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COMMUTANTS OF SOME QUASI-HAUSDORFF MATRICES

B. E. RHOADES

Let B(c) denote the Banach algebra of bounded linear
operators over c, the space of convergent sequences, and JΓ*
the subalgebra of conservative infinite matrices. Given an
upper triangular matrix A in Γ*, a sufficient condition is
established for the commutant of A in Z7* to be upper
triangular. Also determined is the commutant, in B(c), of
certain quasi-Hausdorff matrices.

The spaces of bounded, convergent and null sequences will be
denoted by m, c, c0 respectively, and I will denote the set of sequences
x satisfying Σ* I % I < °° Let J* denote the algebra of conservative
upper triangular matrices; i.e., AeJ* implies A:c—>c and ank = 0
for n> k. <%** will denote the algebra of conservative quasi-
Hausdorff transformations, and Γ the algebra of all conservative
matrices. Γ1* is the quasi-Hausdorff transformation generated by
μn — a(n + a)~\ a > 1. For other specialized terminology the reader
can consult [3] or [5].

One cannot answer commutant questions for upper or lower
triangular matrices in B{c) by taking transposes. For example, let
C denote the Cesaro matrix of order 1. Cτ is not conservative.
On the other hand, the matrix A = (ank) defined by

ίl for n = (f \ X) (ί) + 1 ̂  k ̂  n j = 1, 2, .. ,
1

2

(O otherwise ,

is conservative, but Aτ is not. It is true that the transpose of
any conservative quasi-Hausdorff matrix is a conservative Hausdorff
matrix. C shows that the converse is false.

We begin with some results analogous to those of [3] and [5].

THEOREM 1. Let i e # , If A has the property that
(1) for each t e m, n ;> 0, (A — annl)t = 0 implies t e linear

span {e°, e\ •••,£*}, then every matrix B with finite norm which
commutes with A is upper triangular.

B +-> A implies

( 2 ) Σ hjaSk = Σ anjbjk Λ, fc = 0, 1, 2, - .
3=0 j=n

Set k = 0 to get

= Σ anjbj0 Λ = 0, 1, 2, ,
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which can be written in the form (A — aQJ)f = 0, where t° = {δwθ}~=o
By hypothesis, t belongs to the linear span of e°, so that bnQ = 0 for
all n > 0. By induction one can show that bnk for all n> k and B
is upper triangular.

REMARKS. 1. The condition that A be conservative is not
needed in the proof. All one needs are restrictions on A and B
sufficient to guarantee that the summations in (2) exist for each n
and k; for example, it would be sufficient to assume that each row
of A is in I and each column of B is in m.

2. It is an open question whether condition (1) is necessary.
(The proof of the necessity of Theorem 1 in [3] is faulty, because
it fails to show that B has finite norm.)

An upper triangular matrix is called factorable if ank — cndk, n^k.
Examples of upper triangular factorable matrices in B(c) are the
transposes of the weighted mean methods (N, pn) with pn = an, a > 1,
and the Γ1*, a > 1.

THEOREM 2. If A is a factorable upper triangular matrix
with ann Φ 0 for all n, then B<-+ A implies B is upper triangular.

Proof. Set n = k = 0 in (2) to get Σ~=1αoAo = 0. From (2) with
k = 0, n — 1, we have

co C °°

Oκβm — 2-Λ Uijbjo = 2 J QΌJUJO — 0 .

Since α00 Φ 0, δ10 = 0. By induction, bn0 = 0 for all n > 0. Then by
induction on k, we can show bnk = 0 for all n > k, and B is upper
triangular.

COROLLARY 1. If AeJ*, A is factorable and has exactly one
zero on the main diagonal, then I? <-* A implies B is upper
triangular.

Proof. Let JV be such that aNN = 0. If N > 0, then the proof
of Theorem 2 forces bnk = 0 for n > k, k < N. For n > N, k = N
in (1) we have

oo AT

or, -annbnN = Σi?=n+ιanjbjN; i.e., -dnbnN = Σ?=»+iM/» which leads to
d»6n* = 0. Since dΛ ̂  0, 6%î  = 0. By induction, 6nfc = 0 f or n > k > N.

COROLLARY 2. If Aed*, is factorable, and has at least two
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nonadjacent zeros on the main diagonal, then there exists a matrix
B+-+A,B not upper triangular.

Let M and JV satisfy aMM — aNN — 0, N > M + 1. There are
four possibilities: (i) cM = cN = 0, (ii) cM = dN = 0, (iii) dM = cN = 0,
and (iv) dM — dN = 0.

If dN Φ 0 the system (1) with n == M has the solution tk = 0,
k>N,tN = l,tM = 0, ί* = -ΣJU+i ^kjtj/akkf kΦM,k<N. IίdN = Q,
then (1), with w = Jlf, has the solution tk = 0, k > N, tN = 1, i^el = 0,
ίjf = 0,

N—l

tκ = — Σ akjtj/akk , k Φ M, k < N — 1 .

Define £ by 6nJf = tn, 6w,m+1 = -cMtn/cM+1, n^N,bnk = 0 otherwise.
Then 5—-4, ΰ e Γ , but 5g J*.

Suppose A G J * , is factorable, and satisfies aNN = aN+ltN+1 = 0f

ann Φ 0 for n Φ N, N + 1. If dN+ί — 0 or c^ = 0, then an examination
of the proof of Corollary 2 shows that we can find a matrix B which
commutes with A and which is not upper triangular. If, however,
cN+1 = 4 = 0, but cNdN+1 Φ 0, then B must be upper triangular.

COROLLARY 3. Let A be a factorable upper triangular matrix
such that, for some integer N, dN = cN+1 — 0, and cNdN+1 Φ 0, and
a>nn Φ 0 for n Φ N, N + 1. Then B<-> A implies B is upper
triangular.

Prom the proof of Theorem 2, bnk = 0 for each k < N, n> k.
For k = N, n^ N, we have, from (2),

( 3 ) X UnόbjN — Σ K&jN — bnNaNN — 0 .
j i

For n > JV + 1, (3) becomes cΛ ΣΓ=* ̂ A r = 0, which leads to bnN — 0
since cn, dn Φ 0. With n~N, (3) now becomes aNNbNN + a^+iZ^-H^ = 0.
By induction it can be shown that bnk = 0 for π > k > JV + 1, so
that B is upper triangular.

To determine the commutants of various quasi-Hausdorff matrices
in the algebras Δ*, Γ and B(c), we shall use IT, which is a member
of Δ*.

COROLLARY 4. Com(iT) in Δ* = Com(ΓΓ) in Γ = 3ίf*.

The first equality follows from Theorem 2, since /T is factorable.
The second equality comes from the following Lemma and Theorem
4.1 of [2].
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LEMMA. Let H be a quasi-Hausdorff method with distinct diago-
nal entries, B any upper triangular matrix, B+-+H. Then B is
quasi-Hausdorff.

Proof. From (2) we get

Σ M ; * Σ Kihk , k ^ n .

Denote the diagonal entries of B by Xn. Then, it can be shown

by induction that bn,n+p = (n + p)4p\n, p = 0, 1, , and B is quasi-

Hausdorff.
Leviatan [2] has shown that every matrix which commutes

formally with the inverse of Cτ is a quasi-Hausdorff matrix.
For any TeB(c) one can define continuous linear functionals χ

and χt by χ(T) = lim Te - Σk\im(Tek) and χt(T) = (Te), - Σk(Te%
i = 1, 2, . Any Te B(c) has the representation Tx = v lim # + 5α?
for each xec, where B is the matrix representation of the restriction
of T to c0, and v is the bounded sequence v = {&(r)}. (See, e.g. [1].)

THEOREM 3. For each a > 1, Com (ΓΓ) m J5(c) = {Te B(c): v = vx

Proof. From Corollary 1 of [5] we must have Av =
Therefore, for each n, Σ?-» hϊkvk — avj(a — 1). But

*:* =
n\

Thus

„ _ (α - l)Γ(w + α)
w! *=« Γίfc + α

which leads to vn = vt for all w > 1.
That B e ^ 7 * comes from the lemma.
Theorems 3 and 4 of [5] are not extendable to upper triangular

matrices because the system of equations Av = χ(A)v is now much
more complicated.

It is an open question whether having distinct diagonal entries
is a sufficient condition for a conservative quasi-Hausdorff matrix H*
to have the same commutant in Δ* and Γ.
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