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Abstract
We study the Cauchy problem for the dissipative Benjamine-@quationsu; +
Huxx+ |D|*u+uuy, = 0 with 0< o < 2. When 0< « < 1, we show the ill-posedness

in HS(R), s € R, in the sense that the flow map — u (if it exists) fails to beC? at
the origin. For 1< « < 2, we prove the global well-posednessHif(R), s > —«/4.
It turns out that this index is optimal.

1. Introduction, main results and notations

1.1. Introduction. In this work we consider the Cauchy problem for the follow-
ing dissipative Benjamin—Ono equations

(dBO) {“t+HUxx+|DIU+uux=0, t>0, x€R,

u(, -) = ug € H3(R),

with 0 < o < 2, and whereH is the Hilbert transform defined by
1 1 1, s
HE() = —pv| o+ T )(x)=F (=1 sgn€) (§))(x),

and |D|* is the Fourier multiplier with symbol&|*.

Whena = 0, (dBO) is the ordinary Benjamin—Ono equation derived byjBmin
[2] and later by Ono [15] as a model for one-dimensional wavedeep water. The
Cauchy problem for the Benjamin—Ono equation has been sixtdn studied these last
years. It has been proved in [19] that (BO) is globally welked inH3(R) for s > 3,
and then fors > 3/2 in [18] and [9]. In [21], Tao get the well-posedness of thigia-
tion for s > 1 by using a gauge transformation (which is a modified vergibrthe
Cole—Hopf transformation). Recently, combining a gaugagformation together with
a Bourgain’s method, lonescu and Kenig [8] finally shown tbae could go down
to L2(R), and this seems to be, in some sense, optimal. It is wortltingtthat all
these results have been obtained by compactness methodsheQuther hand, Mo-
linet, Saut and Tzvetkov [13] proved that for alle R, the flow mapug > u is not
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of classC? from HS(R) to HS(R). Furthermore, building suitable families of approxi-
mate solutions, Koch and Tzvetkov proved in [10] that the flmap is actually not
even uniformly continuous on bounded setstbf(R), s > 0. As an important conse-
quence of this, since a Picard iteration scheme would implpath dependance upon
the initial data, we see that such a scheme cannot be used solggons in any space
continuously embedded i6i([0, T]; H3(R)).

Whena = 2, (dBO) is the so-called Benjamin—Ono—Burgers equation

(BOB) Ur + (H — Duyy + uuy = 0.

Edwin and Robert [6] have derived (BOB) by means of formalngsiptic expansions
in order to describe wave motions by intense magnetic fluwe tibthe solar atmos-
phere. The dissipative effects in that context are due tda beaduction. (BOB) has
been studied in many papers, see [4, 7, 23]. Working in Bon'sgapaces containing
both dispersive and dissipative effégt©tani showed in [16] that (BOB) is globally
well-posed inHS(R), s > —1/2. In this paper, we prove that this index is in fact crit-
ical since the flow mapiy — u is not of classC® from HS(R) to H5(R), s < —1/2.
As expected, since the dispersive and the dissipative tgpsrare of the same order,
this index coincides with the critical Sobolev space for Biggers equation

UI_Uxx+qu =O,

see [5, 1]. This result is in a marked contrast with what ogdor the KdV-Burgers
equation which is well-posed abovwé1(R), see [11].

Now consider the general case<Ox < 2. By running the approach of [11] com-
bined with the smoothing relation obtained in [16], we carlyaget that the problem
(dBO) is well-posed inHS(R) for 3/2 < @ <2 ands > 1/2 — «/2. This was done
by Otani in [17]. Here we improve this result by showing thdBQ) is globally well-
posed inHS(R), for 1 < o <2 ands > —a/4. It is worth comparing (dBO) with the
pure dissipative equation

(1.1) Us + |D[*u + uuy = 0.

In Appendix, we show that (1.1) with & « < 2 is well-posed inHS(R) as soon as >
3/2— «. The technics we use are very common in the context of semailiparabolic
problems and can be easily adapted to (dBO). In particulaanwh= 2, this provides
an alternative (and simpler) proof of our main result. Wher 2, clearly we see that
the dispersive part in (dBO) plays a key role in the low regtyleof the solution.

We are going to perform a fixed point argument on the integoaifilation of
(dBO) in the weighted Sobolev space

(1.2) Iullxes = 11 (v = £IED) + 1§1°)°(E)°Fu(z, §)ll2ma).

1Such spaces were first introduced by Molinet and Ribaud in fafifhe KdV-Burgers equation.
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This will be achieved by deriving a bilinear estimate in #hespaces. By Plancherel’s
theorem and duality, it reduces to estimating a weightedsaation of L? functions.
In some regions where the dispersive effect is too weak tovexcthe lost derivative
in the nonlinear term at low regularitys & —«/4), in particular when considering the
high-high interactions, we are led to use a dyadic approbci0], Tao systematically
studied some nonlinear dispersive equations like KdV, &tihger or wave equation
by using such a dyadic decomposition and orthogonalityloihg the spirit of Tao’s
works, we shall prove some estimates on dyadic blocks, wiriaki be of independent
interest. Indeed, we believe that they could certainly bedusr other equations based
on a Benjamin—Ono-type dispersion.

Next, we show that our well-posedness results turn out toHaeps Adapting the
arguments used in [13] to prove the ill-posedness of (BO),fiwé that the solution
map ug — u (if it exists) cannot bec® at the origin fromHS(R) to HS(R) as soon as
s < —a/4. See also [3, 11, 12, 22] for situations where this methqulies Note that
we need to prove the discontinuity of the third iterativerteto obtain the condition
s < —a/4, whereas the second iterate is usually sufficient to getpgimal result. On
the other hand, we prove using similar arguments, that incdme 0< o < 1, the
solution map fails to b&? in any HS(R), s € R. This is mainly due to the fact that
the operator|D|* is too weak to counterbalance the lost derivative which appén
the nonlinear ternd,u?.

1.2. Main results. Let us now formally state our results.

Theorem 1.1. Letl < a <2 and b € H3(R) with s > —a/4. Then for any
T > 0, there exists a unique solution u ¢fiBO) in

Zr = C((0, T]; HE(®)) N X}/7°.

Moreovey the map @ — u is smooth from K(R) to Zr and u belongs to
C((0, T], H*(R)).

REMARK 1.1. The spacek(ijsT are restricted versions o2 defined by the norm
(1.2). See Section 1.3 for a precise definition.

REMARK 1.2. In[17], Otani studied a larger family of dispersivesipative equa-
tions taking the form

(1.3) us — |[D|¥3uy + |D|[*u+uuy =0

with a > 0 anda > 0. He showed that (1.3) is globally well-posed k¥ (R) provided
at+a=<3 a>B-a/2ands> —(a+a—1)/2. If a=0, it is clear that we get a
better result, at least when< 2. It will be an interesting challenge to adapt our method
of proofs to (1.3) in the case > 0.
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REMARK 1.3. Another interesting problem should be to consider #véodic dis-
sipative BO equations
(1.4) Ut + Huxx + |[D|*u4+uuy =0, t>0,xeT,
' u(, -) = up € H¥(T),

Recall that in [14], Molinet proved the global well-posedned the periodic BO equa-
tion in L?(T). To our knowledge, equation (1.4) in the case> 0 has never been
investigated.

Theorem 1.1 is sharp in the following sense.

Theorem 1.2. Letl <« <2 and s< —a/4. There does not exist + 0 such
that the Cauchy problenfdBO) admits a unique local solution defined on the interval
[0, T] and such that the flow mapou— u is of classC® in a neighborhood of the
origin from H3(R) to HS(R).

In the case X @ < 1, we have the following ill-posedness result.

Theorem 1.3. Let0 <« <1 and s R. There does not exist & 0 such that
the Cauchy problenfdBO) admits a unique local solution defined on the intef\IT]
and such that the flow map e u is of classC? in a neighborhood of the origin from
HS(R) to HS(R).

REMARK 1.4. At the end-pointt = 1, our proof of Theorem 1.3 fails. However,
Theorem 1.2 provides the ill-posednessHA(R), for s < —1/4. So, it is still not clear
of what happens to (dBO) wheln= 1 ands > —1/4.

The structure of our paper is as follows. We introduce a fetatian in the rest of
this section. In Section 2, we recall some estimates relatége linear (dBO) equations.
Next, we prove the crucial bilinear estimate in Section 3iclleads to the proof of The-
orem 1.1 in Section 4. Section 5 is devoted to the ill-posssimesults (Theorems 1.2 and
1.3). Finally, we briefly study the dissipative equatiorljlin Appendix.

1.3. Notations. When writing A < B (for A and B nonnegative), we mean that
there existsC > 0 independent ofA and B such thatA < CB. Similarly defineA > B
and A ~ B. If AcC RN, |A| denotes its Lebesgue measure gnits characteristic
function. For f € S'(RN), we define its Fourier transfori&(f) (or f) by

FfE) = fR e '8 £ (x) dx.
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The Lebesgue spaces are endowed with the norm

1/p
”f”LP(RN):(/ If(X)Ide) » l=p<oo
RN

with the usual modification forp = co. We also consider the space-time Lebesgue
spacesLfL{ defined by

e = [l | ey

Forb,s € R, we define the Sobolev space$(R) and their space-time versiohs®S(R?)

by the norms
R 1/2
nww=(A@WH@F®),
172
wmm=(&uﬁ@ﬁmmafmdg |

with (-) = (1 +]-|?)Y2 Let V(-) be the free linear group associated to the linear
Benjamin—Ono equation, i.e.

VteR, F(V([De)E) =exp(tslENeE), ¢ < S

We will mainly work in the X2° space defined in (1.2), and in its restricted version
ngr, T > 0, equipped with the norm

lulles = inf {Jw]lee, w(t) = u(t) on [0, T]).
“ weXe®

Note that sinceF(V (—t)u)(z,£) = ((r +£|£|,€), we can re-express the norm ¥PS as

lullges = [I(iT + [€]*)°)50(r + £[&], &)l L2@e)
= (it + [£]")°(€)SF(V(-)u)(z, &) | L2qme)
~ IV (=t)ullns + (U]l zpgee.

Finally, we denote hyS, the semigroup associated with the free evolution of (dBO),
Vt =0, F(S)e)E) = explitslg] —[£|t]o(E), ¢ €S,
and we extend, to a linear operator defined on the whole real axis by setting

(1.5) VteR, F(SM)e)() = explits|g] - [51*[t]]o(), ¢ €S
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2. Linear estimates

In this section, we collect together several linear est®ain the operator§, in-
troduced in (1.5) and., defined by

t
Le: f = XR+(t)1p(t)/o S/t —t)ft)dt.

Recall that (dBO) is equivalent to its integral formulation

1 t
@) ut) = SOu— [ Sa-vnEEe)dr.

It will be convenient to replace the local-in-time integrabuation (2.1) with a
global-in-time truncated integral equation. L¢tbe a cutoff function such that

¥ e CP(R), suppy C[-2,2], ¥ =1on[-1,1],

and defineyr(-) = (- /T) for all T > 0. We can replace (2.1) on the time interval
[0, T], T <1 by the equation

@2 u=vo[sow-20 [se-onwioeea)

Proofs of the results stated here can be obtained by a slighiification of the
linear estimates derived in [11].

Lemma 2.1. For all s € R and all ¢ € H5(R),
(2.3) ¥ () (Ol yazs < ll@lns.

Lemma 2.2. LetseR. Forall 0 <8 < 1/2 and all v e Xg /2™,

t
(2.4) ‘x]&(t)w(t)fo St —t)u()dt < lvllycazess.

‘Xl/Z.s
To globalize our solution, we will need the next lemma.

Lemma 2.3. Let seR and$ > 0. Then for any fe X2,

t
L / St —t)F(t) dt € C(R,; HST¥),
0
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Moreover if (f,) is a sequence satisfying, £> 0 in X3 ”?™ then

— 0.
LOQ(R+:H5+O(&)

H / "S- ) fa(t)
0

3. Bilinear estimates

3.1. Dyadic blocks estimates. We introduce Tao’sK; Z]-multipliers theory [20]
and derive the dyadic blocks estimates for the Benjamin—Eumeation.

Let Z be any abelian additive group with an invariant meaglye For any integer
k > 2 we define the hyperplane

N(Z)={(....m)€Z nm+-+n=0
which is endowed with the measure

/ f= / f(1, ..o M1, —(n1 4 -+ + M=) Ay - - - digge—r.
Fk(Z) Zk-1

A [k; Z]-multiplier is defined to be any functiom: I'y(Z) — C. The multiplier norm
Imlli.z; is defined to be the best constant such that the inequality

k k
(3.1) [ m [T 60 = Imlz [T o
Tw(2Z) j=1 j=1
holds for all test functionsfy, ..., fx on Z. In other words,

Mz = sup
fe5(2)
1] 2 =1

k
[ mo 1500

In his paper [20], Tao used the following notations. Cajzeal variablesN;, L; (j =
1,...,k) are presumed to be dyadic, i.e. range over numbers of tme #hrl € Z. In
this paper, we only consider the case= 3, which corresponds to the quadratic non-
linearity in the equation. It will be convenient to define theantitieSNmax > Nmed >
Nmin to be the maximum, median and minimum Nf, N, N3 respectively. Similarly,
define Linax > Lmed > Lmin WheneverL,, Ly, L3 > 0. The quantitiesN; will measure
the magnitude of frequencies of our waves, wHile measures how closely our waves
approximate a free solution.

Here we consider [R x R]-multipliers and we parameteriZR x R by n = (t, &)
endowed with the Lebesgue measudreds. Define
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and the resonance function

h(&) = ho(§1) + ho(&2) + ho(&3), & = (61, &2, £3).

By a dyadic decomposition of the variablgs 2, h(¢), we will be led to estimate

(3.2) | XNy, Ny N, HL L, Lo, Ls 3R XR]
where
3
(3.3) XNy, Na,Na,H, L1, La,Lg = X[n(&)|~H l_[ X[ I~Nj X[ [~L -

j=1
From the identities
(3.4) & 4+&+E&5=0

and
M+A2+Ar3+h(E)=0

on the support of the multiplier, we see that (3.3) vanishdsas

(3.5) Nmax ~ Nmed
and
(3.6) L max ~ max(H, Lmed)-

Lemma 3.1. On the support of X, n,,Ns H,L;L,Ls, ONE has
(3.7) H ~ NmaxNmin-

Proof. Recall that
h(&) = &11&1] + &21&2] + &al&sl.

By symmetry, we can assumeé&s| ~ Nmin. This forces by (3.4%1&, < 0. Suppose for
exampleg; > 0 andé, < O (the other case being similar). Thenéif > 0,

h(§) = &7 — &2 + €2 = & — (E1 + &3)° + &5 = —251&3
and in this caseh(&)| ~ NmaxNmin. Now if &3 < O, then
h(g) = £ — &5 — &2 = (& + &3)° — &2 — £2 = 26583

and it follows again thath(¢)| ~ NmaxNmin- O
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Let us now recall some lemmas proved in [20].

Lemma 3.2 (Comparison principle). If m and M are [k; Z]-multipliers and
Im(&)| = M(§) for all § € I'(2), then M|z < [Ml|:z;-

Lemma 3.3 (Tensor products). Let Z;, Z, be abelian groupswith Z; x Z, param-
eterized by(&?, £2), and my, my be[k; Z1] and[k; Z,] multipliers respectively. Define the
tensor product m® my to be thelk; Z; x Z,] multiplier

My ® Ma((67, &), . .., (&F 6D) = mu(EL, . .. EDMEL, ..., ED).

Then we have

M1 ® M2k, z,xz,] = M llpkzo lIMzllxz,)-
Lemma 3.4. For any function ng) from Z toR, we have||m(£1)|z.z7 = Iml|.z.

Lemma 3.5 (Box localization). SupposgR + 7),cx iS a box covering of Z(so
T is a discrete subgroup of )Zand m is a[k; Z]-multiplier such that eactsupp (m)
is contained in a box in this covering for all< j <k —2. Then

”m”[k:Z] ~ sup ”m(g)XR+17k—1(Ek—l)XR+ﬂk($k)||[k:Z]-
Nk—1,7k

Lemma 3.6. For any complex functions 1(¢), my(¢) on Z we have

2 2
[[fma | [mg] %] L2 -

1/2
12 = Loo-
|_1

5 . Im1(ED)ma(E2)li3:21 < [IIMal? * [mg)?]|
[[fmq]2 * [ma]2]

We are now ready to state the fundamental dyadic blocks atsrior the Benjamin—
Ono equation.

Proposition 3.1. Let N, Np, N3, H, Ly, Lo, L3 > 0 satisfying(3.5), (3.6), (3.7)
1. In the high modulation case glax ~ Lmed > H, we have

1/2,,1/2
(3.8) (3-2)S LyinNet.

2. In the low modulation case phax~ H,
(@) ((++) coherencg if Nmax~ Nmin, then

(3.9) (3.2)< Lyl ey
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(b) ((+-) coherencgif N ~ N3 > N; and H~ L; > L,, L3, we have for any
y >0
(3.10) (3.2)< Lz min(Npia, NY2-12r NzL2r w2y,

min min’ ' Ymax min med

Similarly for permutations of the index€4, 2, 3.
(c) In all other casesthe multiplier (3.3) vanishes.

Proof. First we consider the high modulation cdsgay ~ Lmeq > H. Suppose
for the moment thatL; > L, > Lz and N; > N, > N3. By using the comparison

principle (Lemma 3.2), we have

(3.2) < |1 x1sl~Ns X5~ Ls | 3:R xR] -

By Lemma 3.3 and Lemma 3.4,

1/2\,1/2
(3-2) < [1xpnal~Lalliz:mr Xl [ gy < Lg™ N3™

It is clear from symmetry that (3.8) holds for any choicelgf and Nj, j =1, 2, 3.
Now we turn to the low modulation cadé ~ L Suppose for the moment that
N; > N2 > N3. The &3 variable is currently localized to the annulfigs| ~ N3}. By a
finite partition of unity we can restrict it further to a bdllé; — §§| <« N3z} for some
|§§| ~ Nz. Then by box localization (Lemma 3.5) we may localigg &, similarly to
regions{|& — &7 < Na} and {|&; — £7| < N} where[¢P| ~ Nj. We may assume that
|£9+£9+£9] <« N3 since we havé; +&+£ = 0. We summarize this symmetrically as

3

X|h($)|~H 1_[ X‘E] _€j0|<<NmmXMJ' |"’Lj
j=1

B.29)<

[3:RxR]

for some&? satisfying

69~ Nj for j =1,2,3 [&) + &) + £9] < Npin.

Without loss of generality, we assuntg > L, > L3. By Lemma 3.3, Lemma 3.2 and
Lemma 3.6, we get

3

K@ H | T X101 N Xl 1L
j=2

825

[3:RxR]
< H(z2, £2): 162 — €9 < Nmin, |12 — ho(£2)| ~ Lo,
& — & — 2] < Nmin, |7 — 72 — ho(E — &)| ~ La}|*?
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for some ¢, &) € R x R. For fixed &, the set of possible; ranges in an interval of
length O(L3) and vanishes unless

ho(£2) + ho(§ —&2) = 7 + O(L2).

On the other hand, inequalityf — & — £9| < Nmin implies |£ + £7| < Nmin, hence
(32) 5 Lg%l
for some& such that|é + 2] < Nmin (in particular ] ~ N;) and with

Q= (& |&2 — €3] < Nmin, ho(€2) + ho(€ — &) = 7 + O(L2)}.
Let us write Q; = QF U Q2 with

Ql = (&2 € Qs £2(6 — &) > 0},
Q% = (& € Q: E(E — &) < O).

We only need to consider the three cadés~ N, ~ N3, N2 ~ N3 > N; and N; ~
Nz > N3 (the caseN; ~ N3 > N, follows by symmetry).

Estimate of|Q}|: In ©; we can assumé, > 0 and¢ — &, > 0 (the other case
being similar). Then we have

A
No(ee) + Pole — &) = 85+ 6 — 82 =2(52- 3 ) + 5

and thus

2 2
(3.11) 2(%'2 - %) + % =174 O(Ly).

If Np ~ N2 ~ N3, we see from (3.11) that, variable is contained in the union of two
intervals of IengthO(Lé/z) at worst. Therefor¢§2§| < Lé/z in this case. IfN; ~ No >

N3, then
3 Ef &+ Sf
‘(ég B E) + 2

2

< — &3] + |&) + & + &5

£ —£5 —

A

1
< 62— &1 + € + &1 + 18] + 67 + &2 + &)

< Ns

and we get|é, — &£/2| ~ N;. From (3.11), we see that we must haM% = O(Ly),
which is in contradiction withL, < L3 ~ NmaxNmin. We deduce that the multiplier
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vanishes in this region. 1N, ~ N3 > Nj, then we obviously havés, — £/2| ~ N,
and, in the same way, the multiplier vanishes.
Estimate of|52§|: We can assumé, > 0 andé — & < 0. It follows that

B12)  hofed) + hos — &) = & - (6 — & = 2682~ § ) = 7+ OLa).

If N; ~ N> ~ N3, we see from (3.12) tha%, variable is contained in the union of
two intervals of lengthO(N;L;) at worst. But we haveL; < L3 ~ N? and thus
|Q§| < Lé/z in this region. IfN; ~ N, 3> N3, we have|&,—&/2| ~ N; as previously and
thus Nf = O(L,), the multiplier vanishes. IN, ~ N3 > N, then|é; —&/2] ~ N, and
for any y > 0, we havelé,—&/2| ~ Nzl_”|f§2—$/2|1’. Therefore we see from (3.12) that
£, variable is contained in the union of two intervals of lengdfN, " N,/ L3")
at worst, and fromlé, — £9] < Nmin we see thaf?| < Ny, and (3.10) follows. []

min?

3.2. Bilinear estimate. In this section we prove the following crucial bilinear
estimate.

Theorem 3.1. Letl<a <2 and s> —a/4. For all T > 0, there exists, v > 0

such that for all yv € X with compact supporin time) in [T, +T],

(3.13) [|9x (uv)|] xU2s S TV|jull x2S lvll XL/2s-

To get the required contraction fact®? in our estimates, the next lemma is very
useful (see [17]).

Lemma 3.7. Let f e L?(R?) with compact supporfin time) in [-T, +T]. For
any 6 > 0, there existsv = v(6) > 0 such that

o _f@9) )
F (—
|7 (=
Proof of Theorem 3.1. By duality, Plancherel and Lemma 3i7suffices to
show that

STl

2
th

<1

~

[3;RxR]

H £3(&3)%(51) (&)
(IAa] + &) V2 (x2] + |E2]*)Y/2(|A3| + |E3|*)2/2D

By a dyadic decomposition of the variablég, 1j, h(§), we may assumegt;| ~ Nj,
[xjl ~ L;j and |h(¢§)| ~ H. By the translation invariance of thé&,[Z]-multiplier norm,
we can always restrict our estimate by 2 1 andNmax 2 1. The comparison principle
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and orthogonality reduce our estimate to show that

Z N3(N3)$(N1)75(N2)~°
(L1 + (N2)*)¥2(L2 + (N2)*)Y/2(Lg + (Ng)*)¥/2-?

(3.14) Ninax~Nmea~N L1,L2,L5>1

X || XNg, No, N, L L1, L, Ls || [3:R R]

and

Z Z N3(N3) (N ) (NZ)
(3.15)  Noar NeareN Lo oneg H e (E1 T (N2)P2(L2 4+ (N2))/2(Lg + (Na))¥/2
X [ XNy, No, N, H, L, Lo, L | [3:R <R]

are bounded, for alN > 1.
We first show that (3.15% 1. Fors > —1/2, one has

N3 ( N3>S( Nl>_s( N2>_S 5 ( Nmin) - Nmax

and we get from (3.8),

1/2\1/2
@19 >, Y (N N LN

Nimax~N Limax> N N Lo max+ N2 (L + (Niin) ) Y27 L,

Nmin ( Nmin) N

pS N§0 (N Nunin + N)725(N Nepiny + (Nepin)*) /23

When Npin S 1, we get

N/ZN
3.15)< i
( ) Zl Na/Z—MS(N Nmin)1/278

Nmin<

Z Nrfﬂn N (1-a)/2+8(a+1)

Nmin<1

<1

A

for § < 1 anda > 1. WhenNpn = 1, then

Nl/.ZfsN

min
N%gl (N Niyin) /2737 N@¢ (N Npyin) /2=
Z Nr;#]/Z—s+25+s N2 e(a—1)

NminZ1

<1

(3.15)<

A
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for e =25/(e —1)> 0,8 < 1 ands > —1/2.
Now we show that (3.14K 1. We first deal with the contribution where (3.9)
holds. In this caséNmin ~ Nmax and we get

N1-s| /2| 1/4

(3.14)5 min—med
LENZ Liia(Lmed+ NoYY2(Lmax+ N2 2LE
les

<
~ Ne/4N1-48
< N—S—a/4+48 <1

for s> —a/4 ands < 1.
Now we consider the contribution where (3.10) applies. Bymetry it suffices
to treat the two cases

Ni~ N2> N3, H~L3Z Ly, Lo,
N>~ N3> Ni, H~ Ly 2Ly, La.

In the first case, estimate (3.10) applied wijth= 1 yields

1/2 . 1/2 -1/2, 1/2 1/2\1/4\—1/4, 1/4 1/2, 1/4
(3.2) < Lain m|n(N3 v N3 7 Lied < LninNg™ N3 ™ 'Lijeg ~ LiinLmed

and thus
_ 1/2, 1/4
Y Y Na(Na)SN-#LEL rey
N3>0 Lmax~NNs L in(Lmed+ N)Y2(Lmax+ (Niin) ) Y22 L

- N3(N3)*N 23
~ Z Na/4(N N3)1/2—25

N3>0

1/2+25 25 /4
< Z Ns/ (Ng)SN 25-a/4-1/2+25
N3>0

Since—2s—a/4—1/2+ 256 < 0, we may write

(3.14) < Z NL/2+2 (Ng)—s-a/4-1/2+25

N3>O
1/2+28 —S—a/4+48
SYNTTEYON,
N351 N3Zl
<1

for s < 1 ands > —a/4.
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Finally consider the cas®l, ~ N3 > N;, H ~L; 2 Ly, L3. Let0< y < 1. If
we assumeNY? < NyZ Y2 N _Y2r| Y2r e | 0> NEYNEY | then we get from

min ~ min med ? min 1
(3.10) that
(N1) >N LaN, "2
G1ys > > -
Ng>0 LmacwN Ny Lia(Lmea+ No)28 LgiZoLe
<y Ny/%(Ny) N
G0 (VNG o NeY2- 3 (N Ny /20

NS Nl) SN1/2+8

<
MZ>0 NV N7 4 Neyy2es

If Ni <1, then
(3.14)< Z NS N (-)/2+(1+0) < 1
N;<1
for § « 1 anda > 1. If N; = 1, then

N]TS+5 N 1/2+68

3.14) <
(3149)= ’\%1 (NL-v N11+V)1/2fafs Nee

< Z NIS*1/2+(1+V)(5+5)+5*V/2Ny(l/278)+2878(a71+y)
N;>1
<1

for 6,y < 1,s> —1/2 ande = [26 + y(1/2—8)]/(e —1 + y) > 0. If we assume

1/2 1 2—1 2 -1/2 1/2 . 1+
N2 > Notac Y2 N2 LY20 e, Limed < Nimak Not? | we get

SN L1/2N1/2 1/2y N—l/z)’ Ll/zl’

(Ng)~ d
(8.14)< Z Z L2 125 ame
LmaX

1/2-5
MmO Loy Emin(Lmed+ N@)Y270 Lm0

2 X

N;>0 Lmed< NL1-» Ni-JrV

N171/2y71/2+5 (Nq)~SN 1-1/2y+8 L#/EZg

(Lmed + Na)l/ZﬂS

When N; < 1, we have
(314) < Z |\|1*:|-/2)’*1/2+fS N1-1/2y+8 Nfot/2+a8(ley NjZ-lJr)/)l/Zy

N; <1

5 Z NiSN(l—a)/2+5(1+a) S 1
N; <1
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for § <« 1 anda > 1. WhenN; > 1, then

(314) < Z N;5*1/2*1/27/+5 N 171/2y+8(N 1-y N]%+V)1/2y71/2+8+e N~
N =1
< Z N1—5—1/2+(1+V)(5+€)+5—V/2Ny(1/2—8)+28—s(a—1+y)
Nyl

<1
as previously. This completes the proof of Theorem 3.1. ]

4. Proof of Theorem 1.1

In this section, we sketch the proof of Theorem 1.1 (see fataimce [11] for
the details).

Actually, local existence of a solution is a consequenceheffollowing modified
version of Theorem 3.1.

Proposition 4.1. Given § > —«/4, there existv,§ > 0 such that for any & s

and any yv € XY with compact support ifi—T, +T],

@D ol S T (lullses I0laes + lullgzslvl e )-
Estimate (4.1) is obtained thanks to (3.13) and the triangeuality
Vs sl (6)°=(5)% (¥ +(5)F (6 -£)° .
Let ug € HS(R) with s > —«a/4. Define F(u) as
N XIR+(t) ! / 2 141\ 2[4/ ’
F(u) =y (O] S(Ouo— == ; S (t - )ax(Yr () (t)) dt’ .
We shall prove that foiT <« 1, F is contraction in a ball of the Banach space
Z = fue X2 ullz = ull yew + yllullgaes < +oo),
wherey is defined for all nontriviaky by

ol st
y = :
lellme




DISSIPATIVE BENJAMIN—ONE EQUATIONS 949
Combining (2.3), (2.4) as well as (4.1), it is easy to derivatt
IFW)llz < C(lluoll s + ¥lluollns) + CTV|ull

and
[F(U)—F@)llz =CT"lu—vlz[lu+vlz

for someC, v > 0. Thus, takingT = T(IIUolng) small enough, we deduce thét
is contractive on the ball of radiusC4uo|,,s+ in Z. This proves the existence of a
solutionu to u = F(u) in X}/5°.

Following similar arguments of [11], it is not too difficulbtsee that ifuy, u; €

X/2° are solutions to (2.2) and @ § < T/2, then there exists > 0 such that

s = all ez 5 T (luallazs + el eze ) U2 = vallze

which leads tou; = u, on [0, 4], and then on [0T] by iteration. This proves the
uniqueness of the solution.

It is straightforward to check the&,(-)up € C(R,; H3(R)) N C(R* ; H®(R)). Then
it follows from Theorem 3.1, Lemma 2.3 and the local exiseenf the solution that

u e C([0, T]; HS(R)) N C((0, T]; HS™*(R))

for someT = T(||uoll,,¢ ). By induction, we haves € C((0, T]; H*(R)). Taking the
L2-scalar product of (dBO) withu, we obtain that u®)ll,;s is nonincreasing on
(0, T]. Since the existence time of the solution depends only @nrtorm ||uo|,,«
this implies that the solution can be extended globally meti

5. lll-posedness results

This section is devoted to the proof of Theorems 1.2 and 1.8.adbpt the nota-

tion p(§) = &[5
Assume thatu is a solution to (dBO) such that the solution map+— u is of
classCk (k = 2 or k = 3) at the origin fromH3(R) to H3(R). The relation

1 t
FU o) = Ut )~ SO + 5 | -0 ) dt =0
0
combined with implicit function theorem gives
au
uy(t, x) := %(t, X, 0)[h] = S.(t)h,

2 t
Ualt, %) = 2—;(t,x, O)lh, h] = /O St — ) (a2 dt,
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us(t, x) := gi(;(t, X, 0)[h, h, h] = /Ot Si(t — t)dx(ur(t)uo(t')) dt’,
etc.

Since the solution map €%, we must have

(5.1) luk®llns < Ihilfs  Vh € H(R).

In the sequel, we will show that (5.1) fails in the casec@ < 1 andk = 2, and in
the case Ka <2,k =3 ands < —a/4.

5.1. The case &k « < 1. It suffices to show the following lemma.

Lemma 5.1. Let0 <« < 1 and se R. There exists a sequence of functions
{hn} € H3(R) such that for all T> 0,

[hnllks < 1,

and

lim sup|
N—oo [0,T]

= —+o00.
HS

t
/O Su(t — 1) (S (1)) dt

Proof. We defineny by its Fourier transfor

(&) = ¥ 20,6 + v *N"°x,(8)

with 11 =[y/2,y], =[N, N+y]and N > 1, y < N to be chosen later. Then it
is clear that|hn||ns ~ 1. Computing the Fourier transform of(t) leads to

Fx(uz(t))(§)

t
=t / & (1PE) g (Ve (@t POV [ Y72(£) dit
0

= cee'POg 1kl /}R P (€1) P (& — &1)

t
x / U P+ —E)pEN gt (Eal +E—61"—E1) 4t/ (i,
0

= cee' POkl / b (£1) P (€ — £1)
R
L (P(E)+ PE—61) PE)) @ t(Ia 7+ E~&xl—g") _ 1 .
. i(p(&1) + P —&1) — p&)) — (|&l* + | — &1l* — [£]%) s

2As noticed in [13],hy is not a real-valued function but the analysis works as wall e hy
instead ofhy.
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Set
x (&, &) =1(p&1) + P —&1) — p(&)) — (I521” + 1§ — &l — 1§1%).
By support considerations, we hayes(t)||s > ||va(t)|| s with

etX(Efl) -1

(52) Fe(v20)(€) = cN-Sy 15O tEr /K G
TG

and
Ke={61:61€l, § &€l Ul&rré1€ly § -6 €la}.
We easily see that if; € K¢, theng € [N + /2, N + 2y] and
p(§1) + p(E —&1) — p(§) = 261(51— &) ~ ¥N,
11" + 1§ — &% — 1§]* < N
We deduce that foy = N*~1 <« N, we have|x(&, &)| ~ N¢. Now define
tn=(N+2y) " ~N“*
so thate WlEI” > 1. By a Taylor expansion of the exponential function,

einxE8) _ 1

=ty + R(tn, &, &1)

with
tk , k—1
|R(tN1 sv sl)l S Z M s N—a—25.

k=2 k

Therefore the main contribution of (5.3) in (5.2) is given ty, and since/Kg| ~ y,
it follows that

| Fx(va(tn)) ()]

2V

NSty =N F207 ) N=* = 3 o N2 (6)

2 NS iy 220 (6)
We get the lower bound for thel®-norm of u,(ty)

N+2y

12
||u2(tN)||H5 > Nfs+lfafs (/ (l + |§|2)Sd§) ~ leotfsyl/Z ~ N(lfa)/ng,
N

+y/2

which leads to

lim sup||uz(t)||us = +oo
N—oo [0,T]

for e € 1 anda < 1, as desired. O
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5.2. Thecase xa <2. Letl<a <2 ands < —a/4. As previously, it suf-
fices to find a suitable sequen¢ley} such that|hy|rs <1 and

lim sup||uz(t)||ps = +oc.
N—o0 [0,T]

With this purpose, we define the real-valued function by

(5.4) hn(E) = N7y 201, (8) + X1 (=€)

with Iy =[N, N +2y], N> 1 andy <« N to be chosen later. We have

FulUst)(E) = c& /o & VPO VT 7(5, (t)hy) * F(Uz(t))(E) dt

and
PO * Bl )E) = ¢ [ M) - £)n(e — £t
it'(P(5 —£2)+ P(52)) *t'(\éfézl“rlézl")% dé&; d
e © x (&2, &) L8

Hence, we can writel3 = vz — w3 with
Fx(vs(t))(§)
= cée'tp@)e*”f‘”/ P (E2) P (62 — £) P (€ — &2)

X (52 &1)
“ / (P Plea—80)+PLE )~ PEN t(Ex +Heo&11"+E -5 1€ 4y e, di,
0

g eMEag) _q

dé; d
W £1) AE B ) LR

= cedPEIgtF /R (e P — £ ue — &)
and

Flws®)©)

— et | fu(eu(e — )G - &)

X(Ez, &1)
x / e 1€ dt'de de,
0

) e N N N & elx€.&) _ 1
— cedtP® gt A A —&)h _ dé d
cé € /]RZ N(ED)hn (B2 — &1)hn (€ 52))(@2’ AT & d&;

where we set

ME, &1, &) = 1(p(&1) + p(52 — &1) + p(E — &2) — p(£))
— (|&2]" + |82 — &1]" + |& — &2|* — |E]%).
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Let ty = (N +4y) ¢ for some 0< ¢ < 1. We get

dé&; d&,

etN)»(E,&,Sz) -1
st E) s34y (€) 2 N3y 372 /K &

. x(62,61) A, &1, &2)

where K, = K} U KZ U K2 and

Ki={(En&):&1eln -8 €ln, §—Ec—In},
KZ={(EL&): 1€ ln, 2—E1€—In, E—E € I},
KE={(r&): &€ —In, E2—E1 € In, E—E2 € In).

If £ [N+ 3y, N+ 4y] and €1, &) € Ke, we easily see that

-1

~

‘ &
x(&2, &)

and
p1) + pe2 —&1) + P — &) — p(E) ~ 7,
|E1]" + |62 — &1|* + [ — &2|* — |&]" ~ N°.

Thus we are led to chooge = N*/2 < N for N > 1 so that|A(¢, &1, &) ~ N%. Then

it follows that
aini(.6n8) _ 1

)"(év élv %-2)

‘ = [tn] + O(N " 2).

Consequently,

| Fxatn)) ) XN+3y N+ap1 (E) 2 N3y 32Ny 2N iy gy Ny (6)
~ Niss*aigyl/zX[N+3y,N+4y](5)

~ N3 3/4e X[N+3y,N+4y] (&),

since |Kg| ~ y2.
Concerningws, we verify that for €1, &) € K, we have|x(&,£2)| = yN and then
| Fc(wa(tn))E) XN -+3y N+ay1(E) S N7y 732y 2Ny N) 3y nay1 (6)
~ N5y 203y N (8)

~ N 735717“/4X[N+3y, N+4y](8).

Since—3s—1—«a/4 < —3s—3u/4—¢ for @ < 2, we deduce that the main contribution
in the HS-norm of ugz is given by ||vs|/us, that is,

st e 2 N353/, V2N o N25me/2e,
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and we find the condition
o o
-2s——->0, ie. s<——.
2 4

Whena = 2, the contributions ob; and wz are equivalent, and we must proceed with
a bit more care, by considering directly the differenege= v3 — w3. More precisely,
for y =eN <« N, we have

IME, &1, &2)| ~ |x (&, &)| ~ N2.

Noticing that
ME, &1, 62) — x (&, &2) = x(&2, &1),

we deduce

elini(.61.82) 1 evx(Ed) _q

- = t{lx (&, O(t3 N2|y (&, £1))).
) xE ) | Wz s+ OUINTX(E £))

Setting againty = N~27¢, and sincel&;| ~ N, it follows that

| FxUatn))E)xiN+3y.nay) 2 NTZTY 320NN xin 13, N4y (6)

and thus

[us(tn)|[ns = N"222,, o N2 12
which tends to infinity as soon as2s—1> 0, i.e.s < —1/2.

6. Appendix

We prove here that the pure dissipative equation
(6.1) us + [D|*u+uuy =0

for 1 < a <2 is well-posed inH3(R), s > s, where

szé_ay

and that the solution map fails to be smooth wier s,. The method of proof is
classical and is based on the smoothing properties of thergkzed heat kernel

1 : .
Ge(t, X) = Z/Re'xée—”%‘ dé, t>0.
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Theorem 6.1. Letl <o <2,5> 5 and b € H3R). Then there exist = 0
and a uniqgue solution & C([0, T]; H3(R)) of (6.1) such that

. 3
(6.2) sup [u®l[ws < oo if l<a<o,
te[0,T] 2
. 3
(6.3) sup U@ s + sup U Lzen < 0o if S <a <2
te[0,T] te[0,T] 2

where B = —s/a + (2 — «)/2«a. The flow map gi— u from H3(R) into the class
defined by(6.2) and (6.3) is locally Lipschitz. Moreoverif |ug|lns is small enough
the solution can be extended to any time interval.

Proof. Observe that for anp € [1, co] and p > 0, we have

6.4) [IDIPGa(@)||L» = et P/a—p/a

We use the Picard iteration theorem to show that the fagefined as

1 t
F(u) = Gg(t) % up — > / Go(t —t') % du?(t’) dt’
0
has a fixed point in some suitable Banach space.

We first consider the cased « < 3/2, and we choossg, < s < 1/2. SetXt =
C([0, T]; H3(R)) endowed with the nornfiul|x, = supy rllu(t)lls. By Young inequal-
ity and (6.4), we have
(6.5) 1Ga(t) * Uollns < IIGa(t)lILellUolins < [lUolms.

Using the fractional Leibniz rule, we get
t t
[ [Ga(t —t') * 3xU2(t") || s dt’ < / [8xGe(t — ) s vars [ {DYU2(t) || s AT’
0 0

t
5/(t—t’)s/“’g/z"IIU(t’)IILu/zfsrlIIU(t')IIHsdt'-
0

Since 0< s < 1/2, we can take advantage of the Sobolev embedditi§R) —
L&/2-9(R). Sinces/a — 3/2x > —1, we conclude

t
(6.6) [ 16 =) ¢ a0l at < Tl
0
with v = 1+ s/a — 3/2a > 0. Gathering (6.5) and (6.6) we infer

IFWIx; < lluollne + T lull%,
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and in the same way,
[FU) = F@)lIx; £ T (Iullx; + llolix)llu—vllx, -
This proves that folT « 1, F is contractive in a ball ofXy.
Now we solve (6.1) in the case/3 < o <2 ands, <s < 0. DefineYr =

C([0, T]; H3(R)) N CA([0, T]; LY@ D(R)) equipped with the norm

lully, = sup [lu(t)[lns + sup t?[u(t) ze.
t€[0,T] t€[0,T]

By Young inequality, we get
IGa(t) * UollLzie = [[{D)°Gu(t) * (D) UollLze-n < (D) ™*Ga (t)ll L2 [[Uoll e,
and it follows from (6.4) that
(D) ™5Gy (1) | Lo S tP(t™Ce2 o = (Grey/2ts/oy < () =/

Now we deal with the nonlinear term. Using the Sobolev embfgjdi(l/zfs)fl(]R{) —
HS(R) valid for any —1/2 < s < 0, we obtain

/OtllGa(t —t') s OxUA(t)[|ns At < [OtllaxGa(t — )l s st IUP(E) | s Y’
< /0 -ty S B2, dY
< TVl
with v = —s/a + 1/20 — 2 > 0. By similar calculations, we get
t’ /O 1Gult 1) % 3,02 e At 5 /0 13Gult — ) ool i 0
st /0 (- vy ter ey 2 dt'Jully,
< TVl
with v =1— (@ + 1)/20 — g > 0. Finally, one has
IFWlvy < (T)"lluollus + T Jlullg,
and the claim follows. O

REMARK 6.1. LetU,(t) = F;'(¢"*Fle'") be the fundamental solution of the
linear (dBO) equation. Using thdtF,U,(t)| = | FxG.(t)] as well as the well-known
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estimate|| f|[.o < | fll», P> 2, I/p+ 1/p = 1, we easily check that Theorem 6.1
also holds for (dBO) equation.

Finally, we show that Theorem 6.1 is sharp.

Theorem 6.2. Letl <« <2 and s< §,. Then the solution mapou— u associ-
ated with(6.1) (f it exist9 is not of classC? from HS(R) to C([0, T]; H3(R)).

Proof. The proof is similar to that of Theorems 1.2 and 1.3.fingehy as in
(5.4) and consider the high-high interactions in the comvoh product € U¢"hy) =
(e "hy). We get that forg € [2N, 2N + 4y], y = N andty ~ N7¢7¢,

| Fx(Ua(tn))E)] 2 NT27F 17 xon onay) (6)

whereu; is defined by

t
ua(t) = f Galt — 1) # 3<(Ga (1))  hn)? dt.
0
We conclude that
luz(tn) [ Hs = N=S-otloe, /2 > N=s+¥/2-a-3e/2 4,
as soon as < 3/2 —a. -
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