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SOME CONVERGENCE THEOREMS
IN BANACH ALGEBRAS

J. J. KOLIHA

This paper is concerned with finding necessary and suf-
ficient conditions for the convergence of the sequence {/„(&)}
of elements of Banach algebra, where {/J is a sequence of
analytic functions imitating the behavior of the sequence of
integral powers. In particular, it is shown that the sequence
{a71} converges iff the spectrum of a (with the possible excep-
tion of the point λ = 1) lies in the open unit disc and λ = 1
is a pole of (λ — a)'1 of order ^ 1.

The spectral characterization of power convergent operators on
Hubert (or Banach) spaces given in [3] can be extended to elements
of Banach algebras, however, the methods of [3], based on the
direct decomposition of the underlying space are no longer applicable.
The main purpose of this note is to prove certain convergence theo-
rems in a complex unital Banach algebra j ^ , which will yield, as
a special case, the following result (cf. [3] for operator formulation):

THEOREM 0. Let a e sf. The sequence {an} converges iff
(i) Sp (a) — {1} lies in the open unit disc, and
(ii) 1 is a pole of (λ — α)"1 of order ^ 1.

(Sp (a) denotes the spectrum of the element a e Szf.) Rephrasing the
theorem slightly, we may say that the sequence {fn(a)} converges in
j y iff {/n(λ)} converges uniformly to zero on Sp (a) — {1} and 1 is
a pole of (λ — α)"1 of order g 1, where /Λ(λ) = Xn. In the sequel, we
shall consider functions more general than /n(λ) = λ%, employing the
operational calculus in a Banach algebra (cf. [2, Chapter V] or [1,
Chapter VII]).

A complex function / of complex variable will be called (in this
paper) power-like if the following two conditions are fulfilled:

(1) / i s analytic in a disc A(f) = {λ: | λ | < δ}, δ > 1 ,

( 2) (1 — /(λ))(l — λ)"1 has a removable singularity at λ = 1 .

A sequence {fn} of power-like functions will be called admissible for
if

(3) (1 - x)fn(x) -> 0 for each xej^f with Sp (x) c fl» 4/») and with
{/•(»)} convergent,

and
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( 4 ) Λ(0) >0.

We offer some examples of sequences of power-like functions
admissible for any algebra s$f:

( i ) The very prototype of such sequences, the sequence {Xn}
of integral powers of λ.

(ii) The sequence of Cesaro means of the integral powers,

. 1 ( 1 + λ + ... +X*- 1 ) .
n

(iii) Let {7«} be any sequence of complex numbers convergent
to 0. We may define fn inductively by one of the following formulae
[5, Proposition 2.1]:

Λ+1(λ) = (i - τM)λ/κ(λ) + yn, Λ(λ) = l ,

Λ+1(λ) - ((l - 7 jλ + 7Λ)Λ(λ),

In each of the three formulae, fn is a polynomial of the form

(5) Λ(λ) = 1 + (λ - l)βfn(λ) ,

where gn is a polynomial of degree ^ n — 2.
We observe that, by virtue of (2), each power-like function fn

can be written in the form (5) with gn analytic in Δ{fn).

THEOREM 1. Let {/J be an admissible sequence of power-like
functions, and let Sp (a) c f}n Δ{fn). Then {fn(a)} converges iff

( 6 )

where

( 7 ) p2
= P ,

a

pc =

= v -

cp = M e ) — > o .

Proof. Suppose first that Ma) —> p. Then (1 - α)p = p(l — α) =
0 in view of (3), and ap = pa — p. More generally,

(8) a

kp = pak = p , k ^ 0 .

For each complex λ g Sp (a) U {1},

(9 ) (λ - a)~"p - (λ - l)- 1^ .

This shows that p = 0 whenever λ = 1 is a regular point for (λ — a)"1.
Let CΛ be a contour in Λ(/Λ) enclosing Sp (a) U {1}. (Cn is a bound-
ary of an open set Z7n(=) Sp (α) U {1}) consisting of a finite number
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of closed rectiflable Jordan curves positively oriented with respect
to Un.) Then

PfJfi) = ΊK ί Λ(
2π^ icn

= -g-r \ Λ(λ)(λ - l)-ιdX = p/.(l) = 2)

we have used (9), and then (5) to get /n(l) = 1. Consequently,

p2 = p lim/Λ(α) = lim pfn(a) = p .

More generally, pk = p for each fc ^ 1, and induction (utilizing (8))
yields

(10) (α - pf = ak - p , k ^ 1 .

Let us write αΛjfe for fik)(0)/kl, and set c = a — p. Then

- Σ «.*α* - Γ Σ «.*1P
k=o Lfc=i J

= Σ α:»*(α ~ P)fe = /»(α - p) = Λ(o) ,
fc0

using the analyticity of /Λ on J(/ Λ )(3 Sp (α)), and the identity (10).
Therefore, fn(c) is defined, and

Me) = (Ma) - P) + MO)P > 0

by virtue of (4). Finally,

cp = pc = p(α — p) = pα — p2 = 0 .

Assume, conversely, that (6) and (7) hold. Then

ak = (p + c)k = p + cfc ,

and

Λ(α) = Λ(p + c) = Σ «»*(P + <0* = Λ(0) + Σ « *c* + Γ Σ α *ll>

= /»(c) + (1 - Λ(0))p > P a s % > oo .

If Λ(λ) = λw in the preceding theorem, we obtain the following
result.

COROLLARY. {an} converges iff a = p + c, where

p2 = p , pc = cp = 0 , lim || c* ||1/u < 1 .

The following theorem gives a sufficient condition for the con-
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vergence of {fn(a}} if {fn} is an admissible sequence of power-like
functions. A brief glance at Theorem 3 will tell the reader how
far this condition is from being also necessary. The proof of the
theorem could be based on our Theorem 1, on Theorem 5.5.1 [1, p.
174], and on Theorem VII.3.22 [2, p. 576]. We give a direct proof
which appears to be fairly simple and straightforward.

THEOREM 2. Let {fn} be an admissible sequence of power-like
functions. If

(i) all fn are analytic and uniformly convergent to zero on a
fixed open neighborhood Ω of Sp (a) — {1},
and

(ii) 1 is a pole of (λ — α)"1 of order ^ 1,
then {fja)} converges.

Proof. For a certain δ > 0,

(11) (λ - α)' 1 = (λ - l)~ιp + h(X) , 0 < I λ - 11 < δ ,

where h is analytic in an open neighborhood of Sp(α). We can
select a contour C in Ω enclosing Sp (α) — {1}, and for each n we
can find a positively oriented circle Cn — {λ: | λ - 11 = ε < δ} that
misses C and such that fn is analytic in an open neighborhood of
Cn. Using (11), we get

= " 5 ^ S
2π% J

Λ(λ)(λ - a)-ιd\ - - r M (λ - aT'dX
n 2πτ JC

ayldx + 2πι

Λ(λ)(λ - α)-^λ + - ^ ( gn(X)dX
2π% Jc

r r ( Λ(λ)(λ α)^λ + ^
2π% JC 2π%

fn(X)(X - a) ιdX ,

where gn is specified in (5). Hence

Wfja) — p || S — sup ||/Λ(λ)(λ — a)'1 || Ϊ(C) ̂  if sup |/Λ(λ) |

with

K = l&l- sup || (λ - a)'11|< + - , l(C) the length of C
2π i e c

This gives fja) —> j), and completes the proof.
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Theorem 2 has a partial converse which will be proved after
the following two auxiliary results.

xn

LEMMA 1. If xnx —> 1 and xxn —* 1, then x is invertible, and

Proof. Let N be a fixed positive integer such that

111 - s*a IK γ

For each ε > 0 we can find a positive integer n0 such that

|| xxn — xxm | | < e/(2|| xN ||) whenever n, m > n0.

Since

we get

and

1 II /y — /y 11 4- S

II %% — ̂ m II < s whenever n, m > n0 .

Hence xn-+y for some 2/e J ^ and yx = xy = 1.

LEMMA 2. Lei {/Λ} δe α^ arbitrary sequence of power-like func-
tions with Γ)n A(fv) 3 Sp (c). // /n(c) —• 0, then 1 is a regular point
for (λ — c)~ι, and

gn(c)

with gn defined in (5).

Proof. If fn{c) — 0, then

βrTO(c)(l - c) = ( 1 - c)gn(c) > 1 .

The result follows on taking xn = ^w(c) and a? — 1 — c in Lemma 1.
A special case of Lemma 1 for the algebra of bounded linear

operators on a Banach space and with fn polynomials of a certain
form has been proved in [4, Proposition 5]. A particularly simple
form of Lemma 2 is the following well known result: If cn—»0,
then the series Σ » °n converges to (1 — c)"1. Also:

~'cn + 1 0 n~\l + c + + cn~ι) > ( 1 - c ) " 1 ,
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n~\l + c + + c%-1) > 0 = > Σ n

etc.

THEOREM 3. Lei {fn} be an admissible sequence of power-like
functions with f\nA{fn)ZD Sp (α). // {/Λ(α)} converges, then

(i) Λ(λ)—>0 uniformly on Sp (α) — {1},
απcί

(ii) 1 is α poiβ o/ (λ — α)~x of order ^ 1.

Proof. Suppose fn(a) —+ p. The elements p and c = a — p satisfy
the conditions (6) and (7), in particular, fn(c) —> 0. By Lemma 2, 1
is a regular point for (λ — c)~~\ and hence the function

is analytic in a certain open neighborhood of 1. The function

u(X) = h(X) + (λ - l )- 1 ^

has a pole of order ^ 1 at X = 1. The elements λ — α and
commute (whenever the latter is defined). Moreover,

(λ - a)u(X) = (λ - α)(λ - ^ - ' ( l - p) + (λ - l)- !(λ - a)p

= (X - c)-\X(l -p)-c) + p

= (X - cJ- 'Ml - p) - c + (λ - c)p)

= (λ - c)-χ(λ - c)

— i m

Hence, u(X) = (X — α)"1, and

(12) (λ - α)"1 - (λ - c)-\l - p) + (λ - l Γ p .

The identity (12) shows that

Finally, Λ(c)->0 implies Λ(λ)->0 uniformly on Sp(c) [1, p. 584],
and the proof is complete.
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