COMMUTANTS OF SOME QUASI-HAUSDORFF MATRICES

B. E. Rhoades

Abstract

Let $B(c)$ denote the Banach algebra of bounded linear operators over c, the space of convergent sequences, and Γ^{*} the subalgebra of conservative infinite matrices. Given an upper triangular matrix A in Γ^{*}, a sufficient condition is established for the commutant of A in Γ^{*} to be upper triangular. Also determined is the commutant, in $B(c)$, of certain quasi-Hausdorff matrices.

The spaces of bounded, convergent and null sequences will be denoted by m, c, c_{0} respectively, and l will denote the set of sequences x satisfying $\sum_{k}\left|x_{k}\right|<\infty$. Let Δ^{*} denote the algebra of conservative upper triangular matrices; i.e., $A \in \Delta^{*}$ implies $A: c \rightarrow c$ and $a_{n k}=0$ for $n>k$. \mathscr{H}^{*} will denote the algebra of conservative quasiHausdorff transformations, and Γ the algebra of all conservative matrices. $\Gamma_{a}^{1^{*}}$ is the quasi-Hausdorff transformation generated by $\mu_{n}=a(n+a)^{-1}, a>1$. For other specialized terminology the reader can consult [3] or [5].

One cannot answer commutant questions for upper or lower triangular matrices in $B(c)$ by taking transposes. For example, let C denote the Cesàro matrix of order 1. C^{T} is not conservative. On the other hand, the matrix $A=\left(a_{n k}\right)$ defined by

$$
a_{n k}=\left\{\begin{array}{l}
1 \text { for } n=\binom{j+1}{2},\binom{j}{2}+1 \leqq k \leqq n ; \quad j=1,2, \cdots, \\
0 \text { otherwise },
\end{array}\right.
$$

is conservative, but A^{T} is not. It is true that the transpose of any conservative quasi-Hausdorff matrix is a conservative Hausdorff matrix. C shows that the converse is false.

We begin with some results analogous to those of [3] and [5].
Theorem 1. Let $A \in \Delta^{*}$. If A has the property that
(1) for each $t \in m, n \geqq 0,\left(A-a_{n n} I\right) t=0$ implies $t \in l i n e a r$ span $\left\{e^{0}, e^{1}, \cdots, e^{n}\right\}$, then every matrix B with finite norm which commutes with A is upper triangular.
$B \leftrightarrow A$ implies

$$
\begin{equation*}
\sum_{j=0}^{k} b_{n j} a_{j k}=\sum_{j=n}^{\infty} a_{n j} b_{j k} ; \quad n, k=0,1,2, \cdots \tag{2}
\end{equation*}
$$

Set $k=0$ to get

$$
b_{n 0} a_{00}=\sum_{j=n}^{\infty} a_{n j} b_{j 0} ; \quad n=0,1,2, \cdots
$$

which can be written in the form $\left(A-a_{00} I\right) t^{0}=0$, where $t^{0}=\left\{b_{n 0}\right\}_{n=0}^{\infty}$. By hypothesis, t belongs to the linear span of e^{0}, so that $b_{n 0}=0$ for all $n>0$. By induction one can show that $b_{n k}$ for all $n>k$ and B is upper triangular.

Remarks. 1. The condition that A be conservative is not needed in the proof. All one needs are restrictions on A and B sufficient to guarantee that the summations in (2) exist for each n and k; for example, it would be sufficient to assume that each row of A is in l and each column of B is in m.
2. It is an open question whether condition (1) is necessary. (The proof of the necessity of Theorem 1 in [3] is faulty, because it fails to show that B has finite norm.)

An upper triangular matrix is called factorable if $a_{n k}=c_{n} d_{k}, n \leqq k$. Examples of upper triangular factorable matrices in $B(c)$ are the transposes of the weighted mean methods (\bar{N}, p_{n}) with $p_{n}=a^{n}, a>1$, and the $\Gamma_{a}^{1^{*}}, a>1$.

THEOREM 2. If A is a factorable upper triangular matrix with $a_{n n} \neq 0$ for all n, then $B \leftrightarrow A$ implies B is upper triangular.

Proof. Set $n=k=0$ in (2) to get $\sum_{j=1}^{\infty} a_{0 j} b_{j 0}=0$. From (2) with $k=0, n=1$, we have

$$
b_{10} a_{00}=\sum_{j=1}^{\infty} a_{1 j} b_{j 0}=\frac{c_{1}}{c_{0}} \sum_{j=1}^{\infty} a_{0 j} b_{j 0}=0 .
$$

Since $a_{00} \neq 0, b_{10}=0$. By induction, $b_{n 0}=0$ for all $n>0$. Then by induction on k, we can show $b_{n k}=0$ for all $n>k$, and B is upper triangular.

Corollary 1. If $A \in \Delta^{*}, A$ is factorable and has exactly one zero on the main diagonal, then $B \leftrightarrow A$ implies B is upper triangular.

Proof. Let N be such that $a_{N N}=0$. If $N>0$, then the proof of Theorem 2 forces $b_{n k}=0$ for $n>k, k<N$. For $n>N, k=N$ in (1) we have

$$
\sum_{j=n}^{\infty} a_{n j} b_{j N}=\sum_{j=0}^{N} b_{n j} a_{j N}=b_{n N} a_{N N}=0
$$

or, $-a_{n n} b_{n N}=\sum_{j=n+1}^{\infty} a_{n j} b_{j N}$; i.e., $-d_{n} b_{n N}=\sum_{j=n+1}^{\infty} b_{j N} d_{j}$, which leads to $d_{n} b_{n N}=0$. Since $d_{n} \neq 0, b_{n N}=0$. By induction, $b_{n k}=0$ for $n>k>N$.

Corollary 2. If $A \in \Delta^{*}$, is factorable, and has at least two
nonadjacent zeros on the main diagonal, then there exists a matrix $B \leftrightarrow A, B$ not upper triangular.

Let M and N satisfy $a_{M M}=a_{N N}=0, N>M+1$. There are four possibilities: (i) $c_{M}=c_{N}=0$, (ii) $c_{M}=d_{N}=0$, (iii) $d_{M}=c_{N}=0$, and (iv) $d_{M}=d_{N}=0$.

If $d_{N} \neq 0$ the system (1) with $n=M$ has the solution $t_{k}=0$, $k>N, t_{N}=1, t_{M}=0, t_{k}=-\sum_{j=k+1}^{N} a_{k j} t_{j} / a_{k k}, k \neq M, k<N$. If $d_{N}=0$, then (1), with $n=M$, has the solution $t_{k}=0, k>N, t_{N}=1, t_{N-1}=0$, $t_{M}=0$,

$$
t_{K}=-\sum_{j=k+1}^{N-1} a_{k j} t_{j} / a_{k k}, \quad k \neq M, \quad k<N-1
$$

Define B by $b_{n M}=t_{n}, b_{n, m+1}=-c_{M} t_{n} / c_{M+1}, n \leqq N, b_{n k}=0$ otherwise. Then $B \leftrightarrow A, B \in \Gamma$, but $B \notin \Delta^{*}$.

Suppose $A \in \Delta^{*}$, is factorable, and satisfies $a_{N N}=a_{N+1, N+1}=0$, $a_{n n} \neq 0$ for $n \neq N, N+1$. If $d_{N+1}=0$ or $c_{N}=0$, then an examination of the proof of Corollary 2 shows that we can find a matrix B which commutes with A and which is not upper triangular. If, however, $c_{N+1}=d_{N}=0$, but $c_{N} d_{N+1} \neq 0$, then B must be upper triangular.

Corollary 3. Let A be a factorable upper triangular matrix such that, for some integer $N, d_{N}=c_{N+1}=0$, and $c_{N} d_{N+1} \neq 0$, and $a_{n n} \neq 0$ for $n \neq N, N+1$. Then $B \leftrightarrow A$ implies B is upper triangular.

From the proof of Theorem 2, $b_{n k}=0$ for each $k<N, n>k$. For $k=N, n \geqq N$, we have, from (2),

$$
\begin{equation*}
\sum_{j=n}^{\infty} a_{n j} b_{j N}=\sum_{j=0}^{N} b_{n j} a_{j N}=b_{n N} a_{N N}=0 \tag{3}
\end{equation*}
$$

For $n>N+1$, (3) becomes $c_{n} \sum_{j=n}^{\infty} d_{j} b_{j N}=0$, which leads to $b_{n N}=0$ since $c_{n}, d_{n} \neq 0$. With $n=N$, (3) now becomes $a_{N N} b_{N N}+a_{N, N+1} b_{N+1, N}=0$. By induction it can be shown that $b_{n k}=0$ for $n>k>N+1$, so that B is upper triangular.

To determine the commutants of various quasi-Hausdorff matrices in the algebras Δ^{*}, Γ and $B(c)$, we shall use $\Gamma_{a}^{1^{*}}$, which is a member of Δ^{*}.

Corollary 4. $\operatorname{Com}\left(\Gamma_{a}^{1^{*}}\right)$ in $\Delta^{*}=\operatorname{Com}\left(\Gamma_{a}^{1^{*}}\right)$ in $\Gamma=\mathscr{L}^{*}$.
The first equality follows from Theorem 2, since $\Gamma_{a}^{1^{*}}$ is factorable. The second equality comes from the following Lemma and Theorem 4.1 of [2].

Lemma. Let H be a quasi-Hausdorff method with distinct diagonal entries, B any upper triangular matrix, $B \leftrightarrow H$. Then B is quasi-Hausdorff.

Proof. From (2) we get

$$
\sum_{j=n}^{k} h_{n j} b_{j_{k}}=\sum_{j=n}^{k} b_{n j} h_{j_{k}}, \quad k \geqq n .
$$

Denote the diagonal entries of B by λ_{n}. Then, it can be shown by induction that $b_{n, n+p}=\binom{n+p}{p} \Delta^{p} \lambda_{n}, p=0,1, \cdots$, and B is quasiHausdorff.

Leviatan [2] has shown that every matrix which commutes formally with the inverse of C^{T} is a quasi-Hausdorff matrix.

For any $T \in B(c)$ one can define continuous linear functionals χ and χ_{i} by $\chi(T)=\lim T e-\Sigma_{k} \lim \left(T e^{k}\right)$ and $\chi_{i}(T)=(T e)_{i}-\Sigma_{k}\left(T e^{k}\right)_{i}$, $i=1,2, \cdots$. Any $T \in B(c)$ has the representation $T x=v \lim x+B x$ for each $x \in c$, where B is the matrix representation of the restriction of T to c_{0}, and v is the bounded sequence $v=\left\{\chi_{i}(T)\right\}$. (See, e.g. [1].)

Theorem 3. For each $a>1$, $\operatorname{Com}\left(\Gamma_{a}^{1 *}\right)$ in $B(c)=\left\{T \in B(c): v=v_{1} e\right.$ and $\left.B \in \mathscr{H}^{*}\right\}$.

Proof. From Corollary 1 of [5] we must have $A v=\chi(A) v$. Therefore, for each $n, \sum_{k=n}^{\infty} h_{n k}^{*} v_{k}=a v_{n} /(a-1)$. But

$$
h_{n k}^{*}=\frac{a k!\Gamma(n+a)}{n!\Gamma(k+a+1)} .
$$

Thus

$$
v_{n}=\frac{(a-1) \Gamma(n+a)}{n!} \sum_{k=n}^{\infty} \frac{k!v_{k}}{\Gamma(k+a+1)},
$$

which leads to $v_{n}=v_{1}$ for all $n>1$.
That $B \in \mathscr{H}^{*}$ comes from the lemma.
Theorems 3 and 4 of [5] are not extendable to upper triangular matrices because the system of equations $A v=\chi(A) v$ is now much more complicated.

It is an open question whether having distinct diagonal entries is a sufficient condition for a conservative quasi-Hausdorff matrix H^{*} to have the same commutant in Δ^{*} and Γ.

Acknowledgements. 1. To Professor W. Meyer-König who, after hearing a presentation of [3] and [5], requested that I consider the question of commutants for quasi-Hausdorff matrices.
2. To the referee, for his careful reading of the original version of the paper, and for his comments, which are incorporated in Corollaries 2 and 3, and Remark 2.

References

1. H. I. Brown, D. R. Kerr, and H. H. Stratton, The structure of $B[c]$ and extensions of the concept of conull matrix, Proc. Amer. Math. Soc., 22 (1969), 7-14.
2. D. Leviatan, Moment problems and quasi-Hausdorff transformations, Canad. Math. Bull., 11 (1968), 225-236.
3. B. E. Rhoades, Commutants of some Hausdorff matrices, Pacific J. Math., 42 (1972), 715-719.
4. Commutants of some Hausdorff matrices, corrections, to appear in the Pacific J. Math.
5. B. E. Rhoades and A. Wilansky, Some commutants in $B(c)$ which are almost matrices, Pacific J. Math., 42 (1973), 211-217.

Received January 8, 1973.
Indiana University

