xT
i 	−1xi

∥∥∥∥∥ + α

1 + α
≤ 1

1 + α
λmaxC(X̃) + α

1 + α
.

Equivalently, for 1 + α > C(X̃),

λmax ≤ α

1 + α − C(X̃)
.

Combining this inequality with the fact that by equation (4) �̂(α) − α
1+α

I ∈ S
p
+,

(24) e1 =
∥∥∥∥�̂(α) − α

1 + α
I

∥∥∥∥ = λmax − α

1 + α
≤ α

1 + α

C(X̃)

1 + α − C(X̃)
.

Next we analyze the error ek . We denote Ek = �̂(α) − �̂k(α) and write

�̂k(α) = �̂(α) − Ek = �̂(α)1/2(
I − �̂(α)−1/2Ek�̂(α)−1/2)

�̂(α)1/2.

Since �̂(α) and �̂k(α) are invertible, so is I − �̂(α)−1/2Ek�̂(α)−1/2. Let Bk = I − (I −
�̂(α)−1/2Ek�̂(α)−1/2)−1 and Rk = �̂(α)−1/2Bk�̂(α)−1/2. Then

�̂k(α)−1 = �̂(α)−1/2(I − Bk)�̂(α)−1/2 = �̂(α)−1 − Rk.

Subtracting equation (5) from equation (4) gives

Ek+1 = 1

1 + α

p

n

∑
i

xix
T
i

(
1

xT
i �̂(α)−1xi

− 1

xT
i �̂(α)−1xi − xT

i Rkxi

)

= 1

1 + α

p

n

∑
i

xix
T
i

xT
i �̂(α)−1xi

(
1 − 1

1 − δki

)
,

where δki = xT
i Rkxi/x

T
i �̂(α)−1xi .

Let Dk = max1≤i≤n |δki/(1 − δki)|. Since all terms xix
T
i /xT

i �̂(α)−1xi are positive
semidefinite, the above equation implies that

‖Ek+1‖ ≤ Dk

∥∥∥∥ 1

1 + α

p

n

∑
i

xix
T
i

xT
i �̂(α)−1xi

∥∥∥∥
= Dk

∥∥∥∥�̂(α) − α

1 + α
I

∥∥∥∥ = Dke1.(25)

Equation (24) gives a bound on e1. We now bound Dk . Since �̂(α) ≥ α
1+α

I ,

∥∥�̂(α)−1/2Ek�̂(α)−1/2∥∥ ≤ ∥∥�̂(α)−1∥∥ek ≤ 1 + α

α
ek.



ROBUST SPARSE COVARIANCE ESTIMATION 103

Assume this quantity is strictly smaller than one, then

(26) ‖Bk‖ = ∥∥I − (
I − �̂(α)−1/2Ek�̂(α)−1/2)−1∥∥ ≤ 1 + α

α

ek

1 − 1+α
α

ek

.

Finally, given the relation between Rk and Bk ,

|δki | = |xT
i Rkxi |

xT
i �̂(α)−1xi

= |(�̂(α)−1/2xi )
T Bk(�̂(α)−1/2xi )|

‖�̂(α)−1/2xi‖2
≤ ‖Bk‖.

Thus, assuming that the bound on ‖Bk‖ in equation (26) is less than one,

(27) Dk = max
i

|δki |
1 − δki

≤ ‖Bk‖
1 − ‖Bk‖ ≤ 1 + α

α
ek · 1

1 − 21+α
α

ek

.

Inserting (27) and (24) into (25) yields that

(28)
ek+1

ek

≤ C(X̃)

1 + α − C(X̃)

1

1 − 21+α
α

ek

.

For the proof to hold, the bound in (26) needs to be less than one, namely that 1+α
α

ek < 0.5.
For 0 < R < 1 and 1 + α > (3 + R−1)C(X̃), equation (24) implies that 1+α

α
e1 < 1

2+R−1 and
combining this with equation (28) results in the estimate e2/e1 < R. Since R < 1, induction
implies that for k > 1, 1+α

α
ek < 1

2+R−1 < 0.5, as required, and so equation (6) holds. Since
this convergence holds with any solution of (4), this solution thus has to be unique. �

PROOF OF LEMMA 2. Since the regularized TME is invariant to scaling, we may assume

that all ui ∼ χ2
p , and express xi = S

1
2
pξ i , where ξ i ∼ N(0, I ). Let UDUT be the eigende-

composition of Sp . Redefining ξ = Uξ , then ‖xi‖2 = ξT
i Dξ i and

C(X̃) =
∥∥∥∥∥S

1
2
p

(
1

n

n∑
i=1

ξ iξ
T
i

1
p
ξT

i Dξ i

)
S

1
2
p

∥∥∥∥∥.
Combining Lemma 5 with a union bound yields

Pr
(

max
i

∣∣∣∣ 1

p
ξT

i Dξ i − 1

p
tr(D)

∣∣∣∣ > ε

)
< 2n exp

(
−c1 min

{
c2

2p
2ε2

‖D‖2
F

,
c2pε

‖D‖
})

.

Since ‖D‖ = ‖Sp‖ and ‖D‖2
F ≤ p‖Sp‖2, for any fixed ε the above probability is expo-

nentially small in p. Taking say ε = 1/2 and recalling that tr(D) = p, gives that with high
probability,

C(X̃) ≤ 2‖Sp‖ ·
∥∥∥∥∥1

n

n∑
i=1

ξ iξ
T
i

∥∥∥∥∥.
Equation (7) follows since by Lemma 4, w.h.p. ‖ 1

n

∑n
i=1 ξ iξ

T
i ‖ ≤ (1 + 2

√
p/n)2. �

A.2. Proof of Lemma 8. To prove the lemma, we shall use the following auxiliary result,
whose proof appears in the supplemental article (Goes, Lerman and Nadler (2020)).

LEMMA 14. Assume the setting of Lemma 8. There exist constants C,c and c′ < 1 de-
pending on γ such that ∀ε ∈ (0, c′) and n sufficiently large,

(29) Pr
(∣∣∣∣ p

Tw

− 1
∣∣∣∣ > ε

)
≤ Cne−cnε2

.
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PROOF OF LEMMA 8. By definition,

‖�̂ − Ŝ‖max =
∥∥∥∥∥

n∑
i=1

(
pwi

Tw

− 1

n

)
xix

T
i

∥∥∥∥∥
max

≤
∥∥∥∥npw

Tw

− 1
∥∥∥∥∞

·
∥∥∥∥∥1

n

n∑
i=1

xix
T
i

∥∥∥∥∥
max

.(30)

Since xi ∼ N(0,Sp) with Sp ∈ U(q, sp,M), then w.h.p., ‖ 1
n

∑
xix

T
i ‖max ≤ 2M . As for the

first term on the RHS of equation (30), by the triangle inequality,∥∥∥∥npw

Tw

− 1
∥∥∥∥∞

=
∥∥∥∥npw

Tw

− nw + nw − 1
∥∥∥∥∞

≤ ‖nw‖∞
∣∣∣∣ p

Tw

− 1
∣∣∣∣ + ‖nw − 1‖∞.

Hence,

Pr
(∥∥∥∥npw

Tw

− 1
∥∥∥∥∞

> ε

)
≤ Pr

(
‖nw‖∞

∣∣∣∣ p

Tw

− 1
∣∣∣∣ > ε/2

)
+ Pr

(‖nw − 1‖∞ > ε/2
)
.

Lemma 7 provides an exponential bound on the second term. For the first term, applying
equation (10) with λ = 2 gives

Pr
(
‖nw‖∞

∣∣∣∣ p

Tw

− 1
∣∣∣∣ > ε/2

)
≤ Pr

(‖nw‖∞ > 2
) + Pr

(∣∣∣∣ p

Tw

− 1
∣∣∣∣ > ε/4

)

≤ Pr
(‖nw − 1‖∞ > 1

) + Pr
(∣∣∣∣ p

Tw

− 1
∣∣∣∣ > ε/4

)
.

By Lemmas 7 and 14, these two probabilities are exponentially small. �

A.3. Proof of Proposition 1. To prove the existence of a unique r∗ = r∗(p,n,α,Sp)

which satisfies equation (14), we first show that E[Q(r)] is strictly monotone increasing in r

and then use the intermediate value theorem.
To simplify notation, let T = 1

n

∑n−1
j=1 ξ j ξ

T
j and β = β(r) = nα

pr
. Then

E
[
Q(r)

] = Eξ i

[
Ey

[
Q(r)

]] = E

[
1

p
tr

((
T + βS−1

p

)−1)]
,(31)

where the expectation is now only over the random variables ξ i .
First, we show that for any Sp ∈ S++

p , E[Q(r)] is strictly monotone increasing in r . In-
deed, differentiating with respect to r and using the identity tr(AB) = tr(BA)

d

dr
E

[
Q(r)

] = nα

pr2E

[
1

p
tr

((
T + βS−1

p

)−2
S−1

p

)]
.

Using Bhatia (1997), Problem III.6.14 and Jensen’s inequality,

d

dr
E

[
Q(r)

] ≥ nα

pr2 λmin
(
S−1

p

)
E

[
1

p
tr

((
T + βS−1

p

)−2)]

≥ nα

pr2

1

smax
E

[
1/λ1

(
T + βS−1

p

)2]

≥ nα

pr2

1

smax

1

E[λ1(T + βS−1
p )]2

.

Clearly, λ1(T + βS−1
p ) ≤ λ1(T ) + β/λmin(Sp). Furthermore, upon averaging over the ran-

dom variables ξ i , by Lemma 4, E[λ1(T )] ≤ (1 + √
p/n)2. Therefore, for any fixed Sp , the
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derivative of E[Q(r)] is strictly positive for any r > 0. Hence if there exists a solution to
equation (14), then it must be unique.

Next we show that this solution must satisfy r ≥ rmin. By definition,

E
[
Q(r)

] = 1

p

n∑
j=1

1

λj (T + βS−1
p )

≤ 1

p

n∑
j=1

1

λj (βS−1
p )

= 1

β

1

p

p∑
j=1

λj (Sp) = nα

pr
.(32)

Combining (32) with (14) implies that

r∗(p,n,α,Sp) ≥ n

p

α

1 + α − p/n
= rmin.

Finally, we bound r from above. To this end, using Jensen’s inequality

E
[
Q(r)

] = 1

p
E

[∑
j

1

λj (T + βS−1
p )

]
≥ 1

p
E

[∑
j

1

β/λj (Sp) + ‖T ‖
]

≥ E

[
1

β + smax‖T ‖
]

≥ 1

β + smaxE[‖T ‖] .

By Lemma 4, E[‖T ‖] ≤ (1 + √
p/n)2. Hence, for α > p/n − 1 + smax(1 + √

p/n)2, the
solution to equation (14) satisfies

r∗ ≤ rmax = n

p

α

1 + α − p/n − smax(1 + √
γ )2 .

A.4. Proof of Lemma 9. Let Ŝ = 1
n

∑n
k=1 xkx

T
k and T̂ = 1

n

∑n
k=1 ξ kξ

T
k , where xi =

S
1
2
pξ i and ξ i

i.i.d.∼ N(0, I ). Then equation (18) may be written as

1

r
g(u)i = 1 − 1/(1 + α)

1
p
xT

i (Ŝ + βI )−1xi

= 1 − 1/(1 + α)

1
p
ξT

i (S
− 1

2
p ŜS

− 1
2

p + βS−1
p )−1ξ i

= 1 − 1

1 + α

1
1
p
ξT

i Eξ i

,(33)

where E = (T̂ + βS−1
p )−1 and β = α n

p
1
r
. The quadratic form 1

p
ξT

i Eξ i is difficult to analyze

directly because E depends on ξ i . To disentangle this dependency, let T̂ −i = 1
n

∑
k �=i ξ kξ

T
k ,

and E−i = (T̂ −i + βS−1
p )−1. As E−1 and E−1

−i differ by a rank-one matrix 1
n
ξ iξ

T
i , by the

Sherman–Morrison formula,

E = E−i − 1

n

E−iξ iξ
T
i E−i

1 + 1
n
ξT

i E−iξ i

.

Therefore, denoting by Qi the quadratic form

Qi(r) ≡ Qi = 1

p
ξT

i E−iξ i ,(34)

it follows that

1

p
ξT

i Eξ i = Qi −
p
n
Q2

i

1 + p
n
Qi

= Qi

1 + p
n
Qi

.(35)
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Plugging this expression into equation (33) gives

1

r
g(u)i = Qi(1 + α − p

n
) − 1

(1 + α)Qi

.(36)

Next, to establish a concentration bound for g(u)i/r , we study the concentration of Qi .
Since ξ i ∼ N(0, I ) and is independent of E−i ,

EQi = E tr(E−i )/p.

We first show that Qi concentrates tightly around tr(E−i )/p in view of concentration of
quadratic forms. We then show that tr(E−i ) concentrates tightly around its mean using results
about the concentration of certain functions of the eigenvalues of random matrices.

Applying Lemma 5 with ξ = ξ i and viewing the matrix E−i as fixed,

Pr
(∣∣∣∣Qi − 1

p
tr(E−i)

∣∣∣∣ > ε

)
≤ 2 exp

(
−c1 min

{
c2

2p
2ε2

‖E−i‖2
F

,
c2pε

‖E−i‖
})

,

where the above probability is only w.r.t. ξ i . Next, given that E−i = (T −i + βS−1
p )−1, then

‖E−i‖ ≤ smax
β

and ‖E−i‖2
F ≤ ps2

max/β
2. Thus,

Pr
(∣∣∣∣Qi − 1

p
tr(E−i )

∣∣∣∣ > ε

)
≤ C exp

(−cpε2)
,(37)

where now the probability is over all of the ξ k’s.
It remains to obtain a concentration inequality for tr(E−i)/p. To this end, consider the

following p × (n − 1 + p) matrix:

Y =
(
ξ1 · · · ξ i−1 ξ i+1 · · · ξn

√
nβS−1/2

p

)
.

By definition, all entries of Y are independent, the first p × (n − 1) are standard Gaussian
random variables and the rest deterministic. Then, by Guionnet and Zeitouni (2000), Corol-
lary 1.8b,2 for any function h : R → R such that h(x2) is Lipschitz with constant L, and for
any δ > 0,

(38) Pr
(

1

K

∣∣∣∣trh
(

YY T

K

)
−E tr

(
h

(
YY T

K

))∣∣∣∣ > δ

)
≤ 2 exp

(
−δ2K2

2L2

)
,

where K = 2p + n − 1 and for a symmetric matrix A with eigenvalues λj , trh(A) =∑
j h(λj ).

Since YY T = n(T̂ −i + βS−1
p ) = nE−1

−i , consider the function

h(x) = n

p
· 1

x

for which 1
2p+n−1 trh(YY T /(2p + n − 1)) = tr(E−i )/p. Next note that for sufficiently large

n and sufficiently small ε,

λmin

(
YY T

2p + n − 1

)
= n

2p + n − 1
λmin

(
T̂ −i + βS−1

p

) ≥ 1

2γ + 1 + ε

β

smax
= x0.

2There is a typo in the original paper. In the notation of their Corollary 1.8, Z should be replaced with Z/(M +
N).
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We thus apply the function h only in the interval x ≥ x0. The Lipschitz constant of h(x2) for
n sufficiently large is bounded by

L ≤
∣∣∣∣ d

dx
h
(
x2)∣∣∣

x=x0

∣∣∣∣ ≤ 16
(γ + 0.5 + ε)3

γ − ε

(
smax

β

)3
≤ 16

(γ + 1)3

γ

(
smax

β

)3
.

Hence, applying (38), there exists a positive constant c that depends on γ,α, r and smax such
that

Pr
(

1

p

∣∣tr(E−i ) −E tr(E−i )
∣∣ > δ

)
≤ 2 exp

(−cp2δ2)
.(39)

Next, by the triangle inequality,

Pr
(∣∣∣∣Qi − E tr(E−i )

p

∣∣∣∣ > ε

)
≤ Pr

(∣∣∣∣Qi − tr(E−i )

p

∣∣∣∣ >
ε

2

)

+ Pr
(∣∣∣∣ tr(E−i)

p
− E tr(E−i )

p

∣∣∣∣ >
ε

2

)
.

Combining the above equation with equations (37) and (39), implies that at the value of r

specified in Proposition 1, for which E[tr(E−i )/p] = 1
1+α−p

n

,

Pr
(∣∣∣∣Qi − 1

1 + α − p
n

∣∣∣∣ > ε

)
< Ce−cpε2

.(40)

We are finally ready to establish a concentration result for 1
r
g(u). Combining equation (36)

and a union bound over all p coordinates of g,

Pr
(∥∥∥∥1

r
g(u)

∥∥∥∥∞
> ε

)
≤ p Pr

(∣∣∣∣1

r
g(u)i

∣∣∣∣ > ε

)

≤ p Pr
(∣∣∣∣Qi(1 + α − p/n) − 1

(1 + α)Qi

∣∣∣∣ > ε

)
.

Applying equation (10) with λ = 1 to the equation above gives

Pr
(∥∥∥∥1

r
g(u)

∥∥∥∥∞
> ε

)
< p Pr

(∣∣∣∣Qi

(
1 + α − p

n

)
− 1

)∣∣∣∣ > ε

)
+ p Pr

(
(1 + α)Qi < 1

)
.

By equation (40), the first term on the RHS is exponentially small in p. As for the second
term, since (1 + α)−1 < (1 + α − p/n)−1, then again by equation (40), Pr(Qi < 1/(1 + α))

is also exponentially small in p. The lemma thus follows from the boundedness of r from
above, as established in Proposition 1.

A.5. TME with outliers. Consider an ε-contamination model, where (1 − ε)n samples
follow an elliptical distribution with shape matrix Sin, and the remaining εn follow an ellip-
tical distribution with shape matrix Sout. We conjecture that under suitable assumptions, the
inlier and outlier weights of the TME concentrate around two values, win and wout, respec-
tively.

For our procedure to select the inliers, we further assume that the inlier weights are ap-
proximately Gaussian distributed around win with an unknown standard deviation σin. To
estimate win and σin we compute a nonparametric density estimate f̂ (w) of all n weights
(using MATLAB’s ksdensity procedure). Then win = arg maxw f̂ (w) is the weight with
highest estimated density. Next, for some r we find the largest interval [wL,wR] around
win so that for w ∈ [wL,wR] we have f̂ (w) ≥ r max f̂ (w) = rf̂ (win). Then, given our as-
sumption that the weights are Gaussian distributed, σin = 1

2(wR − wL)/
√−2 log(r). In our

simulations, we used r = 0.7, which worked well across all different contamination levels.
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Clearly, one may obtain improved estimates of these quantities, as well as the unknown ε,
by fitting a mixture of two Gaussians to the weights. However, for our illustrative example,
we opted for the above simpler procedure.
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