PACIFIC JOURNAL OF MATHEMATICS
Vol. 52, No. 2, 1974

ON AN INVERSION THEOREM FOR THE GENERAL
MEHLER-FOCK TRANSFORM PAIR

P. ROSENTHAL

Let PX(y) be the Legendre function of the first kind and
let I'(z) be the Gamma function. Then the general Mehler-
Fock transform of complex order % of a function g(y) is de-
fined by the equation

F(@) = Ly(g) = 7~ sin h(zw)F(% —k— w)

xr(d—k+ i)\ g Pr - nwdy

1

the inversion theorem states
g)=Ly(f) = S F@PEe(y)de .
0

It is stated on page 416 of I. N. Sneddon’s book ‘The Use of
Integral Transforms, (1972) that apparently a class of functions
g(y) for which this result is valid is not yet clearly defined.
The purpose of this paper is to define a class of functions
g(y) as well as a class f(x) and give proofs that the above
inversion formula hold for these classes.

Introduction. The theorem and proofs presented in the paper
are basically a generalization of those in a paper of V. Fock [4] who
treated the case k = 0, the Mehler-Fock transform. Some applications
of the Mehler-Fock transform and general Mehler-Fock transform
are given in [7], [8]. Tables of these transforms are given in [6].

All integrals are taken in the improper (complex) Riemann sense.
% ~ + oo means & positive and sufficiently large, v ~ + 1 = sufficiently
close to 1, & > 1.

THEOREM 1. Let G be the class of complex valued functions
such that g€ G if and only if

1. 9(y) = (y — V) *g(y), y > 1, g.(y) ts twice differentiable and
continuous for y =1, the real and imaginary parts of gi(y) are of
bounded variation on any closed and bounded interval contained in

2. drg,Jdy™ = O(y~“P-mt@m=a) 'y > 1 1/4 > ¢ >0, 0 = large order
relation, n = 0,1, 2 (the case n = 0 means g,).
Then L,(Ly(9)) = g,y > 1, |Rek| < 1/4.
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Proof of Theorem 1.
LEMMA 1. Let
ge@, h(t) = S:p(t, ¢)dq, p = (sink q)'*(cosh t — cosh q)~/***g (cosh q) ,
fw) = S“ cos (st (t)dt, |Re k| < % .
Then

L f@ =0, o~ + =, [ 7@ds < .

2a. MA/'(t) ts continuous for t = 0.

2b. R'(t) satisfies the conditions of a Fourier inversion theorem
[9, p. 18], R/, k" are both absolutely inmtegrable over the infinite
wnterval « =2t =0, lim, ;4. h =0, lim, . A" =0.

3. S:(S:lpldq)dt < oo,

Proof of Lemma 1. Lets = cosht, r =coshgq, r=(s— 1w + 1.
Then

D = (s — D"OBE(s — Dw + 2)7g((s — w + De(w) ,
c(w) = (1 — w) trHkg=kE

Hence there exists c¢,(w) independent of ¢ such that

1

2| < e leswl t~ + o, | ealdw < o, 2> >0,
0

ot*

=O,1,2,{Rek|<%.

Again by dominated convergence we conclude d"h/dt"* = S:(a"p/at”)dw,
o >t=0,n=1 2 |Rek| < 1/4. Hence parts 2, 3 of Lemma 1 hold.
We are now permitted to integrate by parts with respect to ¢ the
right-hand side of the defining formula for f(z) in the hypothesis
of Lemma 1 to conclude f(x) = 7' F(z), F(x) = S sin (xt)h"'(t)dt. Since
0

R'(t) = O(e™), t ~ + o, 1/4 > ¢ >0, we conclude the real and im-
aginary parts of %4'(t) are of bounded variation in the infinite interval
o =t =0 (see I.P. Natanson “Theory of Functions of a Real Vari-
able”, p. 238, for definitions and theorem). This implies F(x) =
O(x™), © ~ + . This completes the proof of Lemma 1.

LEMMA 2. Let geG. Then
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() o ([ = [

7= psin(@t), & = 0, |Re k| <%.

(See Lemma 1 for the definition of p.)

Proof of Lemma 2. Since gec G, the iterated integrals in Lemma
2 are equal for finite A. Part 3 of Lemma 1 implies absolute
integrability of the first iterated integral in Lemma 2. Hence we
satisfy Fubini’s theorem which implies Lemma 2.

LEMMA 3. Let

F(v) = gf(v — §)trpds = (s* — 1)7*2g(s), g€ G .

Then
dit, = [l — oy 1
£ Sl(t o) EF ()dv = | (¢ — o)l [Re k] < 7

Proof of Lemma 3. Part 2 of Lemma 1 implies F(v), F'(v) are
both continuous for v > 1, lim,_,, Fi(v) = 0. Hence we satisfy a theorem
(relating to the Abel integral equation) [1, p. 5] (this theorem can
be modified to include singularities of the type (x — 1), 2~ +1,
Rea > — 1, our case, see [1, p. 6]), which implies the conclusion of
Lemma 3.

The rest of the proof of Theorem 1 consists mainly in applying
the above lemmas to show that all the operations we use to show
that (2) is a solution to (1) are wvalid.

Using the integral representation for Pf_,, from [5, p. 165], we
obtain from (2), the iterated integral,

(3)  F@)= a(k)ij(St p sin (xs)ds>dt

(see Lemma 1 for the definition of p)

a(k) = 2"271‘3/2[(% - lc) sin ((—;— + k)n), z=0 |Rek| < % .

(We note (3) is valid by Lemma 2.)

We now apply to the right-hand side of (38) the following opera-
tions in this order,

1. integration over a triangular domain (see Lemma 2),

2. integration by parts with respect to s,

3. the Fourier cosine transform.
Since operations 1, 2, 3 are now permissible by Lemmas 1, 2 (g€ G),
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we obtain from (3) the valid identity

rcos (tx) f(x)dx = al(lc)—flll—}ti (see Lemma 1 for definition of &)
0

(4) a(k) = (27?)‘1/2[’(—;— - k) sin ((% + k)n) ,

t>0,|Rekl<%.

Lemma 3 implies all the operations (those indicated in Lemma 3) to
show the right-hand side of (4) is a solution to an Abel integral
equation are now permissible [1, p. 9]. (Again we note only real k
are treated on p. 9, but the theory can be extended to complex #k,
our case.) Hence applying these operations (those indicated in Lemma
3 to the right-hand side of (4), we obtain the valid identity

g(cosh t) = S’(S“udx)ds, w = a,(k)(sink t)¥(coshh t — cosh s)~*
(5) o 1 -t 1
— (917112 - = .
cos (s2)f(z) , ask) = (27'7) (r(z k)) ,t>0, [Rek| <
Interchanging the order of integration of the iterated integral on
the right-hand side of (5) (which is now permissible by part 1 of
Lemma 1), then using the integral representation for Pf,_,. from
[2, p. 156], we obtain the valid identity L,(Lx9)) =9,t> 0, |Re k| <
1/4. This completes the proof of Theorem 1.

COROLLARY 1. Let g, 9,€ G such that Ly(g,) = Ly9,), then 9,(t) =
gdt), t > 0, [Re k| < 1/4.

Proof. Letw =g, — ¢g,. ThenueG. Hence L,(u)= 0Dby linearity
of L,. Hence f(z) (of (8)) =0,2=0. We then obtain from (5) the
conclusion of Corollary 1.

THEOREM 2. Let F be the class of real valued fumctions such
that feF if and only if

1. f(x) = 22f (=), fi(x) is continuous for x = 0, and of bounded
variation on any closed and bounded interval contained in « > x = 0.

2. f,f =0, 2~ + c0,e>0.
Then L(L(f)) = f,2=0, |Rek|<1/2.

Proof of Theorem 2.

LEMMA 4. Let feF,g = L(f), then
A
1. S l9(x)|dy exists for any A > 1.



INVERSION THEOREM FOR THE GENERAL MEHLER-FOCK TRANSFORM PAIR 543

2. g =0((cosk™y)H(y* — 1)), y ~ + oo,
providing |Re k| < 1/2.

Proof of Lemma 4. From formula 26 [2, p. 129],
(a) PE_,(cosht) = (2m sinh t) ¥ (e f, + e f,),

fo= g o= Bk, ok s — e cosht)
1 . 2 2 2
F<_2_ — k- m;)

Fix) = f—a), Fla, b, ¢; 2) = MS:wds, w = (1 — s)—(1 — 25)°

Reb, Re (¢ — b) > 0, |z2| < 1, M independent of z[2, p. 59].

(b) 2z + a)/T(z + b)) ~a, +az" + --- (an asymptotic
series), |z| ~ + oo uniformly for |argz| <7 — ¢, 7/2 > ¢ > 0 [2, p. 47],
so differentiation of the right-hand side of (b) is permissible [3, p.
21]. From (a) we conclude (1 + x)™'*** fi(z), (1 + x)7'** f{(x) are
uniformly bounded for # = 0 and ¢ = 1, providing |Rek| < 1/2. In
(1) we now use the integral representation from (a), then integrate
by parts with respect to x, which is permissible (f € F') to conclude
09(y) = (cosh™ y)(y* — 1)~" re’—*“”c‘“(y, z, k)de, y = 2, |Re k] < 1/2,
further the real and imaginaroy parts ¢ are of bounded variation
in © on the infinite interval « =2 =0,y = 2, |Re k| < 1/2. Hence
the real and imaginary parts of ¢ can each be written as the
difference of two monotonically decreasing functions c¢’(x), v = 0,
lim, ., ¢?(x) = 0 uniformly in y = 2, ¢’ are uniformly bounded, » =
0,y=2 |Rek|<1/2,m=1,2 7=1, 2, since f(z) = O@x "), x ~ + co.
Also g(y) = O((y — 1)™'*), 2 >y > 1, |Re k| < 1/2, by (5) (in the proof
of Theorem 1), fe F. Hence Lemma 4 holds.

LEMMA 5. The g of Lemma 4 implies r@mlfl dt>dq < oo, u =
0, |Rek| < 1/2 (see Lemma 2 of Theorem 1 for the definition of f).

Proof. Using the change of variable (cosh t — cosh q) = (cosh ¢ +
1w, we conclude rl Fldt < M(sink q/2)"|(sinh q)*~*(cosh q)* g(cosh q) |,
¢g>0,x=>0 M a éonstant, |[Re k| < 1/2. Hence the conclusion of
Lemma 5 follows.

The rest of the proof of Theorem 2 consists mainly in justifying
in reverse order all the formulas arising from the solution of the
integral equation L,(f) = ¢ in the proof of Theorem 1. Hence we
will point only where the rest of the proof of Theorem 2 must be
modified from that of Theorem 1.
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REMARK 1. The inversion theorem for the solution to the Abel
integral equation [1, p. 9] appealed to in the proof of Theorem 1 has
been modified to include functions which have singularities of the
type (# — 1), « ~ + 1, Rea > — 1. Hence this modified form of the
theorem applies again to our case (see (5) in the proof of Theorem
1) since we have a singularity of this type when we use the change
of variable s = cosh q.

REMARK 2. Lemma 5, f ¢ F imply the sum ﬁ(+ o0) — ﬁ(+0), r =
0, |Re k] < 1/2, of the upper and lower limits (both are finite) (arising
when one does an integration by parts, i.e., the reverse operation
corresponding to the one of part 2 of (3) in the proof of Theorem
1) is zero.

REMARK 3. Lemma 5 implies the ¢ of Lemma 4 satisfies the
conclusion of Lemma 2 of Theorem 1. Hence the reverse operation
of integrating over a triangular domain (see Lemma 2 of Theorem
1) is now permissible. Hence we conclude all the reverse formulas
are valid. This completes the proof of Theorem 2.

COROLLARY 2. Let f,, f,€ F such that L(f.) = L,(f,). Then fix)=
fo®), =0, |[Re k| < 1/2.

Proof. Letr = f, — f,. Then re F. Hence by linearity L,(r) =
0. Then by (3) of Theorem 1 (see also Lemma 5 of Theorem 2) we
obtain the conclusion of Corollary 2.

We note in closing, using the change of variable (cosk t — cosk q) =
(cosh g + cos a)s, the integral representations for Pf_,, in Theorem
1 and [5], we obtain a pair of reciprocal transforms

1. g(cosh q) = sin a(cosh q + cos a) ***(sinh q)7*, |a| < 7/2,

2. f(x) =2V (I'(1)2 — k))"'B(1/2 — k, V)xI"(1/2 — k + tx)I"(1/2 —
k — ix) sinh ax, |Re k| < 1/2. (The case k = 0 specializes to the example
in [4].) B = Beta function. Further, ge G of Theorem 1 and fe
F of Theorem 2.

If in Theorem 1, part 1, we now assume g, is analytic for y = 1,
Rek < 1/2, in 2 we assume 7 = 0 and arbitrary, then by the methods
in the proofs of Theorems 1 and 2 (we use the integral representation
for Pf_,, from (5) in L,), we conclude ¢(k) = L,(Ly(g)) is an analytic
function in ¥ for Rek < 1/2, y > 1. Hence by analytic continuation,
Theorem 1 and Corollary 1 are now valid for Re k < 1/2.
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