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Optimal Gaussian Approximations to
the Posterior for Log-Linear Models

with Diaconis–Ylvisaker Priors

James Johndrow∗‡ and Anirban Bhattacharya†§

Abstract. In contingency table analysis, sparse data is frequently encountered
for even modest numbers of variables, resulting in non-existence of maximum
likelihood estimates. A common solution is to obtain regularized estimates of the
parameters of a log-linear model. Bayesian methods provide a coherent approach
to regularization, but are often computationally intensive. Conjugate priors ease
computational demands, but the conjugate Diaconis–Ylvisaker priors for the pa-
rameters of log-linear models do not give rise to closed form credible regions,
complicating posterior inference. Here we derive the optimal Gaussian approxi-
mation to the posterior for log-linear models with Diaconis–Ylvisaker priors, and
provide convergence rate and finite-sample bounds for the Kullback–Leibler di-
vergence between the exact posterior and the optimal Gaussian approximation.
We demonstrate empirically in simulations and a real data application that the
approximation is highly accurate, even for modest sample sizes. We also propose
a method for model selection using the approximation. The proposed approxima-
tion provides a computationally scalable approach to regularized estimation and
approximate Bayesian inference for log-linear models.

Keywords: credible region, conjugate prior, contingency table,
Dirichet–Multinomial, Kullback–Leibler divergence, Laplace approximation.

1 Introduction

Contingency table analysis routinely relies on log-linear models, which represent the
logarithm of cell probabilities as an additive model (Agresti, 2002). With the standard
choice of Multinomial or Poisson likelihood, these are exponential family models, and
are routinely fit through maximum likelihood estimation (Fienberg and Rinaldo, 2007).
However, sparsity in the observed cell counts often makes maximum likelihood estima-
tion infeasible (see Haberman (1974) and Bishop et al. (2007)) in practical applications.
In such cases, regularization is often used to obtain unique parameter estimates (Park
and Hastie, 2007; Zou and Hastie, 2005).
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A common Bayesian approach to inference in high-dimensional contingency tables
is to place a conjugate prior on the parameters of a graphical or hierarchical log-linear
model, and an independent prior over the space of all such models (see e.g. Massam et al.
(2009)). This leads to a standard model-averaged posterior (Hoeting et al., 1998), where
all possible sparse log-linear models in the chosen class are weighted by their posterior
evidence. Use of non-conjugate (e.g. Gaussian) priors with computation by Markov
chain Monte Carlo (Gelfand and Smith, 1990) has also been proposed (Dellaportas
and Forster, 1999). Although model averaging is generally considered ideal in high
dimensional settings, computational algorithms for posterior inference scale exceedingly
poorly in p. Since the smallest contingency table corresponding to cross-classification of
p categorical variables has 2p cells, the corresponding log-linear model has 2p ´ 1 free
parameters, so the model space grows super-exponentially in p. Accordingly, posterior
computation is essentially infeasible for p ą 15, the largest case demonstrated to date
in the literature (Dobra and Massam, 2010) to the best of our knowledge.

Alternatively, one can place a Gaussian prior on the parameters of a saturated log-
linear model to induce Tikhonov type regularization, and then perform computation
by Markov chain Monte Carlo. This approach is well-suited to situations in which the
sample size is not tiny relative to the table dimension, but where zero counts nonetheless
exist in some cells. In this case, data augmentation Gibbs samplers such as that proposed
by Polson et al. (2013) provide for conditionally conjugate updates. However, this by
itself is computationally intensive relative to alternatives such as elastic net (Zou and
Hastie, 2005), and can suffer from poor mixing. In principle, a more scalable Bayesian
approach for producing Tikhonov regularized point estimates would be to utilize the
Diaconis–Ylvisaker conjugate prior (Diaconis and Ylvisaker, 1979) on the parameters
of the log-linear model, which is essentially computation free. The main drawback is
that the resulting posterior distribution is difficult to work with, lacking closed form
expressions for even marginal credible intervals or fast algorithms for sampling from the
posterior. An accurate and more tractable approximation to this posterior is therefore
of practical interest.

Approximations to the posterior distribution have a long history in Bayesian statis-
tics, with the Laplace approximation perhaps the most common and simple alternative
(Tierney and Kadane, 1986; Shun and McCullagh, 1995). More sophisticated approxi-
mations, such as those obtained using variational methods (Attias, 1999) may in some
cases be more accurate but require computation similar to that for generic EM algo-
rithms. Moreover, there exist no theoretical guarantees of the approximation error in
finite samples, and these approximations are known to be inadequate in relatively simple
models (Wang and Titterington, 2004, 2005).

In this article, we propose a Gaussian approximation to the posterior for log-linear
models with Diaconis–Ylvisaker priors. The approximation is shown to be the optimal
Gaussian approximation to the posterior in the Kullback–Leibler divergence, and con-
vergence rates to the exact posterior and a finite-sample Kullback–Leibler error bound
are provided. The approximation is shown empirically to be accurate even for modest
sample sizes; effectively, the empirical results suggest that the approximation is ac-
curate enough to be used in place of the exact posterior within the range of sample
sizes for which the posterior is sufficiently concentrated to be statistically useful. We
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also propose a procedure to perform model selection using the posterior approximation
computed on marginal tables of increasing order. The procedure performs comparably
in model selection for graphical log-linear models compared to methods requiring vastly
greater computational resources. A Matlab implementation of our procedure is available
at https://github.com/jamesjohndrow/dynormal-approx.

2 Background

We first provide a brief review of exponential families. We then describe the family
of conjugate priors for the natural parameter of an exponential family, referred to as
Diaconis–Ylvisaker priors. We then provide more detailed background on log-linear
models for Multinomial likelihoods and the associated Diaconis–Ylvisaker prior.

2.1 Exponential families

Following Diaconis and Ylvisaker (1979), let μ be a σ-finite measure defined on pRp,Bq,
where B denotes all Borel sets on R

p. Let supppμq “ ty P R
p : dμpyq ą 0u be the

support of μ, and define Y as the interior of the convex hull of supppμq. For θ P R
p,

define Mpθq “ log
ş

Y eθ
T ydμpyq, and let Θ “ tθ P R

p : Mpθq ă 8u, which we assume is
an open set. We refer to Θ as the natural parameter space. The exponential family of
probability measures tP p¨; θqu indexed by a parameter θ P Θ is defined by

dP py; θq “ eθ
T y´Mpθqdμpyq, θ P Θ. (1)

This family includes many of the probability distributions commonly used as sampling
models in likelihood-based statistics. Diaconis and Ylvisaker (1979) develop the family
of conjugate priors for the parameter θ of regular exponential family likelihoods. These
Diaconis–Ylvisaker priors are given by

dπpθ;n0, y0q “ en0y
T
0 θ´n0Mpθq, n0 P R, y0 P R

d. (2)

On observing data y consisting of n observations with sufficient statistics ȳ, the pos-
terior is then also Diaconis–Ylvisaker, with parameters n0 ` n, y0 ` ȳ, i.e. dπpθ | yq “

dπpθ;n0 ` n, y0 ` ȳq. In the sequel we focus on one member of the exponential family,
the multinomial. In the natural parametrization, the ultinomial likelihood gives rise to
the log-linear model and the closely related multinomial logit model, which we now
describe.

2.2 Log-linear models

Let Sd “ tpx1, . . . , xdq P r0, 1sd :
řd

j“1 xj ď 1u denote the d-dimensional unit simplex.
Consider N independent samples from a categorical variable with pd ` 1q levels. We
denote the levels of the variable by 0, 1, . . . d, without loss of generality. Let yj denote the
number of times the jth level is observed in the N samples and set y “ py0, y1, . . . , ydqT;

clearly
řd

j“0 yj “ N . The joint distribution of y is given by a multinomial distribution,

https://github.com/jamesjohndrow/dynormal-approx
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denoted y „ Multinomial pN, πq, which is parametrized by π “ pπ1, . . . , πdqT P Sd,
where πj is the probability of observing the jth level for j “ 1, . . . , d.

The log-linear model is a generalized linear model for multinomial likelihoods ob-
tained by choosing the logistic link function, which also results in the natural exponential
family parametrization. Define the logistic transformation � : Rd Ñ Sd and its inverse
log ratio transformation �´1 : Sd Ñ R

d as

πj “
eθj

1 `
řd

l“1 e
θl
, θj “ logpπj{π0q, pj “ 1, . . . , dq, (3)

where π0 “ 1´
řd

j“1 πj , and θ0 “ 0. We shall write π “ �pθq and θ “ �´1pπq “ logpπ{π0q,
respectively, to denote the transformations in (3). Using (3), the multinomial likelihood
in the log-linear parameterization can be expressed as

fpy | θq 9
exp

`
řd

j“1 yjθj
˘

`

1 `
řd

l“1 e
θl
˘N

. (4)

An important motivating case is when y “ vecpnq, with n a contingency table aris-
ing from cross-classification of N independent observations on p categorical variables
w1, . . . , wp. Suppose that the vth variable wv has dv many levels, so that the contin-
gency table has

śp
v“1 dv many cells, and y is a pd`1q-dimensional vector of counts with

d “
śp

v“1 dv ´ 1. We refer to the parametrization θ “ logpπ{π0q in the contingency ta-
ble setting as the identity parametrization. Also of particular interest in this setting are
reparametrizations of (3) that represent log π{π0 as an additive model involving parame-
ters that correspond to interactions among w1, . . . , wp. Every identified parametrization
of the log-linear model for the multinomial likelihood can be represented by

logpπ{π0q “ Xθ̃, (5)

where X is a d by d non-singular binary matrix and θ̃ P R
d. In the simulations and appli-

cation, we make a specific choice for X that corresponds to the corner parametrization
of the log-linear model (Massam et al., 2009). We illustrate the identity and corner
parameterizations through a 23 contingency table in Example 1 below. Details for the
general case can be found in Section 6.1.

Example 1. Consider three binary variables w1, w2, w3, with wv P t0, 1u for v “ 1, 2, 3,
and let

ψi1i2i3 “ prpw1 “ i1, w2 “ i2, w3 “ i3q, pi1, i2, i3q P t0, 1u
3.

A 23 contingency table n “ pni1i2i3q is obtained from the cross-classification of N
independent observations on w1, w2, w3, with ni1i2i3 denoting the cell count for the cell
pi1, i2, i3q. Let y “ vecpnq “ pn000, . . . , n111qT be the vectorized cell counts with d “ 7.
In the identity parametrization, the vector of log-linear parameters θ P R

7 is given by
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.

On the other hand, in the corner parametrization, we express

θ “ log

¨

˚

˚

˚

˚

˚

˚

˚

˚
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‹
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‚

“ Xθ̃.

The indexing of the elements of θ̃ by binary indices is for ease of interpretation. Indeed,
entries of θ̃ with a single 1 in the binary index are main effects, those with two 1’s are
two-way interactions and θ̃111 is a three-way interaction term. The matrix X can be
easily verified to be non-singular, so that the θ and θ̃ parametrizations are equivalent,
with d “ 7 free parameters in either case.

2.3 Conjugate priors for log-linear models

We now present the Diaconis–Ylvisaker prior for the multinomial likelihood (4) and
derive an optimal Gaussian approximation to the corresponding posterior in Kullback–
Leibler divergence. Extensions to log-linear models with a non-identity parametrization
(i.e., X ‰ Id in (5)) is straightforward by invariance properties of the Kullback–Leibler
divergence and are discussed subsequently. All proofs are deferred to Section 6.

For the multinomial likelihood (4), the Diaconis–Ylvisaker prior is obtained by ap-
plying the inverse logistic transformation �´1 to a Dirichlet distribution, which is the
conjugate prior for π (Gutiérrez-Pena and Smith, 1995; Consonni et al., 2004). Recall

that π0 “ 1 ´
řd

j“1 πj . The Dirichlet distribution Dpαq on Sd with parameter vector
α “ pα0, α1, . . . , αdqT has density
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qpπ;αq “
Γp
řd

j“0 αjq
śd

j“0 Γpαjq

d
ź

j“0

π
αj´1
j , π P Sd, (6)

and corresponding probability measure Qp¨, αq with QpA,αq “
ş

A
qpπ;αqdπ for Borel

subsets A of Sd.

Proposition 1. Suppose π „ Dpαq and let θ “ logpπ{π0q P R
d. Define A “

řd
j“0 αj.

Then θ has a density on R
d given by

ppθ;αq “
Γp
řd

j“0 αjq
śd

j“0 Γpαjq

expp
řd

j“1 αjθjq

p1 `
řd

l“1 e
θlqA

. (7)

We write θ „ LDpαq and use Pp¨;αq to denote the probability measure associated
with the density (7), with PpB;αq “

ş

B
ppθ;αqdθ for Borel subsets B of Rd. If a non-

identity parametrization θ “ Xθ̃ as in (5) is employed, then we denote the induced
distribution on θ̃ “ X´1θ by PXp¨;αq and the density by pXpθ;αq.

It is immediate that LDpαq is a conjugate family of prior distributions for the like-
lihood (4), with the posterior θ | y „ LDpα ` yq. To obtain some preliminary insight
into the distribution family LDpαq, we derive the mean and covariance in Proposition
2 below.

Proposition 2. Let θ „ LDpβq, with β “ pβ0, β1, . . . , βdqT and βj ą 0 for all j. Then,

Epθjq “ ψpβjq ´ ψpβ0q, pj “ 1, . . . , dq,

covpθj , θj1 q “ ψ1
pβjqδjj1 ` ψ1

pβ0q, pj, j1
“ 1, . . . , dq,

where ψ and ψ1 are the digamma and trigamma functions, respectively, and δjj1 “ 0 if
j ‰ j1 and δjj1 “ 1 otherwise.

The proof of Proposition 2 is established within the proof of Theorem 1 in Section
6. Assume the data y is generated from a Multinomial

`

N, π0
˘

distribution and let

θ0 “ logpπ0{π0
0q be the true log-linear parameter, where π0

0 “ 1´
řd

j“1 π
0
j . If an LDpαq

prior is placed on θ, one can use Proposition 2 to show that the posterior mean Epθ | yq

converges almost surely to θ0 with increasing sample size, and the posterior covariance
covpθ | yq converges to the inverse Fisher information matrix as long as the entries
of the prior hyperparameter α are suitably bounded. In fact, a Bernstein–von Mises
type result can be established, showing that the posterior distribution approaches a
Gaussian distribution, centered at the true parameter value and having covariance the
inverse Fisher information matrix, in the total variation metric. We do not pursue such
frequentist asymptotic validations further in this paper. Our goal rather is to provide a
Gaussian approximation to the posterior distribution that can be used in practice, and
provide finite sample bounds to the approximation error.

3 Main results

In this section, we provide an optimal Gaussian approximation to an LDpβq distribu-
tion (7) in the Kullback–Leibler divergence, i.e., we exhibit a vector μ˚ P R

d and a
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positive definite matrix Σ˚ such that the Kullback–Leibler divergence between LDpβq

and N pμ˚,Σ˚q is the minimum among all Gaussian distributions. This result provides a
readily available Gaussian approximation to the posterior distribution LDpβ “ α`yq of
the log-linear parameter θ in (4) with a Diaconis–Ylvisaker prior LDpαq. We also provide
a non-asymptotic error bound for the Kullback–Leibler approximation. Using Pinsker’s
inequality, the approximation error in the total variation distance can be bounded in
finite samples.

For two probability measures ν ! ν˚, we write

Dpν || ν˚
q “ Eν˚ log dν{dν˚

to denote the Kullback–Leibler divergence between ν and ν˚.

Theorem 1. Given βj ą 0, j “ 0, 1, . . . , d, let β “ pβ0, . . . , βdqT, and define

μ˚
j “ ψpβjq ´ ψpβ0q, σ˚

jj1 “ ψ1
pβjqδjj1 ` ψ1

pβ0q, (8)

where ψ and ψ1 denote the digamma and trigamma functions respectively. Define μ˚ “

pμ˚
j q P R

d and Σ˚ “ pσ˚
jj1 q P R

dˆd. Then,

D

"

LDpβq || N pμ˚,Σ˚
q

*

“ inf
μ,Σ

D

"

LDpβq || N pμ,Σq

*

, (9)

where the infimum is over all μ P R
d and all Σ ą 0 P R

dˆd. Further, if βj ą 1{2 for all
j “ 0, 1, . . . , d, then

D

"

LDpβq || N pμ˚,Σ˚
q

*

ă
1

2

d
ÿ

j“0

1

βj
`

1

6B
, (10)

where B “
řd

j“0 βj.

The matrix Σ˚ has a compound-symmetry structure and is therefore positive-definite.
From Proposition 2, the parameters of the optimal Gaussian approximation μ˚ and Σ˚

are indeed the mean and covariance matrix of the LDpβq distribution. Equation (10)
provides an upper-bound to the approximation error. In the posterior, βj “ αj ` yj
and B “

řd
j“0 αj ` N . The condition βj ě 1{2 is therefore satisfied whenever every

category has at least one observation. Since

Eyrαj ` yjs “ αj ` Nπ0
j ,

the approximation error is approximately in the order of
řd

j“0pπ0
jNq´1, where as before

π0
j denotes the true probability of category j. In the best case where all the categories

receive approximately equal probability, i.e., π0
j — pd` 1q´1, the approximation error is

Opd2{Nq. However, the convergence rate in N can be slower if some of the π0
j s are very

small. In other words, the higher the entropy of the data generating distribution, the
worse the approximation is, although our simulations suggest that the approximation is



208 Optimal Credible Regions for Bayesian Log-Linear Models

practicable even for moderate sample sizes and unbalanced category probabilities. When
one considers that the eigenvalues of the covariance matrix enter into the constant in
Berry–Esséen convergence rates, and that here the covariance of the data is given by
diagpπ0q ´ π0pπ0qT, it appears that a similar phenomenon is at work here.

The main idea behind our proof is to exploit the invariance of the Kullback–Leibler
divergence under bijective transformations and transfer the domain of the problem from
R

d to Sd. Since an LDpβq distribution is obtained from a Dirichlet Dpβq distribution
via the inverse log-ratio transform �´1, the problem of finding the best Gaussian ap-
proximation to LDpβq is equivalent to finding the best approximation to Dpβq among a
class of distributions obtained by applying the logistic transform to Gaussian random
variables. If θ „ Npμ,Σq, the induced distribution on π “ �pθq is called a logistic normal
distribution – denoted Lpμ,Σq – and has density on Sd given by

rqpπ;μ,Σq “ p2πq
´d{2

|Σ|
´1{2

ˆ d
ź

j“0

πj

˙´1

exp

„

´
1

2
tlogpπ{π0q ´μu

TΣ´1
tlogpπ{π0q ´μu

j

.

(11)

The problem therefore boils down to calculating the Kullback–Leibler divergence be-
tween a Dirichlet density qp¨;βq and a logistic normal density rqp¨;μ,Σq and optimizing
the expression with respect to μ and Σ. The details are deferred to Section 6.

Once the approximation is derived in the identity parametrization, we appeal to
the invariance of the Kullback–Leibler divergence under one-to-one transformations to
obtain the corresponding approximation in a non-identity parameterization θ “ Xθ̃ as
in (5) for any non-singular X. The result is stated below.

Corollary 1. If θ „ LDpβq then

D
`

PXp¨;βq || N p¨;X´1μ˚, X´1Σ˚
pX´1

q
T

q
˘

“ inf
μ,Σ

D pPXp¨;βq || N p¨;μ,Σqq (12)

for any full-rank d by d matrix X. Moreover, the bound on the KL divergence as a
function of β in (10) is attained for D pPXp¨;βq || N p¨;μ˚,Σ˚qq

Thus, the best Gaussian approximation to the posterior (in the Kullback–Leibler
sense) under the Diaconis–Ylviaker prior is given by N pX´1μ˚, X´1Σ˚pX´1qT q for
any one-to-one linear transformation θ̃ “ X´1θ. We refer to this as the optimal Normal
(oN) approximation. In Section 7, we provide a series of simulation studies showing
that the oN approximation outperforms the Laplace approximation empirically, and is
accurate enough to serve as the basis of approximate inference for reasonable sample
sizes.

4 Application: estimating pairwise dependence

One potential use of the approximation is to estimate pairwise dependence from 2-
way marginal tables. Because the approximation is normal, one can also apply standard
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methods for multiplicity control to obtain sparse solutions. To assess the usefulness of the
approximation in this context, we perform a simulation study in which a sparse graphical
log-linear model corresponding to the cell probabilities of a 28 table is generated in the
following way:

1. Sample main effects from N p0, 1q

2. Sample two-way interactions from 0.5δ0 ` 0.5N p0, 1q

3. For j ą 2, if all corresponding lower-order interactions are nonzero, sample a j-
way interaction from 0.5δ0 ` 0.5N p0, 1q. This ensures that the resulting model is
graphical.

We then compute the true value of Cramer’s V

ρV “

1
ÿ

cj“0

1
ÿ

ck“0

pπ
pjkq
cjckq2

π
pjq
cj π

pkq
ck

´ 1,

where πpjkq “
ř

l‰j,k

ř2
cl“1 πc1,c2,...,cp are the true pj, kq marginal cell probabilities,

and π
pjq
c “ Pryj “ cs. We then sample N “ 665 observations from MultinomialpN, πq,

compute the posterior approximation under the DY prior with prior hyperparmeter
α “ 1{4, and obtain posterior point estimates pρV for every pair of variables j, k. The
choice of number of variables and sample size is identical to that of the Rochdale data
analyzed in section 4.1. The simulation is repeated 100 times. Figure 1 shows the results,
with true values of ρV plotted against pρV . The estimates are quite accurate, and have
correlation 0.94 with the truth.

Figure 1: True values of ρV plotted against pρV estimated using posterior approximation
under DY prior.

4.1 Analysis of pairwise dependence in Rochdale data

The Rochdale data is a well-studied dataset of eight binary variables. The purpose of
the study, which was conducted on 665 households in Rochdale, UK, was to understand
dependence among factors contributing to married women’s economic activity. The eight
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variables were wife employed (a), wife’s ageą 38 (b), husband employed (c), one or more
child ă 4 years old (d), wife did not graduate high school (e), husband did not graduate
high school (f), Asian origin (g), other household member (aside from husband and wife)
working (h). This dataset was first analyzed by Whittaker (1990), and subsequently by
numerous other authors. Here, we compare inference on marginal dependence using
the optimal normal approximation to Copula Gaussian Graphical Models (CGGM),
proposed by Dobra and Lenkoski (2011).

We follow the same procedure described above to obtain estimates of pairwise
Cramer’s V and Gaussian approximation to the posterior under the DY prior with
hyperparameter α “ 1{4 for two-way interaction effects in the corner parametrization
for all of the

`

8
2

˘

“ 28 marginal tables. To obtain a sparse estimate of the interaction
terms, we apply the method of Benjamini and Hochberg to Gaussian tail probabilities
for the scaled two-way interaction terms θ˚

jk{σ˚
jk for every j, k P t1, . . . , 8u2, controlling

FDR at 0.05. We view this as an exploratory effort to assess the statistical significance
of the pairwise interactions. The scaled interaction terms, with horizontal lines indicat-
ing the threshold for significance, are shown in the left panel of Figure 2. In the right
panel, pρV estimated using CGGM is plotted against pρV estimated using the normal ap-
proximation to the posterior under the DY prior, with variable pairs with interactions
below the threshold indicated in blue. Clearly, there is strong agreement between the
pρV in the two models, and the pairs excluded by the Benjamini–Hochberg procedure
are those that correspond to the weakest interactions.

Figure 2: Left: values of θ˚
jk{σ˚

jk. Right: estimated values of ρV from normal approxi-
mation plotted against estimated values of ρV from CGGMs.

The strongest pairwise interactions measured by |θ˚
jk{σ˚

jk| (with no thresholding)
were

1. b:d (wife’s age ą 38:wife did not graduate high school), pθ˚
b:d{pσ˚

b:d “ ´9.90;

2. b:h (wife’s age ą 38:other member of the household working), pθ˚
b:h{pσ˚

b:h “ ´8.58;

3. a:d (wife employed:one or more child ă 4 years old), pθ˚
a:d{pσ˚

a:d “ ´7.47; and

4. e:f (wife did not graduate high school:husband did not graduate high school),
pθ˚
e:f {pσ˚

e:f “ 7.45.



J. Johndrow and A. Bhattacharya 211

The magnitude (relative to the other facts) and signs make sense sociologically, keeping
in mind the study was conducted several decades ago: older women were less likely to
have graduated high school (b:h), in households where the woman is older, it is less
likely that another member of the household works in addition to the husband (a:d),1

the wife is less likely to work if there are young children at home (a:d); and people tend
to sort by marriage into similar education levels (e:f). Both Whittaker (1990), pg 282,
and Dobra and Lenkoski (2011), pg 984 list three of the four as among the top four
strongest interactions (b:d, b:h, and e:f).

The four weakest effects were

1. b:f (wife’s age ą 38:husband did not graduate high school), pθ˚
b:f {pσ˚

b:f “ 1.65;

2. d:f (one or more child ă 4 years old:husband did not graduate high school),
pθ˚
d:f {pσ˚

d:f “ ´0.82.

3. b:c (wife’s age ą 38:husband employed), pθ˚
b:c{pσ˚

b:c “ 0.70; and

4. c:h (husband employed:other member of the household working), pθ˚
c:h{pσ˚

c:h “ 0.39.

4.2 Posterior approximation with a 216 table: National Long-Term
Care Survey (NLTCS) data

In principle, the normal approximation to the full posterior distribution for all of the log-
linear model parameters can be used to perform inference on conditional independence
as well as marginal independence. The main obstacle to this is that usually, sample
sizes are insufficient for the posterior to be sufficiently concentrated that estimates of
interaction terms in the corner parametrization are sufficiently low-variance to make the
estimates reliable. In particular, since the full posterior distribution on the log-linear
parameters does not enforce graphical or hierarchical constraints on the parameters
of the log-linear model, a single noisy estimate of a higher-order interaction term can
result in erroneously estimating large groups of variables to be conditionally dependent,
when in fact many of them are conditionally independent of others given only a few of
the variables. One could imagine numerous extensions to our approximation to combat
this problem, for example, by using lower-dimensional parametrizations of the log-linear
model.

Our aim in this section is only to show that the hurdle to applying the approximation
to high-dimensional tables is not computational, but rather inferential. We show that
the approximation can be computed for the 216 table of NLTCS data (see Dobra and
Lenkoski (2011)) in minimal computation time (ă 5 minutes on a circa 2014 MacBook
Pro). A key to computing the approximation is that the 216 ˆ 216 matrix X is very
sparse binary, and so is its inverse. It is likely that an explicit expression for the inverse
can be found, but the inverse is so structured that it is numerically invertible in Matlab

1Here, the wife’s age is probably a proxy for the husband’s age, with older parents more likely to
have a traditional household in which only the husband works
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in under one minute, so we simply used the numerical inverse. Figure 3 shows all 120
estimated values θ˚

jk{σ˚
jk – estimated using the marginal tables – and a histogram of

θ˚{σ˚ from the Gaussian approximation under the DY prior with α “ 1{2 for all 65,535
parameters of the log-linear model in the corner parametrization. The vertical lines in
the latter indicate thresholds of significance using the Benjamini–Hochberg FDR proce-
dure. Granular interpretation is difficult, but some general interpretation of the variables
is evident. First, there appears to be weaker pairwise dependence between the first six
variables than among the other variables. There are actually two distinct variable groups
in the data: the first six are “Activities of Daily Life,” and the latter 10 “Instrumental
activities of daily living,” so the stronger dependence between variables in the second
group may be scientifically meaningful. Another general interpretation is that over half
of the parameter estimates exceed the threshold, which suggests high dependence. In-
deed, the median probability CGGM of Dobra and Lenkoski (2011) corresponds to a
graphical model that is less than 50 percent sparse, and has no marginal independence,
suggesting complex dependence between the 16 variables. Matlab code for the analysis
is available at https://github.com/jamesjohndrow/dynormal-approx.

Figure 3: Left: value of |θ˚
jk{σ˚

jk| for every pair of variables in the NLTCS data. Right:
histogram of θ˚{σ˚ for all 65,536 parameters in the log-linear model for NLTCS data.

5 Discussion

Outside of linear models, conjugate priors are often non-standard or their multivariate
generalizations are difficult to work with. This hampers uncertainty quantification be-
cause it is difficult to obtain posterior credible regions for parameters under such priors.
Given that automatic and coherent quantification of uncertainty through the posterior is
one of the chief advantages of a fully Bayesian approach, this limitation is a significant
problem. The optimal Gaussian approximation to the posterior for log-linear models
with Diaconis–Ylvisaker conjugate priors derived here offers a highly accurate and es-
sentially computation-free approximation to posterior credible regions for this important

https://github.com/jamesjohndrow/dynormal-approx
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class of models. Interestingly, this Gaussian approximation is not the Laplace approxi-
mation, and it is faster to compute and offers a better approximation to the posterior
than the Laplace approximation. If similar results could be obtained for the posterior
in other models, it suggests that the Laplace approximation may not be an appropriate
default Gaussian approximation to the posterior. The theoretical result provided here
can be easily extended to cases where some categories cannot co-occur, i.e. cases of
structural zeros in contingency tables. Extensions to model selection using our approxi-
mation are also available by the penalized credible region approach. It seems reasonable
that the strategy used here to obtain optimality and convergence rate guarantees could
be extended to a larger class of generalized linear models by studying the properties of
multivariate Gaussian distributions under inverse link transformations. This may also
present a strategy for obtaining approximate credible intervals for parameters in the
Bayesian model averaging context for generalized linear models with conjugate priors.

6 Proofs

6.1 Additional log-linear model details

The discussion here largely follows Massam et al. (2009) and Lauritzen (1996) in its
presentation. Let V be the set of variables that will be collected into a contingency table.
Let Iγ , γ P V denote the set of possible levels of values of γ. Without loss of generality,
we can take this set to be a finite collection of sequential nonnegative integers. Let
I “

Ś

γPV Iγ be the set of all possible combinations of levels of the variables in V .
Every cell i of the contingency table corresponds to an element of V ; thus |I| “ d ` 1,
where d is defined as in the main text.

Following Lauritzen (1996), define a cell of the contingency table as i “ piγ , γ P V q,
and let πpiq “ prry1 “ i1, . . . , yp “ ips. For any E Ă V , let iE “ piγ , γ P Eq be the cell
of the E-marginal table corresponding to the values in i of the variables in E. Finally,
designate the “base” cell i˚ “ p0, 0, . . . , 0q. Thus, every i can be written as i “ piE , i

˚
Ecq,

where E is the subset of V on which i ‰ 0. Then, the log-linear model in the corner
parametrization is given by

log
πpiE , i

˚
Ecq

πpi˚q
“

ÿ

FĎHE

θF piF q,

where for any F Ă V , θF piF q is a parameter corresponding the variables in F taking
the values in iF , and the notation ĎH means all subsets excluding the empty set. Refer
to Proposition 2.1 in Letac and Massam (2012) for a result showing how the model can
be expressed in the form in (5).

6.2 Proof of Proposition 1

This is readily seen by the change of variable theorem; one only needs some work to
calculate the Jacobian term for the change of variable. The matrix of partial derivatives
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J “ pBθj{Bπrqjr is given by

Bθj
Bπj

“
1 ´

ř

l‰j πl

πjp1 ´
řd

l“1 πlq
,

Bθj
Bπr

“ ´
1

1 ´
řd

l“1 πl

, p1 ď j ‰ r ď dq.

Write J “ U`uuT, where u “ p1´
řd

l“1 πlq
´1{2p1,´1, . . . ,´1qT and U “ Diagp1{π1, . . . ,

1{πdq. We then have |J | “ |U |p1 ` uTU´1uq and therefore,

|J |
´1

“ π1 . . . πd

ˆ

1 ´

d
ÿ

l“1

πl

˙

“
e
řd

l“1 θl

p1 `
řd

l“1 e
θlqd`1

.

The proof is concluded by noting that ppθ;αq “ qp�pθq;αq |J |´1.

6.3 Proof of main results

We first state some preparatory results that are used to prove the main results.

Preliminaries. The following identity for the Gamma function is well known (see,
e.g., Abramowitz and Stegun (1964)). For z ą 0,

log Γpzq “
logp2πq

2
`

ˆ

z ´
1

2

˙

log z ´ z ` Rpzq, (13)

where 0 ă Rpzq ă 1{p12zq.

The digamma function ψpzq “
d
dz log Γpzq “

Γ1
pzq

Γpzq
satisfies ψpz ` 1q “ ψpzq ` 1{z

for any z ą 0. We use the following bound for the digamma function from Lemma 1 of
Chen and Qi (2003). For any z ą 0,

1

2z
´

1

12z2
ă ψpz ` 1q ´ log z ă

1

2z
. (14)

The trigamma function ψ1pzq “
d
dzψpzq is the derivative of the digamma function. We

derive a simple bound for the trigamma function that is used in the sequel.

Lemma 1. For any z ą 1{3,

1

z
ă ψ1

pzq ă
1

z
`

1

z2
. (15)

The condition z ą 1{3 is only required for the upper bound.

Proof. From Chen and Qi (2003), the trigamma function admits a series expansion

ψ1
pzq “

8
ÿ

j“0

1

pz ` jq2

valid for any z ą 0. The function t ÞÑ t´2 is monotonically decreasing on p0,8q

and hence x´2 ą
şx`1

x
t´2dt for any x ą 0. Therefore, for any z ą 0, ψ1pzq ą
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ř8

j“0

şz`j`1

z`j
t´2dt “

ş8

z
t´2dt “ z´1. For the upper bound, we use Lemma 1 of Chen

and Qi (2003) which states that 1{z ´ ψ1pz ` 1q ą 1{p2z2q ´ 1{p6z3q for any z ą 0.
Since ψpz ` 1q “ ψpzq ` 1{z, ψ1pz ` 1q “ ψ1pzq ´ 1{z2, which yields ψ1pzq ´ 1{z ă

1{z2 ´ 1{p2z2q ` 1{p6z3q “ 1{p2z2q ` 1{p6z3q for any z ą 0. The conclusion follows since
1{p6z3q ă 1{p2z2q for any z ą 1{3.

Finally, we state a useful result in Lemma 2.

Lemma 2. Let X P R
d be a random vector with EX “ μX and varpXq “ ΣX . For

μ P R
d and d ˆ d positive definite matrix Σ, the mapping

pμ,Σq ÞÑ gpμ,Σq “ log |Σ| ` EpX ´ μq
TΣ´1

pX ´ μq (16)

attains its minima when μ “ μX and Σ “ ΣX . The minimum value of the objective
function gpμX ,ΣXq “ log |ΣX | ` d.

Proof. To start with, EtpX ´μXqTΣ´1
X pX ´μXqu “ trrEtpX ´μXqpX ´μXqTΣ´1

X us “

trpIdq “ d and hence gpμX ,ΣXq “ log |ΣX | ` d. Fix μ P R
d and Σ positive definite. We

can write

EtpX ´ μqΣ´1
pX ´ μqu “ trrEtpX ´ μqpX ´ μq

TΣ´1
us

“ trrEtpX ´ μXqpX ´ μXq
TΣ´1

u ` pμX ´ μqΣ´1
pμX ´ μqs

“ trpΣXΣ´1
q ` pμX ´ μq

TΣ´1
pμX ´ μq.

Therefore,

gpμ,Σq ´ gpμX ,ΣXq “ trpΣXΣ´1
q ` pμX ´ μq

TΣ´1
pμX ´ μq ´ d ´ log |ΣXΣ´1

|.

The above quantity is non-negative since it equals 2D
�

NpμX ,ΣXq || Npμ,Σq
(

, i.e.,
twice the Kullback–Leibler divergence between NpμX ,ΣXq and Npμ,Σq. Since μ and
Σ were arbitrary, the first part is proved. The second part has been already proved at
the beginning.

Proof of Theorem 1 and Corollary 1. We can now give a proof of Theorem 1.
Recall the Dirichlet density q from (6) and the logistic normal density rq from (11). We
shall write qpπq and rqpπq in place of qpπ | βq and rqpπ | μ,Σq henceforth for brevity.
From (6) and (11),

log
qpπq

rqpπq
“ logBβ `

d logp2πq

2
`

d
ÿ

j“0

βj log πj `
log |Σ|

2

`
1

2

�

logpπ{π0q ´ μ
(T

Σ´1
�

logpπ{π0q ´ μ
(

,

where

Bβ “
Γp
řd

j“0 βjq
śd

j“0 Γpβjq
.
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Observe that μ and Σ appear only in the last two terms in the right hand side of the
above display. Invoking Lemma 2, it is therefore evident that Dpq || rqq “ Eq logpq{rqq is
minimized when μ˚ “ Eq logpπ{π0q and Σ˚ “ varqtlogpπ{π0qu, and the minimum value
of the Kullback–Leibler divergence is

logBβ `

d
ÿ

j“0

βjEq log πj `
d

2
t1 ` logp2πqu `

log |Σ˚|

2
. (17)

Using standard properties of the Dirichlet distribution or Exponential family differ-
ential identities, with β “

řd
j“0 βj ,

Eq log πj “ ψpβjq ´ ψpβq, j “ 0, 1, . . . d, (18)

covqplog πj , log πlq “ ψ1
pβjqδjl ´ ψ1

pβq, j, l “ 0, 1, . . . , d. (19)

Therefore, μ˚
j “ Eq log πj ´ Eq log π0 “ ψpβjq ´ ψpβ0q for j “ 1, . . . d. Next, σ˚

jj1 “

covqplog πj ´ log π0, log πj1 ´ log π0q “ δjj1ψ1pβjq ` ψ1pβ0q for j, j1 “ 1, . . . , d. The ex-
pressions for μ˚ and Σ˚ are identical to (8), proving the first part of the theorem. Note
this also establishes Proposition 2.

We now proceed to bound each term in the expression for the minimum Kullback–
Leibler divergence in (17); refer to them by T1, T2, T3 and T4 respectively. First, we
have,

T1 :“ logBβ “ log Γpβq ´

d
ÿ

j“0

log Γpβjq

ă ´
d logp2πq

2
`

ˆ

β log β ´

d
ÿ

j“0

βj log βj

˙

´
1

2

ˆ

log β ´

d
ÿ

j“0

log βj

˙

`
1

12β
. (20)

In the above display, we used (13) to bound log Γpβq from above and log Γpβjqs from be-

low. The p´βq term in upper bound to log Γpβq cancels out the p´
řd

j“0 βjq contribution
from the lower bounds to the log Γpβjqs. Next,

T2 :“
d
ÿ

j“0

βjEqπj “

d
ÿ

j“0

βjtψpβjq ´ ψpβqu

“

d
ÿ

j“0

βjtψpβj`1q ´ ψpβ ` 1qu ´

d
ÿ

j“0

βj

ˆ

1

βj
´

1

β

˙

“

" d
ÿ

j“0

βjψpβj`1q ´ βψpβq

*

´ d

ă

ˆ d
ÿ

j“0

βj log βj ´ β log β

˙

´
d

2
`

1

12β
. (21)
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In the first line of the above display, we used (18). From the first to the second line,
we used the identity ψpz ` 1q “ ψpzq ` 1{z. From the second to the third line, we only

use
řd

j“0 βj “ β. From the third to the fourth line, we made use of the bound (14) for
the digamma function ψ. From the upper bound in (14), βjψpβj`1q ă βj log βj ` 1{2

and hence
řd

j“0 βjψpβj`1q ă
řd

j“0 βj log βj ` pd ` 1q{2. From the lower bound in (14),
βψpβq ą β log β ` 1{2 ´ 1{p12βq.

Finally, from (19), we can write Σ˚ “ D ` ψ1pβ0q11T, with D “ diagpψ1pβ1q, . . . ,
ψ1pβdqq. Using the fact |X ` uvT| “ |X|p1 ` vTX´1uq, we obtain

|Σ˚
| “

"

1 `

d
ÿ

j“1

ψ1
pβ0q{ψ1

pβjq

*" d
ź

j“1

ψ1
pβjq

*

“

" d
ÿ

j“0

ψ1pβ0q

ψ1pβjq

*" d
ź

j“1

ψ1
pβjq

*

.

From Lemma 1, ψ1pβjq ą 1{βj , implying

T4 :“
log |Σ˚|

2
“

1

2

„

log

" d
ÿ

j“0

ψ1pβ0q

ψ1pβjq

*

`

d
ÿ

j“1

logψ1
pβjq

j

ă
1

2

"

log β `

d
ÿ

j“0

logψ1
pβjq

*

. (22)

Recalling T3 “ dt1 ` logp2πqu{2 and substituting the bounds for T1, T2 and T4 from
(20), (21) and (22) in (17), we obtain, after plenty of cancellations,

4
ÿ

j“1

Tj ă
1

2

d
ÿ

j“0

logtβjψ
1
pβjqu `

1

6β

ă
1

2

d
ÿ

j“0

1

βj
`

1

6β
.

From the first to the second line, we invoked Lemma 1 to bound βjψ
1pβjq ă 1 ` 1{βj

and used logp1`xq ă x for x ą 0. We have obtained the desired bound, concluding the
proof.

Now, to show Corollary 1, we make use of the fact that the KL divergence D is
invariant under one-to-one transformations of θ to conclude that for any full rank matrix
X,

D

"

LDpβq || N pμ,Σq

*

“ D

"

PXp¨;βq || N pXμ,XTΣXq

*

. (23)

So

inf
μ,Σ

"

LDpβq || N pμ,Σq

*

“ inf
rμ,rΣ

D

"

PXp¨;βq || N prμ, rΣq

*

. (24)

Since the infimum on the left side in (24) is attained by μ˚,Σ˚, we have by (23) that

D
`

PXp¨;βq || N p¨;Xμ˚, XTΣ˚Xq
˘

“ inf
μ,Σ

D pPXp¨;βq || N p¨;μ,Σqq ,

which gives Corollary 1.
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7 Simulations assessing accuracy of approximation

We conducted several simulation studies to assess the performance of the approximation
in Theorem 1 and Corollary 1. In each study, we simulated 100 realizations from

π „ Dpa, . . . , aq, y „ Multinomial pN, πq , (25)

with the posterior of π under a Dirichlet Dpa, . . . , aq prior being Dpy1 ` a, . . . , yd ` aq.
We chose the dimension d to be 28, corresponding to a p “ 8-way contingency table
for binary variables. To obtain a simulation-based approximation to the posterior for
θ “ logpπ{π0q under the Diaconis–Ylvisaker prior, we sampled mc many π values from
the Dpy1 ` a, . . . , yd ` aq posterior and then transformed to θ “ �´1pπq to obtain
posterior samples of θ; we refer to this procedure as the Monte Carlo approximation. We
also computed a Laplace approximation to the posterior under the Diaconis–Ylvisaker

prior, which is given by Normal
´

θ̂MAP , Ipθ̂MAP q´1
¯

, where θ̂MAP is the maximum a-

posteriori estimate of θ and Ipθq is the Fisher information matrix evaluated at θ. The

maximum a-posteriori estimate θ̂MAP was computed by the Newton–Raphson method.

We compare the accuracy of the proposed Gaussian approximation to the Monte
Carlo procedure and the Laplace approximation. In addition to the identity parame-
terization, i.e., X “ Id in (5), we also consider the corner parameterization given by
logpπ{π0q “ Xθ̃ for an appropriate X matrix; see Section 6.1 for more details. For the
Monte Carlo samples, each sample of θ is transformed to θ̃ via X´1θ “ θ̃. For the
normal approximations θ „ Normal pμ,Σq, the corresponding approximate posterior is
given by θ̃ „ Normal

`

X´1μ,X´1ΣX´1
˘

.

We conduct simulations for different values of N (250, 1000, and 10,000) and a (1
and 1{d). We then assess performance in several ways.

• Proportion of variation unexplained, measured by
b

řd
j“1pθ ´ θ0q2{sdpθ0q, where

θ0 is the true value of θ (or θ̃, as appropriate).

• Coverage of 95 percent posterior credible intervals for θ or θ̃.

• The standardized loss in the Frobenius norm for estimates of Σ, the posterior
covariance, given by ||pΣ ´ Σ||F {||Σ||F , where ||S||F is the Frobenius norm of S.
Note that the covariance in Theorem 1 is exactly the posterior covariance, so this
measure is computed only for the simulation and Laplace approximations.

• The value of the Kolmogorov–Smirnov statistic for comparing the Monte Carlo
empirical measure 1

mc

řmc
t“1 δθt to the normal approximation from Theorem 1,

Normal pμ,Σq.

• The computation time required to compute each posterior approximation.

Table 1 shows unexplained variation for the Laplace approximation, the Monte Carlo
approximation for mc “ 103, 104, 105, and 106, and the optimal normal approximation.
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As expected, the optimal normal approximation outperforms the Laplace approxima-
tion. Moreover, it is comparable to the Monte Carlo approximation at every sample
size and for all of the values of mc considered. Performance for all approximations is
noticeably better in the corner parametrization than the identity parametrization.

Laplace mc “ 103 mc “ 104 mc “ 105 mc “ 106 oN
identity, N=250 1.08 0.98 0.98 0.98 0.98 0.98
corner, N=250 0.85 0.81 0.81 0.81 0.81 0.81
identity, N=1000 0.84 0.77 0.77 0.77 0.77 0.77
corner, N=1000 0.67 0.61 0.61 0.61 0.61 0.61
identity, N=10,000 0.40 0.35 0.35 0.35 0.35 0.35
corner, N=10,000 0.31 0.27 0.27 0.27 0.27 0.27

Table 1:
b

řd
j“1pθ ´ θ0q2{sdpθ0q for different values of mc, different sample sizes, and

two parametrizations. Results are averaged over 100 replicate simulations for each sam-
ple size.

Table 2 shows coverage of approximate 95 percent credible intervals for the Laplace
approximation, optimal Normal approximation, and the Monte Carlo approximation.
The intervals derived using the Laplace approximation are universally too wide. Nominal
coverage for the Monte Carlo approximation is insensitive to the value of mc in the
range tested, and is slightly high at the two smaller sample sizes. The optimal normal
approximation has the best coverage; in all cases it is between 0.94 and 0.96 and for
N “ 10, 000 the coverage is 0.95 in both parametrizations.

Laplace mc “ 103 mc “ 104 mc “ 105 mc “ 106 oN
identity, N=250 0.95 0.97 0.97 0.97 0.97 0.96
corner, N=250 1.00 0.96 0.96 0.96 0.96 0.96
identity, N=1000 0.98 0.96 0.96 0.96 0.96 0.96
corner, N=1000 1.00 0.94 0.94 0.94 0.94 0.94
identity, N=10,000 1.00 0.95 0.95 0.95 0.95 0.95
corner, N=10,000 1.00 0.95 0.95 0.95 0.95 0.95

Table 2: Coverage of 95% posterior credible intervals.

Table 3 shows dependence of ||pΣ´Σ||F {||Σ||F onmc for the two different parametriza-
tions and three sample sizes considered. Note that Σ is known exactly since Σ “ Σ˚, the
posterior covariance under the DY prior. The main point of this table is to demonstrate
the relatively large number of Monte Carlo samples required to obtain reasonably small
error in estimation of the posterior covariance. Even with 105 samples the relative error
is on the 1 percent range. Thus, compound linear hypothesis testing and computation
of credible regions is very inefficient using the Monte Carlo method.

Table 4 shows the computation time in seconds for each of the three approximations.
The Laplace approximation is fast, requiring about 0.03-0.04 seconds to compute at
all sample sizes. The optimal normal approximation is about an order of magnitude
faster, with the computation time arising mainly in computing the polygamma functions
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mc “ 103 mc “ 104 mc “ 105 mc “ 106

identity, N=250 0.0982 0.0328 0.0093 0.0032
corner, N=250 0.0923 0.0290 0.0086 0.0029
identity, N=1000 0.1045 0.0330 0.0103 0.0035
corner, N=1000 0.0882 0.0277 0.0087 0.0029
identity, N=10,000 0.1231 0.0397 0.0118 0.0040
corner, N=10,000 0.0861 0.0280 0.0084 0.0027

Table 3: ||pΣ ´ Σ||F {||Σ||F for different sample sizes and values of mc.

Laplace mc “ 106 oN
N=250 0.037 32.652 0.003
N=1000 0.031 31.980 0.003
N=10,000 0.035 32.338 0.003

Table 4: Average time (seconds) to compute each approximation, averaged over 100
replicate simulations for each sample size.

and matrix multiplications. The Monte Carlo approximation is about four orders of
magnitude slower than the optimal Normal approximation. Here, only mc “ 106 is
considered because of the non-negligible error in the posterior covariance for smaller
samples; the algorithm scales linearly in mc so for mc “ 105 the required time would
be approximately 3 seconds. Only about 100 samples could be obtained in the 0.003
seconds required to compute the optimal normal approximation.

Figure 4: Distribution of Kolmogorov–Smirnov statistics comparing 1
mc

řmc
t“1 δθt to the

oN approximation for 20 randomly selected entries of θ and over 100 replicate simula-
tions (entries of θ were re-selected for each replicate).

Results in the previous tables make clear that the optimal normal approximation
is superior to the other approximations considered in terms of point estimation, esti-
mation of 95 percent credible intervals, covariance estimation, and computation time.
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However, it is possible that differences between the optimal normal approximation and
the exact posterior exist in the tails of the distribution. To assess this, we compare the
empirical measure of the Monte Carlo approximation using mc “ 106 samples to the
optimal normal approximation by computing the Kolmogorov–Smirnov (KS) statistic
for the marginal distributions of 20 randomly selected entries of θ. The entries consid-
ered were re-selected for each of the 100 replicate simulations and for each of the three
sample sizes. Shown in Figure 4 are histograms of these KS statistics in the corner and
identity parametrizations. Most are less than 0.02, and none are greater than 0.07. Con-
sidering that the KS statistic is a point estimate of the total variation distance between
distributions, this indicates that the optimal normal approximation is an excellent ap-
proximation to the posterior marginals. Moreover, we cannot rule out the possibility
of residual Monte Carlo error in the marginals from the Monte Carlo approximation,
which may account for part of the observed discrepancy.
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