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Abstract
We study the Cauchy problem for the dissipative Benjamin–Ono equationsut C

HuxxCjDj�uCuux D 0 with 0� � � 2. When 0� � < 1, we show the ill-posedness
in H s(R), s 2 R, in the sense that the flow mapu0 7! u (if it exists) fails to beC2 at
the origin. For 1< � � 2, we prove the global well-posedness inH s(R), s > ��=4.
It turns out that this index is optimal.

1. Introduction, main results and notations

1.1. Introduction. In this work we consider the Cauchy problem for the follow-
ing dissipative Benjamin–Ono equations�

ut CHuxx C jDj�uC uux D 0, t > 0, x 2 R,
u(0, � ) D u0 2 H s(R),

(dBO)

with 0� � � 2, and whereH is the Hilbert transform defined by

H f (x) D 1� pv

�
1

x
� f

�
(x) D F�1(�i sgn(� ) Of (� ))(x),

and jDj� is the Fourier multiplier with symbolj� j�.
When� D 0, (dBO) is the ordinary Benjamin–Ono equation derived by Benjamin

[2] and later by Ono [15] as a model for one-dimensional wavesin deep water. The
Cauchy problem for the Benjamin–Ono equation has been extensively studied these last
years. It has been proved in [19] that (BO) is globally well-posed inH s(R) for s� 3,
and then fors� 3=2 in [18] and [9]. In [21], Tao get the well-posedness of this equa-
tion for s � 1 by using a gauge transformation (which is a modified versionof the
Cole–Hopf transformation). Recently, combining a gauge transformation together with
a Bourgain’s method, Ionescu and Kenig [8] finally shown thatone could go down
to L2(R), and this seems to be, in some sense, optimal. It is worth noticing that all
these results have been obtained by compactness methods. Onthe other hand, Mo-
linet, Saut and Tzvetkov [13] proved that for alls 2 R, the flow mapu0 7! u is not
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of classC2 from H s(R) to H s(R). Furthermore, building suitable families of approxi-
mate solutions, Koch and Tzvetkov proved in [10] that the flowmap is actually not
even uniformly continuous on bounded sets ofH s(R), s > 0. As an important conse-
quence of this, since a Picard iteration scheme would imply smooth dependance upon
the initial data, we see that such a scheme cannot be used to get solutions in any space
continuously embedded inC([0, T ]I H s(R)).

When � D 2, (dBO) is the so-called Benjamin–Ono–Burgers equation

ut C (H � 1)uxx C uux D 0.(BOB)

Edwin and Robert [6] have derived (BOB) by means of formal asymptotic expansions
in order to describe wave motions by intense magnetic flux tube in the solar atmos-
phere. The dissipative effects in that context are due to heat conduction. (BOB) has
been studied in many papers, see [4, 7, 23]. Working in Bourgain’s spaces containing
both dispersive and dissipative effects1, Otani showed in [16] that (BOB) is globally
well-posed inH s(R), s> �1=2. In this paper, we prove that this index is in fact crit-
ical since the flow mapu0 7! u is not of classC3 from H s(R) to H s(R), s < �1=2.
As expected, since the dispersive and the dissipative operators are of the same order,
this index coincides with the critical Sobolev space for theBurgers equation

ut � uxx C uux D 0,

see [5, 1]. This result is in a marked contrast with what occurs for the KdV-Burgers
equation which is well-posed aboveH�1(R), see [11].

Now consider the general case 0� � � 2. By running the approach of [11] com-
bined with the smoothing relation obtained in [16], we can only get that the problem
(dBO) is well-posed inH s(R) for 3=2 < � � 2 and s > 1=2 � �=2. This was done
by Otani in [17]. Here we improve this result by showing that (dBO) is globally well-
posed inH s(R), for 1< � � 2 ands > ��=4. It is worth comparing (dBO) with the
pure dissipative equation

(1.1) ut C jDj�uC uux D 0.

In Appendix, we show that (1.1) with 1< � � 2 is well-posed inH s(R) as soon ass>
3=2� �. The technics we use are very common in the context of semilinear parabolic
problems and can be easily adapted to (dBO). In particular when � D 2, this provides
an alternative (and simpler) proof of our main result. When� < 2, clearly we see that
the dispersive part in (dBO) plays a key role in the low regularity of the solution.

We are going to perform a fixed point argument on the integral formulation of
(dBO) in the weighted Sobolev space

(1.2) kukXb,s� D khi (� � � j� j)C j� j�ibh�isFu(� , � )kL2(R2).

1Such spaces were first introduced by Molinet and Ribaud in [11]for the KdV-Burgers equation.
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This will be achieved by deriving a bilinear estimate in these spaces. By Plancherel’s
theorem and duality, it reduces to estimating a weighted convolution of L2 functions.
In some regions where the dispersive effect is too weak to recover the lost derivative
in the nonlinear term at low regularity (s> ��=4), in particular when considering the
high-high interactions, we are led to use a dyadic approach.In [20], Tao systematically
studied some nonlinear dispersive equations like KdV, Schrödinger or wave equation
by using such a dyadic decomposition and orthogonality. Following the spirit of Tao’s
works, we shall prove some estimates on dyadic blocks, whichmay be of independent
interest. Indeed, we believe that they could certainly be used for other equations based
on a Benjamin–Ono-type dispersion.

Next, we show that our well-posedness results turn out to be sharp. Adapting the
arguments used in [13] to prove the ill-posedness of (BO), wefind that the solution
map u0 7! u (if it exists) cannot beC3 at the origin fromH s(R) to H s(R) as soon as
s< ��=4. See also [3, 11, 12, 22] for situations where this method applies. Note that
we need to prove the discontinuity of the third iterative term to obtain the condition
s< ��=4, whereas the second iterate is usually sufficient to get an optimal result. On
the other hand, we prove using similar arguments, that in thecase 0� � < 1, the
solution map fails to beC2 in any H s(R), s 2 R. This is mainly due to the fact that
the operatorjDj� is too weak to counterbalance the lost derivative which appears in
the nonlinear term�xu2.

1.2. Main results. Let us now formally state our results.

Theorem 1.1. Let 1 < � � 2 and u0 2 H s(R) with s > ��=4. Then for any
T > 0, there exists a unique solution u of(dBO) in

ZT D C([0, T ]I H s(R)) \ X1=2,s�,T .

Moreover, the map u0 7! u is smooth from Hs(R) to ZT and u belongs to
C((0, T ], H1(R)).

REMARK 1.1. The spacesXb,s�,T are restricted versions ofXb,s� defined by the norm
(1.2). See Section 1.3 for a precise definition.

REMARK 1.2. In [17], Otani studied a larger family of dispersive-dissipative equa-
tions taking the form

(1.3) ut � jDj1Caux C jDj�uC uux D 0

with a � 0 and� > 0. He showed that (1.3) is globally well-posed inH s(R) provided
aC � � 3, � > (3� a)=2 ands > �(aC � � 1)=2. If a D 0, it is clear that we get a
better result, at least when� < 2. It will be an interesting challenge to adapt our method
of proofs to (1.3) in the casea > 0.
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REMARK 1.3. Another interesting problem should be to consider the periodic dis-
sipative BO equations

(1.4)

�
ut CHuxx C jDj�uC uux D 0, t > 0, x 2 T ,
u(0, � ) D u0 2 H s(T ),

Recall that in [14], Molinet proved the global well-posedness of the periodic BO equa-
tion in L2(T ). To our knowledge, equation (1.4) in the case� > 0 has never been
investigated.

Theorem 1.1 is sharp in the following sense.

Theorem 1.2. Let 1 � � � 2 and s< ��=4. There does not exist T> 0 such
that the Cauchy problem(dBO) admits a unique local solution defined on the interval
[0, T ] and such that the flow map u0 7! u is of classC3 in a neighborhood of the
origin from Hs(R) to Hs(R).

In the case 0� � < 1, we have the following ill-posedness result.

Theorem 1.3. Let 0 � � < 1 and s2 R. There does not exist T> 0 such that
the Cauchy problem(dBO) admits a unique local solution defined on the interval[0,T ]
and such that the flow map u0 7! u is of classC2 in a neighborhood of the origin from
H s(R) to Hs(R).

REMARK 1.4. At the end-point� D 1, our proof of Theorem 1.3 fails. However,
Theorem 1.2 provides the ill-posedness inH s(R), for s< �1=4. So, it is still not clear
of what happens to (dBO) when� D 1 ands � �1=4.

The structure of our paper is as follows. We introduce a few notation in the rest of
this section. In Section 2, we recall some estimates relatedto the linear (dBO) equations.
Next, we prove the crucial bilinear estimate in Section 3, which leads to the proof of The-
orem 1.1 in Section 4. Section 5 is devoted to the ill-posedness results (Theorems 1.2 and
1.3). Finally, we briefly study the dissipative equation (1.1) in Appendix.

1.3. Notations. When writing A. B (for A and B nonnegative), we mean that
there existsC > 0 independent ofA and B such thatA� C B. Similarly defineA& B
and A � B. If A � RN , jAj denotes its Lebesgue measure and�A its characteristic
function. For f 2 S 0(RN), we define its Fourier transformF ( f ) (or Of ) by

F f (� ) D Z
RN

e�i hx,�i f (x) dx.
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The Lebesgue spaces are endowed with the norm

k f kL p(RN ) D
�Z

RN

j f (x)jp dx

�1=p

, 1� p <1
with the usual modification forp D 1. We also consider the space-time Lebesgue
spacesL p

x Lq
t defined by

k f kL p
x Lq

t
D k f kLq

t (R)


L p

x (R).

For b,s2 R, we define the Sobolev spacesH s(R) and their space-time versionsHb,s(R2)
by the norms

k f kH s D �Z
Rh�i2sj Of (� )j2 d��1=2

,

kukHb,s D �Z
R2
h� i2bh�i2sj Ou(� , � )j2 d� d��1=2

,

with h � i D (1C j � j2)1=2. Let V( � ) be the free linear group associated to the linear
Benjamin–Ono equation, i.e.

8t 2 R, Fx(V(t)')(� ) D exp(i t � j� j) O'(� ), ' 2 S 0.
We will mainly work in the Xb,s� space defined in (1.2), and in its restricted version

Xb,s�,T , T � 0, equipped with the norm

kukXb,s�,T
D infw2Xb,s� {kwkXb,s� , w(t) D u(t) on [0, T ]}.

Note that sinceF (V(�t)u)(� ,� )D Ou(�C� j� j,� ), we can re-express the norm ofXb,s� as

kukXb,s� D khi � C j� j�ibh�is Ou(� C � j� j, � )kL2(R2)

D khi � C j� j�ibh�isF (V(�t)u)(� , � )kL2(R2)

� kV(�t)ukHb,s C kukL2
t H sC�b

x
.

Finally, we denote byS� the semigroup associated with the free evolution of (dBO),

8t � 0, Fx(S�(t)')(� ) D exp[i t � j� j � j� j�t ] O'(� ), ' 2 S 0,
and we extendS� to a linear operator defined on the whole real axis by setting

(1.5) 8t 2 R, Fx(S�(t)')(� ) D exp[i t � j� j � j� j�jt j] O'(� ), ' 2 S 0.
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2. Linear estimates

In this section, we collect together several linear estimates on the operatorsS� in-
troduced in (1.5) andL� defined by

L� W f 7! �RC(t) (t)
Z t

0
S�(t � t 0) f (t 0) dt0.

Recall that (dBO) is equivalent to its integral formulation

(2.1) u(t) D S�(t)u0 � 1

2

Z t

0
S�(t � t 0)�x(u2(t 0)) dt0.

It will be convenient to replace the local-in-time integralequation (2.1) with a
global-in-time truncated integral equation. Let be a cutoff function such that

 2 C10 (R), supp � [�2, 2],  � 1 on [�1, 1],

and define T ( � ) D  ( � =T) for all T > 0. We can replace (2.1) on the time interval
[0, T ], T < 1 by the equation

(2.2) u(t) D  (t)

�
S�(t)u0 � �RC(t)

2

Z t

0
S�(t � t 0)�x( 2

T (t 0)u2(t 0)) dt0�.

Proofs of the results stated here can be obtained by a slight modification of the
linear estimates derived in [11].

Lemma 2.1. For all s 2 R and all ' 2 H s(R),

(2.3) k (t)S�(t)'kX1=2,s� . k'kH s.

Lemma 2.2. Let s2 R. For all 0< Æ < 1=2 and all v 2 X�1=2CÆ,s� ,

(2.4)

�RC(t) (t)
Z t

0
S�(t � t 0)v(t 0) dt0

X1=2,s� . kvkX�1=2CÆ,s� .

To globalize our solution, we will need the next lemma.

Lemma 2.3. Let s2 R and Æ > 0. Then for any f2 X�1=2CÆ,s� ,

t 7! Z t

0
S�(t � t 0) f (t 0) dt0 2 C(RCI H sC�Æ).
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Moreover, if ( fn) is a sequence satisfying fn ! 0 in X�1=2CÆ,s� , then


Z t

0
S�(t � t 0) fn(t 0) dt0

L1(RCIH sC�Æ ) ! 0.

3. Bilinear estimates

3.1. Dyadic blocks estimates. We introduce Tao’s [kI Z]-multipliers theory [20]
and derive the dyadic blocks estimates for the Benjamin–Onoequation.

Let Z be any abelian additive group with an invariant measured�. For any integer
k � 2 we define the hyperplane

0k(Z) D {(�1, : : : , �k) 2 Zk W �1 C � � � C �k D 0}

which is endowed with the measureZ
0k(Z)

f D Z
Zk�1

f (�1, : : : , �k�1, �(�1 C � � � C �k�1)) d�1 � � � d�k�1.

A [kI Z]-multiplier is defined to be any functionmW 0k(Z) ! C. The multiplier normkmk[kIZ] is defined to be the best constant such that the inequality

(3.1)

�����
Z
0k(Z)

m(�)
kY

jD1

f j (� j )

����� � kmk[kIZ]

kY
jD1

k f j kL2(Z)

holds for all test functionsf1, : : : , fk on Z. In other words,

kmk[kIZ] D sup
f j2S(Z)k f j kL2(Z)�1

�����
Z
0k(Z)

m(�)
kY

jD1

f j (� j )

�����.

In his paper [20], Tao used the following notations. Capitalized variablesN j , L j ( j D
1, : : : , k) are presumed to be dyadic, i.e. range over numbers of the form 2l , l 2 Z. In
this paper, we only consider the casek D 3, which corresponds to the quadratic non-
linearity in the equation. It will be convenient to define thequantitiesNmax� Nmed�
Nmin to be the maximum, median and minimum ofN1, N2, N3 respectively. Similarly,
define Lmax� Lmed� Lmin wheneverL1, L2, L3 > 0. The quantitiesN j will measure
the magnitude of frequencies of our waves, whileL j measures how closely our waves
approximate a free solution.

Here we consider [3IR�R]-multipliers and we parameterizeR�R by � D (� , � )
endowed with the Lebesgue measured� d� . Define

h0(�) D � j� j, � j D � j � h0(� j ), j D 1, 2, 3,
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and the resonance function

h(� ) D h0(�1)C h0(�2)C h0(�3), � D (�1, �2, �3).

By a dyadic decomposition of the variables� j , � j , h(� ), we will be led to estimate

(3.2) kXN1,N2,N3,H,L1,L2,L3k[3IR�R]

where

(3.3) XN1,N2,N3,H,L1,L2,L3 D �jh(� )j�H

3Y
jD1

�j� j j�N j �j� j j�L j .

From the identities

(3.4) �1 C �2 C �3 D 0

and

�1 C �2 C �3 C h(� ) D 0

on the support of the multiplier, we see that (3.3) vanishes unless

(3.5) Nmax� Nmed

and

(3.6) Lmax� max(H, Lmed).

Lemma 3.1. On the support of XN1,N2,N3,H,L1,L2,L3, one has

(3.7) H � NmaxNmin.

Proof. Recall that

h(� ) D �1j�1j C �2j�2j C �3j�3j.
By symmetry, we can assumej�3j � Nmin. This forces by (3.4)�1�2 < 0. Suppose for
example�1 > 0 and�2 < 0 (the other case being similar). Then if�3 > 0,

h(� ) D �2
1 � �2

2 C �2
3 D �2

1 � (�1 C �3)2 C �2
3 D �2�1�3

and in this casejh(� )j � NmaxNmin. Now if �3 < 0, then

h(� ) D �2
1 � �2

2 � �2
3 D (�2 C �3)2 � �2

2 � �2
3 D 2�2�3

and it follows again thatjh(� )j � NmaxNmin.
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Let us now recall some lemmas proved in [20].

Lemma 3.2 (Comparison principle). If m and M are [kI Z]-multipliers, andjm(� )j � M(� ) for all � 2 0k(Z), then kmk[kIZ] � kMk[kIZ] .

Lemma 3.3 (Tensor products). Let Z1, Z2 be abelian groups, with Z1� Z2 param-
eterized by(�1, �2), and m1, m2 be [kI Z1] and [kI Z2] multipliers respectively. Define the
tensor product m1 
m2 to be the[kI Z1 � Z2] multiplier

m1 
m2((�1
1 , �2

1 ), : : : , (�1
k , �2

k )) D m1(�1
1 , : : : , �1

k )m2(�2
1 , : : : , �2

k ).

Then we have

km1 
m2k[k,Z1�Z2] D km1k[kIZ1]km2k[kIZ2] .

Lemma 3.4. For any function m(� ) from Z toR, we havekm(�1)k[3IZ] D kmkL2.

Lemma 3.5 (Box localization). Suppose(RC �)�26 is a box covering of Z(so6 is a discrete subgroup of Z), and m is a[kI Z]-multiplier such that eachsuppj (m)
is contained in a box in this covering for all1� j � k � 2. Then

kmk[kIZ] � sup�k�1,�k

km(� )�RC�k�1(�k�1)�RC�k (�k)k[kIZ] .

Lemma 3.6. For any complex functions m1(� ), m2(� ) on Z we have

kjm1j2 � jm2j2kL2

kjm1j2 � jm2j2k1=2
L1

� km1(�1)m2(�2)k[3IZ] � kjm1j2 � jm2j2k1=2
L1 .

We are now ready to state the fundamental dyadic blocks estimates for the Benjamin–
Ono equation.

Proposition 3.1. Let N1, N2, N3, H, L1, L2, L3 > 0 satisfying(3.5), (3.6), (3.7).
1. In the high modulation case Lmax� Lmed� H , we have

(3.8) (3.2). L1=2
minN1=2

min.

2. In the low modulation case Lmax� H ,
(a) ((CC) coherence) if Nmax� Nmin, then

(3.9) (3.2). L1=2
minL1=4

med,
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(b) ((C�) coherence) if N2 � N3 � N1 and H � L1 & L2, L3, we have for any > 0

(3.10) (3.2). L1=2
min min

�
N1=2

min, N1=2�1=2
max N�1=2

min L1=2
med

�
.

Similarly for permutations of the indexes{1, 2, 3}.
(c) In all other cases, the multiplier (3.3) vanishes.

Proof. First we consider the high modulation caseLmax� Lmed� H . Suppose
for the moment thatL1 � L2 � L3 and N1 � N2 � N3. By using the comparison
principle (Lemma 3.2), we have

(3.2). k�j�3j�N3�j�3j�L3k[3IR�R] .

By Lemma 3.3 and Lemma 3.4,

(3.2). k�j�3j�L3k[3IR]�j�3j�N3


[3IR] . L1=2

3 N1=2
3 .

It is clear from symmetry that (3.8) holds for any choice ofL j and N j , j D 1, 2, 3.
Now we turn to the low modulation caseH � Lmax. Suppose for the moment that

N1 � N2 � N3. The �3 variable is currently localized to the annulus{j�3j � N3}. By a
finite partition of unity we can restrict it further to a ball{j�3 � �0

3 j � N3} for somej�0
3 j � N3. Then by box localization (Lemma 3.5) we may localize�1, �2 similarly to

regions{j�1� �0
1 j � N3} and {j�2� �0

2 j � N3} where j�0
j j � N j . We may assume thatj�0

1C�0
2C�0

3 j � N3 since we have�1C�2C�3 D 0. We summarize this symmetrically as

(3.2).
�jh(� )j�H

3Y
jD1

�j� j��0
j j�Nmin

�j� j j�L j


[3IR�R]

for some�0
j satisfying

j�0
j j � N j for j D 1, 2, 3I j�0

1 C �0
2 C �0

3 j � Nmin.

Without loss of generality, we assumeL1 � L2 � L3. By Lemma 3.3, Lemma 3.2 and
Lemma 3.6, we get

(3.2).
�jh(� )j�H

3Y
jD2

�j� j��0
j j�Nmin

�j� j j�L j


[3IR�R]

. j{(�2, �2) W j�2 � �0
2 j � Nmin, j�2 � h0(�2)j � L2,

j� � �2 � �0
3 j � Nmin, j� � �2 � h0(� � �2)j � L3}j1=2
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for some (� , � ) 2 R � R. For fixed �2, the set of possible�2 ranges in an interval of
length O(L3) and vanishes unless

h0(�2)C h0(� � �2) D � C O(L2).

On the other hand, inequalityj� � �2 � �0
3 j � Nmin implies j� C �0

1 j � Nmin, hence

(3.2). L1=2
3 j�� j1=2

for some� such thatj� C �0
1 j � Nmin (in particular j� j � N1) and with

�� D {�2 W j�2 � �0
2 j � Nmin, h0(�2)C h0(� � �2) D � C O(L2)}.

Let us write�� D �1� [�2� with

�1� D {�2 2 �� W �2(� � �2) > 0},

�2� D {�2 2 �� W �2(� � �2) < 0}.

We only need to consider the three casesN1 � N2 � N3, N2 � N3 � N1 and N1 �
N2 � N3 (the caseN1 � N3 � N2 follows by symmetry).

Estimate ofj�1� j: In �1� we can assume�2 > 0 and � � �2 > 0 (the other case
being similar). Then we have

h0(�2)C h0(� � �2) D �2
2 C (� � �2)2 D 2

��2 � �
2

�2 C �2

2

and thus

(3.11) 2

��2 � �
2

�2 C �2

2
D � C O(L2).

If N1 � N2 � N3, we see from (3.11) that�2 variable is contained in the union of two
intervals of lengthO(L1=2

2 ) at worst. Thereforej�1� j . L1=2
2 in this case. IfN1 � N2 �

N3, then ����
��2 � �

2

�C �0
1

2

���� �
�����2 � �0

2 � � C �0
1

2
� �0

3

����C j�0
1 C �0

2 C �0
3 j

� j�2 � �0
2 j C 1

2
j� C �0

1 j C j�0
3 j C j�0

1 C �0
2 C �0

3 j
. N3

and we getj�2 � �=2j � N1. From (3.11), we see that we must haveN2
1 D O(L2),

which is in contradiction withL2 . L1 � NmaxNmin. We deduce that the multiplier
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vanishes in this region. IfN2 � N3 � N1, then we obviously havej�2 � �=2j � N2

and, in the same way, the multiplier vanishes.
Estimate ofj�2� j: We can assume�2 > 0 and� � �2 < 0. It follows that

(3.12) h0(�2)C h0(� � �2) D �2
2 � (� � �2)2 D 2���2 � �

2

� D � C O(L2).

If N1 � N2 � N3, we see from (3.12) that�2 variable is contained in the union of
two intervals of lengthO(N�1

1 L2) at worst. But we haveL2 . L1 � N2
1 and thusj�2� j. L1=2

2 in this region. If N1 � N2 � N3, we havej�2��=2j � N1 as previously and

thus N2
1 D O(L2), the multiplier vanishes. IfN2 � N3 � N1, then j�2� �=2j � N2 and

for any  > 0, we havej�2��=2j � N1�
2 j�2��=2j . Therefore we see from (3.12) that�2 variable is contained in the union of two intervals of lengthO(N1�1=

2 N�1=
1 L1=

2 )

at worst, and fromj�2 � �0
2 j � Nmin we see thatj�2� j . N1=2

min, and (3.10) follows.

3.2. Bilinear estimate. In this section we prove the following crucial bilinear
estimate.

Theorem 3.1. Let 1< � � 2 and s> ��=4. For all T > 0, there existÆ, � > 0
such that for all u, v 2 X1=2,s� with compact support(in time) in [�T, CT ],

(3.13) k�x(uv)kX�1=2CÆ,s� . T�kukX1=2,s� kvkX1=2,s� .

To get the required contraction factorT� in our estimates, the next lemma is very
useful (see [17]).

Lemma 3.7. Let f 2 L2(R2) with compact support(in time) in [�T, CT ]. For
any � > 0, there exists� D �(�) > 0 such that

F�1

� Of (� , � )h� � � j� ji�
�

L2
xt

. T�k f kL2
xt
.

Proof of Theorem 3.1. By duality, Plancherel and Lemma 3.7, it suffices to
show that  �3h�3ish�1i�sh�2i�s

hj�1j C j�1j�i1=2hj�2j C j�2j�i1=2hj�3j C j�3j�i1=2�Æ


[3IR�R]

. 1.

By a dyadic decomposition of the variables� j , � j , h(� ), we may assumej� j j � N j ,j� j j � L j and jh(� )j � H . By the translation invariance of the [k, Z]-multiplier norm,
we can always restrict our estimate onL j & 1 and Nmax& 1. The comparison principle
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and orthogonality reduce our estimate to show that

(3.14)

X
Nmax�Nmed�N

X
L1,L2,L3&1

N3hN3ishN1i�shN2i�s

(L1 C hN1i�)1=2(L2 C hN2i�)1=2(L3 C hN3i�)1=2�Æ
� kXN1,N2,N3,Lmax,L1,L2,L3k[3IR�R]

and

(3.15)

X
Nmax�Nmed�N

X
Lmax�Lmed

X
H�Lmax

N3hN3ishN1i�shN2i�s

(L1 C hN1i�)1=2(L2 C hN2i�)1=2(L3 C hN3i�)1=2�Æ
� kXN1,N2,N3,H,L1,L2,L3k[3IR�R]

are bounded, for allN & 1.
We first show that (3.15). 1. For s> �1=2, one has

N3hN3ishN1i�shN2i�s . hNmini�sNmax

and we get from (3.8),

(3.15). X
Nmax�N

X
Lmax�N Nmin

hNmini�sN L1=2
minN1=2

min

L1=2
min(LmaxC N�)1=2�Æ(LmaxC hNmini�)1=2�ÆLÆmax

. X
Nmin>0

N1=2
minhNmini�sN

(N NminC N�)1=2�Æ(N NminC hNmini�)1=2�Æ .

When Nmin . 1, we get

(3.15). X
Nmin.1

N1=2
min N

N�=2��Æ(N Nmin)1=2�Æ
. X

Nmin.1

NÆ
minN(1��)=2CÆ(�C1)

. 1

for Æ � 1 and� > 1. When Nmin & 1, then

(3.15). X
Nmin&1

N1=2�s
min N

(N Nmin)1=2�Æ�"N�"(N Nmin)1=2�Æ
. X

Nmin&1

N�1=2�sC2ÆC"
min N2Æ�"(��1)

. 1
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for " D 2Æ=(� � 1)> 0, Æ � 1 ands> �1=2.
Now we show that (3.14). 1. We first deal with the contribution where (3.9)

holds. In this caseNmin � Nmax and we get

(3.14). X
Lmax�N2

N1�sL1=2
minL1=4

med

L1=2
min(LmedC N�)1=2(LmaxC N�)1=2�2ÆLÆmax

. N1�s

N�=4N1�4Æ
. N�s��=4C4Æ . 1

for s> ��=4 andÆ � 1.
Now we consider the contribution where (3.10) applies. By symmetry it suffices

to treat the two cases

N1 � N2 � N3, H � L3 & L1, L2,

N2 � N3 � N1, H � L1 & L2, L3.

In the first case, estimate (3.10) applied with D 1 yields

(3.2). L1=2
min min(N1=2

3 , N�1=2
3 L1=2

med) . L1=2
minN1=4

3 N�1=4
3 L1=4

med� L1=2
minL1=4

med

and thus

(3.14). X
N3>0

X
Lmax�N N3

N3hN3isN�2sL1=2
minL1=4

med

L1=2
min(LmedC N�)1=2(LmaxC hNmini�)1=2�2ÆLÆmax

. X
N3>0

N3hN3isN�2s

N�=4(N N3)1=2�2Æ
. X

N3>0

N1=2C2Æ
3 hN3isN�2s��=4�1=2C2Æ.

Since�2s� �=4� 1=2C 2Æ < 0, we may write

(3.14). X
N3>0

N1=2C2Æ
3 hN3i�s��=4�1=2C2Æ

. X
N3.1

N1=2C2Æ
3 C X

N3&1

N�s��=4C4Æ
3

. 1

for Æ � 1 ands> ��=4.
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Finally consider the caseN2 � N3 � N1, H � L1 & L2, L3. Let 0<  � 1. If

we assumeN1=2
min . N1=2�1=2

max N�1=2
min L1=2

med , i.e. Lmed & N1�
max N1C

min , then we get from
(3.10) that

(3.14). X
N1>0

X
Lmax�N N1

hN1i�sN L1=2
minN1=2

1

L1=2
min(LmedC N�)1=2�ÆL1=2�Æ

max LÆmax

. X
N1>0

N1=2
1 hN1i�sN

(N1� N1C
1 C N�)1=2�Æ(N N1)1=2�Æ

. X
N1>0

NÆ
1hN1i�sN1=2CÆ

(N1� N1C
1 C N�)1=2�Æ .

If N1 . 1, then

(3.14). X
N1.1

NÆ
1 N(1��)=2CÆ(1C�) . 1

for Æ � 1 and� > 1. If N1 & 1, then

(3.14). X
N1&1

N�sCÆ
1 N1=2CÆ

(N1� N1C
1 )1=2�Æ�"N�"

. X
N1&1

N�s�1=2C(1C )(ÆC")CÆ� =2
1 N (1=2�Æ)C2Æ�"(��1C )

. 1

for Æ,  � 1, s > �1=2 and " D [2Æ C  (1=2 � Æ)]=(� � 1C  ) > 0. If we assume
N1=2

min & N1=2�1=2
max N�1=2

min L1=2
med , i.e. Lmed. N1�

max N1C
min , we get

(3.14). X
N1>0

X
Lmax�N N1

hN1i�sN L1=2
minN1=2�1=2 N�1=2

1 L1=2
med

L1=2
min(LmedC N�)1=2�ÆL1=2�Æ

max LÆmax

. X
N1>0

X
Lmed.N1� N1C

1

N�1=2�1=2CÆ
1 hN1i�sN1�1=2CÆL1=2

med

(LmedC N�)1=2�Æ .

When N1 . 1, we have

(3.14). X
N1.1

N�1=2�1=2CÆ
1 N1�1=2CÆN��=2C�Æ(N1� N1C

1 )1=2
. X

N1.1

NÆ
1 N(1��)=2CÆ(1C�) . 1



948 S. VENTO

for Æ � 1 and� > 1. When N1 & 1, then

(3.14). X
N1&1

N�s�1=2�1=2CÆ
1 N1�1=2CÆ(N1� N1C

1 )1=2�1=2CÆC"N��"
. X

N1&1

N�s�1=2C(1C )(ÆC")CÆ� =2
1 N (1=2�Æ)C2Æ�"(��1C )

. 1

as previously. This completes the proof of Theorem 3.1.

4. Proof of Theorem 1.1

In this section, we sketch the proof of Theorem 1.1 (see for instance [11] for
the details).

Actually, local existence of a solution is a consequence of the following modified
version of Theorem 3.1.

Proposition 4.1. Given sCc > ��=4, there exist�, Æ > 0 such that for any s� sCc
and any u, v 2 X1=2,s� with compact support in[�T, CT ],

(4.1) k�x(uv)kX�1=2CÆ,s� . T��kuk
X

1=2,sCc� kvkX1=2,s� C kukX1=2,s� kvk
X

1=2,sCc�
�
.

Estimate (4.1) is obtained thanks to (3.13) and the triangleinequality

8s� sCc , h�is � h�isCc h�1is�sCc C h�isCc h� � �1is�sCc .

Let u0 2 H s(R) with s> ��=4. Define F(u) as

F(u) D  (t)

�
S�(t)u0 � �RC(t)

2

Z t

0
S�(t � t 0)�x( 2

T (t 0)u2(t 0)) dt0�.

We shall prove that forT � 1, F is contraction in a ball of the Banach space

Z D {

u 2 X1=2,s� W kukZ D kuk
X

1=2,sCc� C  kukX1=2,s� < C1}

,

where is defined for all nontrivial' by

 D k'kH sCck'kH s
.
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Combining (2.3), (2.4) as well as (4.1), it is easy to derive that

kF(u)kZ � C(ku0kH sCc C  ku0kH s)C CT�kuk2
Z

and

kF(u) � F(v)kZ � CT�ku � vkZ kuC vkZ

for someC, � > 0. Thus, takingT D T
�ku0kH sCc � small enough, we deduce thatF

is contractive on the ball of radius 4Cku0kH sCc in Z. This proves the existence of a

solution u to u D F(u) in X1=2,s�,T .
Following similar arguments of [11], it is not too difficult to see that ifu1, u2 2

X1=2,s�,T are solutions to (2.2) and 0< Æ < T=2, then there exists� > 0 such that

ku1 � u2kX1=2,s�,Æ . T��ku1kX1=2,s�,T
C ku2kX1=2,s�,T

�ku1 � u2kX1=2,s�,Æ ,

which leads tou1 � u2 on [0, Æ], and then on [0,T ] by iteration. This proves the
uniqueness of the solution.

It is straightforward to check thatS�( � )u0 2 C(RCI H s(R))\ C(R�CI H1(R)). Then
it follows from Theorem 3.1, Lemma 2.3 and the local existence of the solution that

u 2 C([0, T ]I H s(R)) \ C((0, T ]I H sC�Æ(R))

for someT D T
�ku0kH sCc �. By induction, we haveu 2 C((0, T ]I H1(R)). Taking the

L2-scalar product of (dBO) withu, we obtain thatt 7! ku(t)kH sCc is nonincreasing on
(0, T ]. Since the existence time of the solution depends only on the norm ku0kH sCc ,
this implies that the solution can be extended globally in time.

5. Ill-posedness results

This section is devoted to the proof of Theorems 1.2 and 1.3. We adopt the nota-
tion p(� ) D � j� j.

Assume thatu is a solution to (dBO) such that the solution mapu0 7! u is of
classCk (k D 2 or k D 3) at the origin fromH s(R) to H s(R). The relation

F(u, ') WD u(t, ') � S�(t)' C 1

2

Z t

0
S�(t � t 0)�x(u2(t 0, ')) dt0 � 0

combined with implicit function theorem gives

u1(t, x) WD �u�' (t, x, 0)[h] D S�(t)h,

u2(t, x) WD �2u�'2
(t, x, 0)[h, h] D Z t

0
S�(t � t 0)�x(u1(t 0))2 dt0,
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u3(t, x) WD �3u�'3
(t, x, 0)[h, h, h] D Z t

0
S�(t � t 0)�x(u1(t 0)u2(t 0)) dt0,

etc.

Since the solution map isCk, we must have

(5.1) kuk(t)kH s . khkk
H s, 8h 2 H s(R).

In the sequel, we will show that (5.1) fails in the case 0� � < 1 and k D 2, and in
the case 1� � � 2, k D 3 ands< ��=4.

5.1. The case 0� � < 1. It suffices to show the following lemma.

Lemma 5.1. Let 0 � � < 1 and s2 R. There exists a sequence of functions
{hN} � H s(R) such that for all T> 0,

khNkH s . 1,

and

lim
N!1 sup

[0,T ]


Z t

0
S�(t � t 0)�x(S�(t 0)hN)2 dt0

H s

D C1.

Proof. We definehN by its Fourier transform2

OhN(� ) D  �1=2�I1(� )C  �1=2N�s�I2(� )

with I1 D [ =2,  ], I2 D [N, N C  ] and N � 1,  � N to be chosen later. Then it
is clear thatkhNkH s � 1. Computing the Fourier transform ofu2(t) leads to

Fx(u2(t))(� )

D c� Z t

0
ei (t�t 0)p(� )e�(t�t 0)j� j� (ei t 0 p(� )e�t 0j� j� OhN)�2(� ) dt0

D c�ei tp(� )e�t j� j� ZR OhN(�1) OhN(� � �1)

� Z t

0
ei t 0(p(�1)Cp(���1)�p(� ))e�t 0(j�1j�Cj���1j��j� j�) dt0 d�1

D c�ei tp(� )e�t j� j� ZR OhN(�1) OhN(� � �1)

� ei t (p(�1)Cp(���1)�p(� ))e�t(j�1j�Cj���1j��j� j� ) � 1

i (p(�1)C p(� � �1) � p(� )) � (j�1j� C j� � �1j� � j� j�)
d�1.

2As noticed in [13],hN is not a real-valued function but the analysis works as well for <e hN

instead ofhN .
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Set

�(� , �1) D i (p(�1)C p(� � �1) � p(� )) � (j�1j� C j� � �1j� � j� j�).

By support considerations, we haveku2(t)kH s � kv2(t)kH s with

(5.2) Fx(v2(t))(� ) D cN�s �1�ei tp(� )e�t j� j� Z
K�

et�(� ,�1) � 1�(� , �1)
d�1

and

K� D {�1 W �1 2 I1, � � �1 2 I2} [ {�1 W �1 2 I2, � � �1 2 I1}.

We easily see that if�1 2 K� , then � 2 [N C  =2, N C 2 ] and

p(�1)C p(� � �1) � p(� ) D 2�1(�1 � � ) �  N,

j�1j� C j� � �1j� � j� j� . N�.

We deduce that for D N��1 � N, we havej�(� , �1)j � N�. Now define

tN D (N C 2 )���" � N���"
so thate�tN j� j� & 1. By a Taylor expansion of the exponential function,

(5.3)
etN�(� ,�1) � 1�(� , �1)

D tN C R(tN , � , �1)

with

jR(tN , � , �1)j .X
k�2

tk
N j�(� , �1)jk�1

k!
. N���2".

Therefore the main contribution of (5.3) in (5.2) is given bytN , and sincejK� j �  ,
it follows that

jFx(v2(tN))(� )j & N�sC1 �1e�(NC2 )�" N���"�[NC =2,NC2 ](� )

& N�sC1���"�[NC =2,NC2 ](� ).

We get the lower bound for theH s-norm of u2(tN)

ku2(tN)kH s & N�sC1���"�Z NC2
NC =2 (1C j� j2)sd��1=2 � N1���" 1=2 � N(1��)=2�",

which leads to

lim
N!1 sup

[0,T ]
ku2(t)kH s D C1

for "� 1 and� < 1, as desired.
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5.2. The case 1� � � 2. Let 1� � � 2 ands < ��=4. As previously, it suf-
fices to find a suitable sequence{hN} such thatkhNkH s . 1 and

lim
N!1 sup

[0,T ]
ku3(t)kH s D C1.

With this purpose, we define the real-valued functionhN by

(5.4) OhN(� ) D N�s �1=2(�IN (� )C �IN (�� ))

with IN D [N, N C 2 ], N � 1 and � N to be chosen later. We have

Fx(u3(t))(� ) D c� Z t

0
ei (t�t 0)p(� )e�(t�t 0)j� j�Fx(S�(t 0)hN) � Fx(u2(t 0))(� ) dt0

and

Fx(S�(t 0)hN) � Fx(u2(t 0))(� ) D c
Z
R2

OhN(�1) OhN(�2 � �1) OhN(� � �2)�2

� ei t 0(p(���2)Cp(�2))e�t 0(j���2j�Cj�2j� ) et 0�(�2,�1) � 1�(�2, �1)
d�1 d�2.

Hence, we can writeu3 D v3 � w3 with

Fx(v3(t))(� )

D c�ei tp(� )e�t j� j� ZR2

OhN(�1) OhN(�2 � �1) OhN(� � �2)
�2�(�2, �1)

� Z t

0
ei t 0(p(�1)Cp(�2��1)Cp(���2)�p(� ))e�t(j�1j�Cj�2��1j�Cj���2j��j� j� ) dt0 d�1 d�2

D c�ei tp(� )e�t j� j� ZR2

OhN(�1) OhN(�2 � �1) OhN(� � �2)
�2�(�2, �1)

et�(� ,�1,�2) � 1�(� , �1, �2)
d�1 d�2

and

Fx(w3(t))(� )

D c�ei tp(� )e�t j� j� ZR2

OhN(�1) OhN(�2 � �1) OhN(� � �2)
�2�(�2, �1)

� Z t

0
et 0�(� ,�2)dt0d�1d�2

D c�ei tp(� )e�t j� j� ZR2

OhN(�1) OhN(�2 � �1) OhN(� � �2)
�2�(�2, �1)

et�(� ,�2) � 1�(� , �2)
d�1 d�2

where we set

�(� , �1, �2) D i (p(�1)C p(�2 � �1)C p(� � �2) � p(� ))

� (j�1j� C j�2 � �1j� C j� � �2j� � j� j�).
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Let tN D (N C 4 )���" for some 0< "� 1. We get

jFx(v3(tN))(� )j�[NC3 ,NC4 ](� ) & N�3sC1 �3=2����
Z

K�
�2�(�2, �1)

etN�(� ,�1,�2) � 1�(� , �1, �2)
d�1 d�2

����
where K� D K 1� [ K 2� [ K 3� and

K 1� D {(�1, �2) W �1 2 IN , �2 � �1 2 IN , � � �2 2 �IN},

K 2� D {(�1, �2) W �1 2 IN , �2 � �1 2 �IN , � � �2 2 IN},

K 3� D {(�1, �2) W �1 2 �IN , �2 � �1 2 IN , � � �2 2 IN}.

If � 2 [N C 3 , N C 4 ] and (�1, �2) 2 K� , we easily see that���� �2�(�2, �1)

���� � N�1

and

p(�1)C p(�2 � �1)C p(� � �2) � p(� ) �  2,

j�1j� C j�2 � �1j� C j� � �2j� � j� j� � N�.

Thus we are led to choose D N�=2 � N for N � 1 so thatj�(� , �1, �2)j � N�. Then
it follows that ����etN�(� ,�1,�2) � 1�(� , �1, �2)

���� D jtN j C O(N���2").
Consequently,

jFx(v3(tN))(� )j�[NC3 ,NC4 ](� ) & N�3sC1 �3=2N�1 2N���"�[NC3 ,NC4 ](� )

� N�3s���" 1=2�[NC3 ,NC4 ](� )

� N�3s�3�=4�"�[NC3 ,NC4 ](� ),

since jK� j �  2.
Concerningw3, we verify that for (�1, �2) 2 K� , we havej�(� , �2)j &  N and then

jFx(w3(tN))(� )j�[NC3 ,NC4 ](� ) . N�3sC1 �3=2 2N�1( N)�1�[NC3 ,NC4 ](� )

� N�3s�1 �1=2�[NC3 ,NC4 ](� )

� N�3s�1��=4�[NC3 ,NC4 ](� ).

Since�3s�1��=4< �3s�3�=4� " for � < 2, we deduce that the main contribution
in the H s-norm of u3 is given bykv3kH s, that is,

ku3(tN)kH s & N�3s�3�=4�" 1=2Ns � N�2s��=2�",
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and we find the condition

�2s� �
2
> 0, i.e. s< ��

4
.

When� D 2, the contributions ofv3 andw3 are equivalent, and we must proceed with
a bit more care, by considering directly the differenceu3 D v3 � w3. More precisely,
for  D "N � N, we have

j�(� , �1, �2)j � j�(� , �2)j � N2.

Noticing that

�(� , �1, �2) � �(� , �2) D �(�2, �1),

we deduce����etN�(� ,�1,�2) � 1�(� , �1, �2)
� etN�(� ,�2) � 1�(� , �2)

���� D t2
N j�(�2, �1)j C O(t3

N N2j�(�2, �1)j).
Setting againtN D N�2�", and sincej�2j � N, it follows that

jFx(u3(tN))(� )j�[NC3 ,NC4 ] & N�3sC1 �3=2 2N N�4�2"�[NC3 ,NC4 ](� )

and thus

ku3(tN)kH s & N�2s�2�2" � N�2s�1�2",
which tends to infinity as soon as�2s� 1> 0, i.e. s< �1=2.

6. Appendix

We prove here that the pure dissipative equation

(6.1) ut C jDj�uC uux D 0

for 1< � � 2 is well-posed inH s(R), s> s� where

s� D 3

2
� �,

and that the solution map fails to be smooth whens < s�. The method of proof is
classical and is based on the smoothing properties of the generalized heat kernel

G�(t, x) D 1

2�
Z
R ei x�e�t j� j� d� , t > 0.
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Theorem 6.1. Let 1 < � � 2, s > s� and u0 2 H s(R). Then there exist T> 0
and a unique solution u2 C([0, T ]I H s(R)) of (6.1) such that

sup
t2[0,T ]

ku(t)kH s <1 if 1< � � 3

2
,(6.2)

sup
t2[0,T ]

ku(t)kH s C sup
t2[0,T ]

t�ku(t)kL2=(��1) <1 if
3

2
< � � 2(6.3)

where � D �s=� C (2 � �)=2�. The flow map u0 7! u from Hs(R) into the class
defined by(6.2) and (6.3) is locally Lipschitz. Moreover, if ku0kH s is small enough,
the solution can be extended to any time interval.

Proof. Observe that for anyp 2 [1, 1] and � � 0, we have

(6.4) kjDj�G�(t)kL p D ct�(1�1=p)=���=�.
We use the Picard iteration theorem to show that the mapF defined as

F(u) D G�(t) � u0 � 1

2

Z t

0
G�(t � t 0) � �xu2(t 0) dt0

has a fixed point in some suitable Banach space.
We first consider the case 1< � � 3=2, and we chooses� < s < 1=2. Set XT D

C([0, T ]I H s(R)) endowed with the normkukXT D sup[0,T ]ku(t)kH s. By Young inequal-
ity and (6.4), we have

(6.5) kG�(t) � u0kH s . kG�(t)kL1ku0kH s . ku0kH s.

Using the fractional Leibniz rule, we getZ t

0
kG�(t � t 0) � �xu2(t 0)kH s dt0 . Z t

0
k�xG�(t � t 0)kL (sC1=2)�1khDisu2(t 0)kL1=(1�s) dt0

. Z t

0
(t � t 0)s=��3=2�ku(t 0)kL (1=2�s)�1ku(t 0)kH s dt0.

Since 0< s < 1=2, we can take advantage of the Sobolev embeddingH s(R) ,!
L (1=2�s)�1

(R). Sinces=� � 3=2� > �1, we conclude

(6.6)
Z t

0
kG�(t � t 0) � �xu2(t 0)kH s dt0 . T�kuk2

XT

with � D 1C s=� � 3=2� > 0. Gathering (6.5) and (6.6) we infer

kF(u)kXT . ku0kH s C T�kuk2
XT
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and in the same way,

kF(u) � F(v)kXT . T�(kukXT C kvkXT )ku � vkXT .

This proves that forT � 1, F is contractive in a ball ofXT .
Now we solve (6.1) in the case 3=2 < � � 2 and s� < s < 0. Define YT D

C([0, T ]I H s(R)) \ C�([0, T ]I L2=(��1)(R)) equipped with the norm

kukYT D sup
t2[0,T ]

ku(t)kH s C sup
t2[0,T ]

t�ku(t)kL2=(��1).

By Young inequality, we get

kG�(t) � u0kL2=(��1) D khDi�sG�(t) � hDisu0kL2=(��1) . khDi�sG�(t)kL2=�ku0kH s,

and it follows from (6.4) that

t�khDi�sG�(t)kL2=� . t�(t�(2��)=2� C t�(2��)=2�Cs=�) . hTi�s=�.

Now we deal with the nonlinear term. Using the Sobolev embedding L (1=2�s)�1
(R) ,!

H s(R) valid for any�1=2< s< 0, we obtainZ t

0
kG�(t � t 0) � �xu2(t 0)kH s dt0 . Z t

0
k�xG�(t � t 0)kL (5=2�s��)�1ku2(t 0)kL1=(��1) dt0

. Z t

0
(t � t 0)�s=��1C1=2�t 0�2� t 02�ku(t 0)k2

L2=(��1) dt0
. T�kuk2

YT

with � D �s=� C 1=2� � 2� > 0. By similar calculations, we get

t� Z t

0
kG�(t � t 0) � �xu2(t 0)kL2=(��1) dt0 . t� Z t

0
k�xG�(t � t 0)kL2=(3��)ku2(t 0)kL1=(��1) dt0

. t� Z t

0
(t � t 0)�(�C1)=2�t 0�2� dt0kuk2

YT

. T�kuk2
YT

with � D 1� (� C 1)=2� � � > 0. Finally, one has

kF(u)kYT . hTi�ku0kH s C T�kuk2
YT

and the claim follows.

REMARK 6.1. Let U�(t) D F�1� (ei t � j� je�t j� j� ) be the fundamental solution of the
linear (dBO) equation. Using thatjFxU�(t)j D jFxG�(t)j as well as the well-known
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estimatek f kL p . k Of kL p0 , p � 2, 1=pC 1=p0 D 1, we easily check that Theorem 6.1
also holds for (dBO) equation.

Finally, we show that Theorem 6.1 is sharp.

Theorem 6.2. Let 1< � � 2 and s< s�. Then the solution map u0 7! u associ-
ated with (6.1) (if it exists) is not of classC2 from Hs(R) to C([0, T ]I H s(R)).

Proof. The proof is similar to that of Theorems 1.2 and 1.3. Define hN as in
(5.4) and consider the high-high interactions in the convolution product (e�t j� j�hN) �
(e�t j� j�hN). We get that for� 2 [2N, 2N C 4 ],  D N1�" and tN � N���",

jFx(u2(tN))(� )j & N�2s��C1�"�[2N,2NC4 ](� )

whereu2 is defined by

u2(t) D Z t

0
G�(t � t 0) � �x(G�(t 0) � hN)2 dt0.

We conclude that

ku2(tN)kH s & N�s��C1�" 1=2 & N�sC3=2���3"=2 !C1
as soon ass< 3=2� �.
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