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Abstract. Union pseudogroups (structures analogical to pseudogroups in the sense
of [1]) are defined using the category dual to the category of groupoids instead of
the category of pseudospaces in the sense of [2]. It is shown that these structures
are equivalent to double groups (in the sense of [3]). Moreover, it is shown that a
quantization procedure associates with each finite union pseudogroup a (quan-
tum) pseudogroup. Therefore for each finite double group there is a finite
pseudogroup.

Introduction

Many attempts have been made in order to create a theory of objects more general
than groups, essentially by considering not necessarily commutative spaces. Those
efforts are valuable because of the following two features of such generalizations:
1) a principle of duality, which, in particular, can be applied to noncommutative
groups,
2) a description of new kind of symmetries.

In spite of the same fundamental idea, there exist many different approaches
using even completely different words denoting the objects generalizing groups,
such as pseudogroups [1], quantum groups [4], Kac algebras, Hopf algebras, etc.
The fundamental idea of all these approaches consists in using the category of
linear maps as a basic language. One formulates the notion of a group in this
language and then one observes that there is room for "groups with noncommuta-
tive space." In the sequel we propose to call such objects "quantum pseudogroups"
in order to emphasize the existence of approaches based on categories other than
linear (= quantum).

In this paper we study one such approach based on binary relations. Since
binary relations are union maps (Sect. 1), the category they form is said to be the
union category and we obtain a notion of a union pseudogroup (Sect. 6). A
quantization procedure (Sect. 4) applied to each finite union pseudogroup
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produces a finite quantum pseudogroup (Sect. 8). In Sect. 9 and Sect. 10 we show
that union pseudogroups coincide with double groups. Therefore double groups
provide union pseudogroups with a "second face." It is interesting that the "union
pseudogroup picture" is appropriate for quantization, while the "double group
picture" has a very simple structure and allows to find examples.

In our next paper we study differential pseudogroups and symplectic
pseudogroups (using differentiable relations and symplectic relations, respec-
tively). Their quantization will be studied in subsequent publications.

1. Binary Relations, Union Spaces and Algebras

A binary relation is a triple r = (R; Y, X), where X and Y are sets (X is the domain of
r, Y is the codomain of r) and R is a subset of Y x X (R is the graph of r and is denoted
by ^(r)). We say that r = (R; Y,X) is a relation from X to Y and we denote it by
r:X->Y

Two relations, r: Y-+Z and s: X-* Y can be composed in a standard way, the
composed relation rs being a relation from X to Z. Binary relations (with this
composition) form a category. The transpose relation of a relation r:X-+Y is a
r e l a t i o n r τ : Y - + X s u c h t h a t %(rτ) = { p e X x Y:p = tq9 q e & ( r ) } , w h e r e t : Y x X
-*X x Y is the flip map defined by t(y, x) = (%, y). The transposition of relations, i.e.
the assignment r\-+rτ is an involutive contravariant functor.

A useful fact about the category of binary relations is that it is isomorphic to a
concrete category (i.e. such category whose morphisms are mappings and the
composition is the composition of mappings). Let $(X, Y) denote the set of all
relations from X to Y Let {1} denote a distinguished set consisting of one point, 1.
We shall identify the set BX = @({1},X) with the set of all subsets in X. To each
relation r:X-*Y there corresponds a map Br:BX-+BY, defined by

(Br)(A) = rA for AQX .

A map F: BX-+BY is said to be a union map if it commutes with taking unions, i.e.

F(\J A\= U F(A) foranyj/cBX,
\Aesί ) Aesί

and preserves the empty set: F(0) = 0. Union maps form a (concrete) category. The
assignment r\-+Br is a functor from the category of binary relations to the category
of union maps. This functor is actually an isomorphism.

A union space is an object of the category of union maps, i.e. the set BX of all
subsets in a set X, equipped with its obvious "union structure" (see appendix on
abstract union spaces).

Union spaces with union maps resemble to some extent vector spaces with
linear maps. This allows to introduce several structures based on union spaces, by
imitating some familiar structures based on vector spaces.

A map F:BXx B Y->BZ is said to be a bi-union map, if F(A x /): BY^BZ and
F(I x B): BX-»BZ are union maps for all A c X, B C Y (we shall always denote the
identity map by /). A tensor product BX(x) IB 7 of two union spaces is defined as in
the case of vector spaces (by a universal bi-union map BX x BY^>BX®BY) and
can be identified with BZ, where Z is the set-theoretic direct product of X and Y
(note also that a direct product exists in the category of union spaces and
corresponds to the set-theoretic disjoint union of the underlying sets).
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Now let us compare the following two definitions.
Definition. A vector algebra is a pair (V,μ), where V is a vector space and
μ: V®V-*V is a linear map, which is associative, i.e. μ(μ®J) = μ(/(g)μ).

Definition. A union algebra is a pair (t/,M), where 17 is a union space and
M: U®U-+U is a union map which is associative, i.e. M(M®I) = M(I®M).

Example 1.1. The intersection AnB of two subsets of X defines an associative bi-
union map n : IBX x BX-»]BX, hence a structure of a union algebra on BX. This is
the usual algebra of subsets of X.

Example 1.2. The product AB = {xy :xeA,yeB} of two subsets A, B in a group
X = G defines an associative bi-union map from B I x B I to TBX. The corre-
sponding union algebra is said to be the union group algebra of G.

Example 13. The composition of relations in a set Z defines a union map
M:BX®BX->BX, where X = ZxZ, such that M(»(r)®#(s)) = #(rs) for any
relations r, s:Z-+Z. (X,M) is said to be the algebra of all relations in Z.

For simplicity, we shall work with binary relations rather than union maps.
Therefore we rewrite the above definition of a union algebra in terms of relations.
Since our basic category is the category of relations, we use the tensor notation
X® X for the set-theoretic product I x I . A tensor product of relations is naturally
defined.

Definition. A union algebra is a pair (X,m), where X is a set and m:X®X-*Xisa
relation which is associative, i.e.

m(m®I) = m(I®m). (1)

In the above examples, the multiplication map M corresponds to a multiplica-
tion relation m:X®X-*X, given (respectively) by
1. m = dτ, where d:X->X®X is the diagonal map
2. m is the group multiplication

In the last point we have used the following simplified notation for the image
r{x} of a point xeX under a relation r:X-*Y We shall write r(x) instead of r{x}, if
there is no danger of a confusion.

2. Union Algebras with Unit

A union algebra (X, m) has a unit if there exists a relation e: {1} ->X (the unit) such
that

m(e®I) = l = m(I®e). (2)

In this case e is unique and we have the following three lemmas.

Lemma 2.1. Ifa,beE then m(a, b) + φif and only ifa = b and in this case m(a, b) = a.

Proof. If m(a, b) φ 0 then a = m(a, b) = b. •
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Lemma 2.2. There exist unique two mappings eL,eR:X->E such that m(eL(x\x)Φ 0
+ m(x,eR(x)) for xeX. These mappings have the following properties:
(i) m(eL{x\x) = x = m(x,eR(x)) for xeX,

(ii) eL{a) = a = eR(a) for aeE.

Proof For each xeX there exists aeE such that m(a,x)φ0 and then m(a,x) = x. If
beE is such that m(ί?,x)Φ0 then 0Φm(b,m(a,x)) = m(m(b,a),x), hence m(fc,α)φ0
and, by Lemma 2.1,6 = α. This shows the existence and uniqueness of eL. A similar
argument works for eR. Property (ii) follows from Lemma 2.1.

Definition. The mapping eL (respectively eR) is said to be left (respectively right)
projection. For any a e E, the set aX— el 1(a) (respectively Xa = eR

 x(a)) is said to be
the left (respectively right) fiber over a.

Lemma 2.3. For any x,yeX, m(x, y) Φ 0 implies eR(x) = eL(y), eL(m(x, y)) = eL(x

Proo/ If m(x, y) φ 0 then 0 φ m(m(x, eκ(x)), y) = m{x, m(eR{x), y)\ hence m(eΛ(:x), y) φ 0
and ^K(X) = ^L();) We have

m(eL(x\ m(x, 3;)) = m{m(eL{x\ x), y) = m(x, >;) φ 0

and, similarly, m(m(x, y\ eR(y)) φ 0. •

A union algebra with unit is a triple (X, m, e), where (X, m) is a union algebra
having a unit denoted by e. Let (X, m, β) and (X', mr, e') be two union algebras with
unit. A morphism from (X,m,e) to (X\m\er) is a relation h\X-+X' such that

/im m(/ι()ι) (3)
and

/κ? = e\ (4)

Let h be as above. We set E = e(ί), E' = e\\). Let h0: £-•£' denote the base relation
of ft, defined by ^(fto) = ̂ (ft)n(F x E). Then we have two following lemmas.

Lemma 2.4. (e'L x eJ0(Λ) = 0(Λo) = (eR x βR

Proo/ We prove the first equality. If (x\ x) e &(h) then

x' E h(x) = hm{eL{x\ x) = m\hQ{eL(x)\ h(x)),

hence e'L{xf) e e'L{h0{eL(x))) = ft?(βLW) a n d WLM^L{X)) e &(h0). The converse inclu-
sion follows from the definition of ft0. •

Lemma 2.5. ti^\E'-+E is a map.

Proof. From (4) we have h
o
(E) = E'. If α, behξ(a') then hm(a, b) = m'(ft(α), ft(b))

^α', α
r
) φ 0, hence α = b. Π

3. Union Star Algebras

A bijection s: X-+X is said to be a star operation in a union algebra (X, m) if s2 = I
and sm = m(s®s)t.

It is easy to see that if (X, m) has, additionally, a unit e, then se = e and eL(sx)
= eΛ(x) for xeX.

A wnion star algebra with unit is a quadruple (X, m, e, s), where (X, m, β) is a
union algebra with unit and s is a star operation in (X, m).
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An important example of a union star algebra with unit is the algebra of all
relations in a set Z, End Z=(Z x Z, m, @(I),1) with m defined in Sect. 1.

The inverse x\-+x~x in a group is a star operation in the union group algebra
(Example 1.2).

Let (X,m,e,s) and (X',m',e',s') be two union star algebras with unit. A
morphism from (X,m,e,s) to (X',m',e',s') is a relation h:X->X' satisfying (3), (4)
and

hs = s'h. (5)

A representation of (X, m, e, 5) in a set Z is a morphism from (X, m, £, 5) to EndZ.
Such a representation is said to be faithful if the underlying relation h is a union
monomorphism (i.e. Bh is injective).

A very important class of star algebras in the vector case is the class of C*-
algebras. A finite-dimensional star algebra st is a C*-algebra if and only if the
following positivity condition is satisfied:

if Aejtf,A*0 then A*AφO

(cf. [5]). In the union case this corresponds to the following condition

if AcX,Aή=0 then m(sA®A)ή=0,

which is equivalent to the following statement

m(sx,x)Φ0 for each xeX. (6)

This property holds in particular in union star algebras with unit having a faithful
representation.

Lemma 3.1. // condition (6) is satisfied, then sa = a for each aeE.

Proof For aeE we have saeE and m(sa,a) + 0, hence sa = a. •

Note that in Example 1.3 and Example 1.1 there exists only one star-operation
satisfying (6) and then

m(sx,x)cE for xeX. (7)

Also the inverse in the group case (Example 1.2) satisfies (7). In the differentiable
case (Part II of this work) we shall be interested in smooth deformations of our
fundamental examples, and it is reasonable to expect that the star invariant set
m(sx, x) will remain in E (in our examples there exists a neighborhood of £ in which
E is the set of fixed points of 5).

Definition. A U*-algebra is a union star algebra with unit (X, m, e, s) such that

Φ + m(sx,x)cE for xeX. (8)

We refer to condition (8) as to strong positivity condition. We consider t/*-algebras
as union counterparts of C*-algebras. Morphisms of C7*-algebras are defined as
before as relations satisfying (3), (4), and (5).

Lemma 3.2. // (X,m,e,s) is a U*-algebra, then for x, yeX we have
(i) m(sx,x) = eR(x),m(x,sx) = eL(x),

(ii) eR(x) = eL(y) implies m(x,y) + φ,
(iii) m(x,y)nE + 0 implies y = sx,
(iv) m(x, y) is either empty, or consists of one point.
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Proof, (i) m(sx,x) = eR(m{sx,x)) = R()
(ii) 0 Φ m(x, eR(x))=m(x, eL{y)) = m(x, m(y, sy))=m(m(x, y), sy).

(iii) If aem(x,y)nE then eR(sx) = eL(x) = eL(a) and we have

sx = m{sx, a) C m(sx, m(x, y)) = m{m(sx, x), y) = m{eR{x\ y) = y.

(iv) If z, ίem(x,j;) then βΛ(sz) = eL(z) = eL(ί), and we have

0 Φ m(sz, t) C m(sm(x, y\ m(x, y)) = m(m(sy, sx), m(x, y))

= m(sy, m(m(sx, x), y)) = m(sy, m{eR{x\ y)) = m(sy, y) = eR(y),

and from (iii) it follows that z = t. •

Point (iii) of the above lemma shows that the star operation in a (7*-algebra is
determined by m:

τ (9)

Example 3.ί. A L/*-algebra such that m is a mapping is necessarily a group. It is
easy to see that morphisms of such C/*-algebras are group homomorphism (cf.
Lemma 3.3 below).

Example 3.2. Lzt (X, m, e, 5) be a ί/*-algebra and let aeE. Then 0 φ m(x, y) e aXc\Xa

for all x, yeaXnXa. The relation m defines on aXnXa a structure of a group.
Lemma 3.2 shows that l/*-algebras coincide with groupoids [6, 7]. We prefer

to use here "nonstandard" terminology for two reasons:
1° we choose a terminology consistent with general scheme of "algebras,"
2° our approach to morphisms of these objects is completely different from the
standard one (we are talking about different categories!).

Lemma 3.3. Let h:X-+Xf be a morphίsm from a U*-algebra (X,m,e,s) to a U*-
algebra {X',m\e',s'). For beE', let bh:aX-+bX' (respectively hb:Xa-+X'b) be a
relation defined by

(bX' x aX) [respectively 9(hh) = ̂ {h)n{X'b x Xa)),

where a = h^{b). Then bh and hb are mappings.

Proof. IϊxeaX, then

beha = heL(x) = hm(x, sx) = m'(hx, s'hx).

It follows that there exists yehx such that bee'L(y). Such y is unique: if zehx,
b E e'L(z\ then 0 Φ m\sfy, z) e m\s'hx, hx) = hm(sx, x)= heR(x) C E\ hence y = z. •

Definition. A U*-coalgebra is a quadruple (X, d, c, r), where X is a set, d, c, r are
relations and (X,dτ, c τ , r τ ) is a C/*-algebra. Morphisms of L/*-coalgebras are
defined in a way dual to morphisms of l/*-algebras, by "reversing the arrows in
suitable diagrams" (cf. [5]). L/*-coalgebras are also said to be union pseudospaces
or U*-spaces.

A union pseudospace (X, d, c, r) is said to be finite, if X is a finite set.
There is a complete symmetry between the theory of £/*-algebras and the

theory of union pseudospaces, passage from one point of view to another being
given by the transposition functor. If M = (X, m, e, s) is a £/*-algebra (D = (X, d, c, r)
is a union pseudospace) then Mτ = (X,mτ,eτ,sτ) is a union pseudospace (Dτ

= (X, dτ, cτ, rτ) is a C/*-algebra). The choice of a particular point of view depends
what aspects we are interested in, algebraic or geometric. It is often easier to work
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with £/*-algebras, because such structures as multiplication, unit, and the star
operation (the inverse of a groupoid) are familiar from the theory of algebras
(groups).

The correspondence h\-+hτ defines a contravariant functor from the category
of t/*-algebras to the category of union pseudospaces and establishes a duality
between these categories. The following example shows that the category of sets is
a (full) subcategory of the category of union pseudospaces.

Example 33. Let (X, d, c, r) be a union pseudospace such that d is a mapping. Then
d has to be the usual diagonal map, c has to be the unique (constant) map from X to
{1} and r = I. Such a union pseudospace will be denoted by Dx. A relation f:X->Y
is a morphism from Dx to Dγ if and only if/ is a map (/ coincides with its base map,
/o).

If D = (X,d,c,r) is a union pseudospace, then the left (respectively right)
projection in Dτ will be denoted by cL (respectively cR). We set also C = e τ(l).

A point of a union pseudospace D is a morphism from D{1) to D. Let p: {1} -*X
be a point of D = (X, d, c, r). Then the base map p0: {1} -• C may be identified with
the point po = po(l)eCnP, where P =

Lemma 3.4. P = poX=Xpo. In particular, P equipped with dτ\PxP is a group.

Proof. If cL(x) = p0 then $4zpTcL(x) = pTdT(x,rx) = pT(x)®pT(rx), hence xeP. If
xeP, then cL(x)

Corollary. A point p:{l}->X of a union pseudospace (X,d,c,r) is uniquely
determined by its base point p0.

Lemma 3.5. {pT0I)d=ppτ = (I®dT)d.

Proof If xeP, then dτ(p®I)(x) = P = ppτ(x). If xφP, then dτ(p®I)(x) = φ
= PPτ(x) D

A character of a C/*-algebra M = (X,m,^,,s) is a morphism from M to Dj1}. If
X { l } i a character of M then Lemma 3.5 says that

m(qτ®I) — qτq = m(l®qτ)

(cf. [1], Proposition A.2.1, point 1).

4. Quantization of Binary Relations

A binary relation is said to be finite if it has a finite domain and a finite codomain.
For any finite set X we denote by C X the vector space of formal linear

combinations of elements of X with coefficients in C (the field of complex
numbers). For any finite relation r: X-> Y we denote by (Cr a linear map from C X
to C 7 defined as follows

(<Cr)x= X y for x e X

(X is a basis in CX). yer(3C)

The correspondence ri—>Cr (quantization) is not a functor. For two finite
relations, r: Y-+Z, s:X->Y we have C(rs) = (C(r)C(s) if and only if

for each (z, x) e @(rs) there exists only one y e Y such that y e s(x) and z e r(y).
(10)
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Definition. Two binary relations r and s are said to have a simple composition if
condition (10) is satisfied. In this case we shall write rls.

For general relations r: Y-+Z, s:X->Y the composed relation rs is a disjoint
s u m rs = (r

where for any cardinal number n, (r, s)n is a relation from X to Z such that

^((r,s)π) = {(z,x)eZxI:rΓ(z)n5(x) has n elements}.

Then we have (if the relations are finite)

C(r)C(5) = C((r, S)x) + 2C((r, s)2) +. . . = C(rs) + <C(rs\(r, s),) + . . . .

Condition (10) means that rs = (r,s)ί.

Definition. A relation s: X-> Y is said to be sΐmp/e if for each relation r with domain
Y, r and s have a simple composition. A relation r is said to be co-simple, if r τ is
simple.

It is easy to see that simple relations from X to Y are exactly relations of the
form r=fiτ, where i: Xo ->X is the inclusion of a subset Z o in X and / : Xo -> 7 is a
map.

There is a canonical scalar product on <Df with respect to which the set X C <CX
is an orthonormal basis. For each finite relation r we have C(rτ)=C(r) t where t
denotes the hermitian conjugation of (continuous) linear maps of Hubert spaces.

There is a canonical antilinear map J:<EX-><tx called the complex conjuga-
tion, such that Jx = x for xeX. The complex conjugation J is antiunitary and
commutes with linear maps of the form <E(r).

Linear maps Q:V1^V2 of finite-dimensional vector spaces are in one-to-one
correspondence with their kernels Jf(ρ) e V2®Vf. The correspondence is given by

for aeV^υeV^

If r: X-> Y is a finite relation, then Jf (C(r)) is related to C(^(r)) by the following
formula

5 (11)

where F:<EX-^(<£X)* is the Frechet-Riesz anti-isomorphism (defined for each
Hubert space).

Remark. Binary relations with simple composition form a WP-category in the
sense of [8, 9]. The quantization ri-̂ CCr is a functor from the WP-category of finite
binary relations with simple composition to the category of linear maps of finite-
dimensional Hubert spaces. This functor commutes with canonical involutions. It
is possible to consider a quantization of infinite relations. To each relation r: X-+ Y
there corresponds a linear continuous map Cr: C0(X)-+C(Y), where C0(X) is the
space of formal linear combinations of elements of X (the inductive limit of <Df0

over finite parts Xo of X) and C(X) denotes the space of all complex functions on X
(the projective limit of C Z 0 over finite parts Xo of X). The space of linear
continuous maps from C0{X) to C{Y) is isomorphic to C(Y x X). Elements of this
space are said to be infinite matrices. Infinite matrices a e C(Z xY),beC(YxX) are

said to be composable if for each (z, x)eZxX, the sum Y a(z, y)b(y, x) is absolutely
yeY

convergent. By Fubini theorem, infinite matrices form a WP-category and the
correspondence rf-^Cr is a functor from the WP-category of binary relations with
simple composition to thfe above WP-category.
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A quantization of differentiable relations and symplectic relations requires in
general some additional structure, typically a measure (see [10, 11] etc.).

5. Quantization of t/*-Algebras and Union Pseudospaces

Definition. A finite-dimensional Hubert algebra is a quadruple j / = (#,μ,ε,σ),
where H is a finite-dimensional Hubert space, μ:H®H^>H, ε:(C->if are linear
maps and σ:H->H is an antiunitary map such that

μ(μ®J) = μ(J(g)μ), (12)

μ(ε®/) = J = μ(J®ε), (13)

σ2 = /, (14)

σμ = μ(σ®σ)τ, (15)

μh = (I®σF-ί)Jίr{I), (16)
where τ:H®H-+H®H is a linear map defined by τ{a®b) = b®a, for a, beH.
Conditions (12)-(15) mean that si is an involutive algebra with unit. Condition
(16) is equivalent to the following property:

(t\ab) = (bσ\a) for a,beH9

where H = ε(l), ab = μ{a®b) and bσ = σ(b). Using this notation we have

(ab I c) = (11 (α&)*c) = (H16Vc) = (61 aσc),
hence

(ab\c) = (b\aσc). (16')
The last condition is used in a standard definition of a Hubert algebra instead of
condition (16) (see [5]). Condition (16') says that the left regular representation
λ: H-^EndH, defined by λ(ά)b=μ{a®b) for a, b e H, is a ^representation of si in
H: λ(aσ) = λ(ay for aeH.

Since A is faithful, it follows that si is a C*-algebra.
Any quadruple (iί, μ1", ε1, σf), where (H, μ, ε, σ) is a finite dimensional Hubert

algebra is said to be a finite-dimensional Hilbert coalgebra (in fact σ1" = σ, since σ is
an unitary involution). Any finite-dimensional Hilbert coalgebra is (in particular) a
C*-coalgebra (see [5] for a definition).

Proposition 5.1. Let M = (X, m, e, s) be a U*-algebra such that X is a finite set (i.c.
MT is a finite union pseudospace). Then C*(M) = ((EX, (Cm, (Ce, J<Cs) is a finite-
dimensional Hilbert algebra.

Proof. The projections eL and eR are unique and m is simple (by Lemma 3.2(iv)),
hence we have only simple compositions in (1) and (2). Applying quantization, we
obtain (12) and (13) with μ = (Cm, ε = Ce. It is also clear that σ = J(£s is antiunitary
and satisfies (14) and (15). From (9) we have

Using (11) we have

h 1 ί •

C*(M) is said to be the Hilbert algebra of M. By the dual construction, to each
union pseudospace D = (X,d,c,r) there corresponds a Hilbert coalgebra C*(D)

O , (Cc, J(Cr).
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Lemma 5.2. // h'.X^X' is a morphism from a U*-algebra {X,m,e,s) to a 17*-
algebra (X', m', e\ s'\ then all compositions in (3), (4), and (5) are simple.

Proof. Let y, zeX and x'sX' be such that x'ehm(y,z). Let / , z'eX' be some
intermediate points for the right-hand side of (3), i.e. xf e m'(y\ z'\ y' e h(y) and
z' ε h(z). It follows that e'L{y') = e'L{x') and, by Lemma 3.3, / is uniquely determined
by x1 and y. Similarly we prove that z' is unique. •

Lemma 5.3. Composition of morphisms of U*-algebras is always simple.

Proof It follows from the structure of morphisms, as described by Lemma 3.3. If
h:X-+Y{k: Y->Z) is a morphism from M to M' (NT to M"), zek(y) and yeh(x\
then e'L(y) = k%{e"L(z)) and y is uniquely determined by x and z. •

By Lemma 5.2 we can quantize not only finite L7*-algebras and union
pseudospaces, but also their morphisms. By a morphism of finite-dimensional C*-
algebras we mean a *-homomorphism preserving the unit. A dual definition is
assumed for morphisms of finite-dimensional C*-coalgebras (these morphisms
form precisely what is meant by the category of finite quantum pseudospaces). By
Lemma 5.2, to each morphism h of l7*-algebras (/ of union pseudospaces) there
corresponds a morphism <Eh of C*-algebras (C/ of pseudospaces). By Lemma 5.3,
the assignments ftι-»O, /»->C/ are functors.

6. Union Pseudogroups

A product of two union pseudospaces Dί = (Xl9 dl9cl9 rj and D2 = (X2, d2, c2, r2) is
a union pseudospace defined as follows:

D1®D2 = {X1®X2,(I®t®I)(d1®d2),c1(g)c2,r1<g)r2).

Definition. A union pseudogroup or U*-group is a pair P = (D, m), such that
(i) D = (X, d, c, r) is a union pseudospace,

(ii) m:X®X^X is a morphism from D®D to D which is associative:

m(/® m),

(iii) there exist relations e, e': {l}->^ such that

(in this case e = e' is unique),
(iv) there exist relations k,k':X-+X such that

(17)m(/c®/)rf = ec = m(I®kf)d.

P is said to be finite if X is a finite set.
In order to simplify some proofs in the sequel, we introduce graphic symbols

denoting the elementary relations d, c, r, /, m, e, fe, fc', as given by the following table:

"y

c :

i
e :

?

1
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We believe that the graphic representation of a complicated formula is more clear
than the standard linear one. Here are examples of some formulas written
graphically:

All diagrams represent relations acting downward.

Lemma 6.1. k = k' and k is unique.

Proof.

Jfeό = k = *Q Ok' = k

We introduce the following notation:

Lemma 6.2. Let s = kr. Then s2 = I and, in particular, k is bijection.

Proof. We introduce two relations

and
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We have V=t(r®r)U(r(g)r% because

rθ Or

We shall show that U is invertible, and U ι is given by the following diagram:

In fact,

and, similarly,

We shall use another form of V:

(18)
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We have (c®I)U~xV=c®k, because

359

If we set W= U~ι V{r®r\ then

W2 = U'* V(r®r)U~x V{r®r) = U" ιt(r® r)UU~1 V{r

and (c®ϊ)W=cr®kr = c®s, hence

. •
Lemma 6.3. k is antimultiplicative, i.e.

Proof. Using the following formula

= m(k(g)k)t.

we obtain
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Lemma 6.4. e is a point of D.

Proof.
(i) We have

= ??

(see (18)), hence de = e®e.
(ii) We have c = cl = cm(e ® I) = (c ® c) (e (x) /) = ce ® c, hence ce = L

(iii) m{re®I) = m(re®rr) = m(r®r) {e®r) = rm{e®ΐ)r = rr = I, hence re = e by the
uniqueness of e. •

Corollary. // we denote eτ graphically by o eτ, then we have

(see Lemma 3.5).

Lemma 6.5.

Proof Since like in (18), we have
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= 0

and the statement follows from the form of U and U * in Lemma 6.2. •

Lemma 6.6. k is anti-comultiplicative, i.e. dk = t(k®k)d.

Proof. Applying three times Lemma 6.5, we have

0 e i
0 e i

Proposition 6.7. U*(P) = (X,m,e,s) is a U*-algebra.

Proof. From Lemma 6.3 and 6.6, 5 is antimultiplicative. We shall show that
condition (6) is satisfied. In fact, if x0 is such that m(sxo,xo) = Φ then s' :X^X,
defined by

s'(x) =
s(x) for xή=x0

0 for x =

satisfies m(s'r®ΐ)d = ec, but this contradicts the uniqueness of k. From (17) it
follows that condition (7) is satisfied. •

£/*(P) is said to be the union group algebra of P.

Definition. If P = (D,m), P' = (D\rri) are two union pseudogroups, D = (X,d,c,r\
D' = (X\d\c\r% then a relation f\X-*X' is a morphism from P to P' if / is a
morphism from D to Dr and

fm = m\f®f).
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Lemma 6.8. A morphism from P to P' is also a morphism from U*(P) to U*(P').

Proof
(i) fe = e', because

Ϊ
. .

= j

(we have introduced a new line f\, which denotes / and we have labelled some
other relations explicitly for the reader's convenience),
(ϋ) fk = kf:

7. Union Kac Algebras and Duality

A union Kac algebra is a pair (D, M), where D = (X, d, c, r) is a union pseudospace
and M = (X,m,e,s) is a (7*-algebra (with the same set X) such that

dm={m®m){I®t®I){d®d)i

cm = c®c,

= m(

and cs = c,
m(sr®I)d — ec = m(I®sr)d.

Above conditions are not independent.

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Lemma 7.1. If D = (X, d, c, r) is a union pseudospace. M — (X, m, e, s) is a U*-algebra
and condition (27) is satisfied, then three following conditions are equivalent:

(i) (D, M) is a union Kac algebra,
(ii) m is a morphism from D®D to D,

(iii) d is a morphism from M to M®M.

Proof We shall prove that (ii) implies (i). Since (D, m) is a union pseudogroup, it
follows from Lemma 6.4 that (22), (23), and (24) are fulfilled. From Lemma 6.6 we
have (25). Formula (26) follows from (25) exactly in the same way as (24) follows
from (22) in the proof of Lemma 6.4. •

Proposition 7.2. There is a bijective correspondence between union pseudogroups
and union Kac algebras, given by

P = (D,m)*->(D,U*(P)).

Proof It follows from Proposition 6.7 and Lemma 7.1. •

Morphisms of union Kac algebras are relations (between the underlying sets)
which are both morphisms of the underlying pseudospaces and morphisms of the
underlying l/*-algebras. By Lemma 6.8, the category of union pseudogroups is
isomorphic to the category of union Kac algebras.

Applying the transposition functor to all ingredients of a union Kac algebra
(D, M), we obtain a union Kac algebra (Mτ, Dτ), which is said to be dual to (D, M).
This allows (by Proposition 7.2) to associate with each union pseudogroup a dual
union pseudogroup. By Lemma 6.8, to each morphism of union pseudogroups
corresponds (via f^fτ) a morphism of dual union pseudogroups. We have
therefore an involutive contravariant functor expressing a principle of duality for
union pseudogroups.

8. Quantization of Union Pseudogroups

A finite quantum pseudogroup is a pair 0> = {β, μ), such that
(i) @ = (V,δ,γ,ρ) is a finite quantum pseudospace (cf. Sect. 5),

(ii) μ: V® V-+V is a morphism from 3)®3) to 3), which is associative (Eq. (12)),
(iii) there exist linear maps ε, ε ' :C-»F such that

μ(ε®I) = I = μ(I®ef).

In this case ε = ε' is unique.
(iv) there exist linear maps K, K' : V-> V such that

μ{κ®I)δ = εγ = μ(I®κf)δ.

All lemmas of Sect. 6 are valid in the case of finite quantum pseudogroups,
because of the universal character of the proofs given there (the validity of
Corollary after Lemma 6.4 follows from [1], Proposition A.2.1, point 1). In
particular, κf = K, KQKQ = I and K is anti-comultiplicative. Passing to the dual space,
A = V* and dual maps, Φ = μ* etc., and choosing an arbitrary vector basis
( a k ) k = 1 N in A, we can introduce an NxN matrix of elements of A,
u — (uki)k ι=i N a s fo l lows:

N

H Σ ^
i=ί

Then the elements of u generate A:
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and
ak = {I®ε*)Φ(ak) = £ a^{uik),

i

hence ε*(uik) = δik, where δik is the Kronecker symbol. From the co-associativity of
Φ one can easily deduce that

X fy® Φ(uik) = X Λf® My® Mj* ,

hence Φ{uik) = uij®ujk. We have also

Σ ^ ( ^ u ^ ) ® M r I ) = 5 (ι

and, similarly,

Σ^*Kr(x

It follows that (A,u) is a finite matrix pseudogroup in the sense of [1].

Proposition 8.1. Let P = (D, m) be a finite union pseudogroup. Then (C*(D), (Dm) is a
finite quantum pseudogroup.

Proof. It suffices to prove that compositions in (17) (or (27)) are simple. We shall
show that

Since m(KS)s)(I(g)r)d = ec, we have for x, yeX,

m(x,sy)*Φ*dτ{x,ry)

if and only if E 3 m(x, sy) Φ 0 Φ dτ(x, ry) e C, i.e. y = x. It follows that

^(x^^iXsjO a n d cκ(x) = cL(rj;) implies ;c = y. (28)

Let aeE, beC and let x, y be such that

n(sx, x) = m{sy, y) and dτ(rx, x) = dτ(ry, y)

(i.e. (x, x), (y, y) are two intermediary points when composing m(s®I) and (r® ΐ)d\
hence eΛ(x) = eΛ()>) and cΛ(x) = cR(y). It follows from (28) that x = y. Π

9. Double Groups

Let G be a group and let B be a subgroup of G. Let 4̂ be a subset of G which has at
most one common point with each left and each right coset of B in G. In other
words, each element x oϊX = ABnBA (the product AB is defined in Example 1.2)
has a unique decomposition

x = aL(x)bR(x) = bL(x)aR(x),

where aL{x\ aR(x)eA and bL(x\ bR(x)eB. Maps αL, aR:X-+A(bL, bR:X^B) are
said to be the left and the πg/rt projection on ,4 (on 2?).

We define a relation α:X®X-»X as follows:
(i) if aR{x) φ aL(y) then φ , y) = 0,

(ii) if aR(x) = af(y) then cc(x9y) = bL(x)y = xbR{y)
(the last equality follows from bL(x)y = bL(x)aL(y)bR(y) = bL(x)aR(x)bR(y) = xbR(y)).
We have
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(A is identified with a relation from {1} to X with the image equal to A) In fact, for
each xeX there exists exactly one element aeA such that α(α,x)Φ0, namely
a = aL(x), and a{aL(x\x) = bL(aL{x))x = x.

Let sA:X-+X be a map defined as follows:

sjx) = bL(x)~ Wto = <IR(ΦR(X)~ *
Wehavesi = L

Proposition 9.1. (X9OL9A9SA) is a U*-algebra.

Proof. We have aL(a{x,y)) = aL{x), aR(cc(x,y)) = aR(y), bL(oc(x,y)) = bL{x)bL(y) and
bR(oc(x,y)) = bR(x)bR(y) if α(x,y) + 0. Nowe we have
(i) the associativity of α: it is easy to see that

α(α(x, y), z) Φ 0 <s> aR(x) = aL{y\ aR(y) = aL(z) o α(x, φ , z)) φ 0

and in this case

φ ( x , j>), z) = &L(x)j*Λ(*) = φ , α(y, z)).

(ii) antimultiplicativity of sA:

φAy, sAx) Φ0o aR{sAy) = aL(sAx) o aL{y) = aR(x) o a{x, y) Φ 0,

and in this case

<x(sAy, sAx) = bL(sAy)bL(x) ~ 1aL{x) = bL(a(x9 y))" ιaL(ot(x9 y)) = sAoc(x, y).

(iii) oc(sAx,x) = bL(x)-1x = aR(x). Q

Now let A and B be two subgroups in G such that AnB = {o}, where o is the
neutral element of G. In this case there is a relation /?: X®X-+X and an involution
sB, defined analogously as α and s^, by interchanging the role of A and B.

Proposition 9.2. Mί/z ί/ze αfcot e assumptions we have

j5ΓαD(α®α)(/®ί®/)(j?Γ®i?Γ), (29)

oc(sAsB®I)βτCABτ, (30)
r T (31)

Moreover, the following conditions are equivalent:
(i) AB = BA,

(ii) equality in (30),
(iii) equality in (31),
(iv) equality in (29).

Proo/ If x, y, z, ί are such that α(x,y)Φ0Φα(z,ί) and β(x,z)Φ0Φ/?(>>,ί), then

bR(α(x, y)) = bR(x)bR(y) = bL(z)feL(ί) = bL(α(z, ί)),

α^jβίx, z)) = aR(x)aR(z) = aL(y)aL(t) = aL(β{y, t)),
and

β(a(x, y\ α(z, ί)) = α(x, y)aR(ή = bL(x)yaR(t) = bL(x)β(y, t) = α(j?(x, z), /ϊ(y, ί)).

This implies (29). The graph of the left-hand side of (30) consists of pairs (ot(sAx,y),
β(sBx, j/)), where x9yeX are such that aL(x) = aL(y) and bL(x) = bL(y). The last two
equalities imply x = y, since x = s^(bL(x)~ ^LC^))- It follows that the graph consists
of pairs (aR(x), bR(x)), xeX, hence (30). The proof of (31) is similar.
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Now we prove the equivalences.

(i)=>(ϋ)
If AB = BA, then for each aeA,beB there exists xeX such that aR(x) = a and

bR(x) = fr, namely x = 5^(αb ~*).
(ii)=*(i).

If αe.4, 2?eJ3, then there exists x e l such that αjR(x) = αJ bR(x) = b i. Then
α L ( s 4 χ ) = a a n ( i ^Λ( S ^ X ) = ?̂ hence sAx = αfe. It follows that ab e X.
(i) o (iii) is proved similarly.
(iv)^(i).

For each ae A, beB we have (b \ ί?)eβτ(x(a,a Whence there exists zeX such
that aL(z) = a, bR(z) = b, hence ab e X.
(ϊ)=>(iv).

Let p, q, u, v be such that α(p, ̂ f) = β(u, v) + 0. We have to show that there exist x,
y, z, t such that

u = cc(x,y), i? = φ , ί ) , p = β(x,z), q = β(y,t). (32)

Equations αL(x) = αL(w), bL(x) = bL(p) have a solution x = 5y4(fcL(p)~1αL(w)). Equa-
tions α*(y) = <**(")> 6L(y) = 6L(«) i m P ! y t h a t y = W W 4 similarly z = aL(v)bR(p).
Equations aR(t) = aR(v), bR(t) = bR(q) imply that t = sA{aR{v)bR{q) x). We have

z = aL(v)bR(p) = aL(u)~ 1aL(p)bR{p) = aL(u)~1p,
and

aR{v)bR{q) ~γ=u~ "uaR{v)bR{q)~' =u~ιβ{u, v)bR(q)' * = u~ x

The right-hand sides in (32) are non-empty, because

**(*) = aάhίpΓWM) = aL(bL(p)~ 1ύ) = aL(y),

<*R(Z) = aR(aiίM) ~ V) = M " " lP) = aL(sA(u ~ xp)) = aL(ή,

bR(x) = lbR(bL(pΓ Wm " x = bMuyibM = bL(aL(uΓ *p) = 6L(z),

My)=M^)-1w)=[Ww-1^(p))]"1 = [Ww"V)]-1=^>-V))^
a n d

Φ , j>) = M % = bL(p)bL{p)~ 'u = v,

α(z, ί) = αL(w)~ V M O = aM'^bM = aL(u)~ xα(p,«) = αL(w)"x β{u, v) = v9

β{x, z) = aL{x)z = aL(u)aL{u) ~ίp = p,

1 = bL(p)-1oc(p,q) = q. •

Definition (cf. [3]). A dowfr/e growp is a triple (G; A, B), where G is a group and A9 B
are subgroups of G such that Ar\B = {o], AB = G.

Proposition9.3. Let (G;A,B) be a double group. If s/ = (G9a,A,sA) and
@ = (G,β,B,sB), then (srfΎ,0$ί) is a union Kac algebra.

Proof. It follows from Proposition 9.1 and Proposition 9.2. Conditions (20)-(26)
are easy to prove. •

{sdΎ,0ί) is said to be the union Kac algebra associated with (G; A,B).
If (G;A,B) is a double group, then each element geG has a unique

decomposition of the form g = ab, where a e A, b e B. We denote byh as A and baeB
factors obtained from the decomposition of ba:

ba = baba.
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With this notation we have the following lemma.

Lemma 9.4. Mappings

define a left action of Bon A and a right action of A on B, respectively. A and B act by
"twisted automorphisms":

Proof It follows directly from the definition of the mappings. •

Using the map (a,b)\-^ab, we can identify G and AxB equipped with the
following multiplication:

( f l i A M ^ A M V ^ V 2 ^ ) . (33)

Conversely, given two groups A, B and two actions satisfying conditions listed in
Lemma 9.4, formula (33) defines on AxB the structure of a group. This group is
usually denoted by A M B (cf. [3]).

In the next section we show that each union Kac algebra is a double group. In
terms of double groups, the duality principle is simple: it consists in interchanging
the role of subgroups in a double group.

Example 9.1. (G; G, {o}) and (G; {o}, G) are mutually dual double groups. The first
is identified with the group G and the second is the object dual to G (in the
category of union pseudogroups). After quantization we obtain the group G and
the object dual (in the usual sense) to G.

Example 9.2. If G — A x B is a direct product of its subgroups A and B then the
quantization of (G; A, B) leads to the direct product of the group A and the object
dual to B.

Example 9.3. Let (G; A, B) be a double group. Then α is commutative (i.e. αί = α) if
and only if B is an abelian normal subgroup in G. The quantization of (G; A, B) is a
semidirect product of A and the group dual to B.

10. Union Kac Algebras as Double Groups

Let (D, M) be a union Kac algebra, D=(X, d, c, r), M=(X, m, e, s). Then e is a point
of D and c is a character of M, hence E — e(l) and C = cτ(l) are groups with the
group structure defined by dτ and m, respectively (cf. Lemma 3.4). From the proof
of Proposition 8.1 it follows that

X 3 xh-+(eR(x)9 cR(x)) eExC,

are bijections. Moreover, since

X 3 x\-+(eR(sx), cR(sx)) = (eL(x), scR(x)) = {eL{x\ cR(x) ~x

is a bijection,
), cR(x)) eExC
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and (similarly)

Xsχy-+(eR(x),cL(x))eExC
are bijections.

This allows to define a product x y of two elements of X as follows:

eά*' y) = eL{x)eL(x $ y), cR(x y) = cR(x \\ y)cR(y),

where x t| y is such an element of X that

eR(x t) y) = eL()0, cL(x 4 3;) = cR(x).

Proposition 10.1. With the product introduced above. X is a group, (X; C,E) is a
double group and (D, M) is its associated union Kac algebra.

Proof. For any aeE,beCwe have eL(a -b) — a = eR(b a) and cR(a -b) = b = cL(b a).
It follows that for each x e l ,

x = eL(x) cR(x) = cL(x) - eR(x). (34)

We set ba = eL(b α), bfl = cR(b a)ΐovaeE,be C. We have b a = ba ba. Now, since
(Λi fex) t| (α2 62) = ί>! α2 =

 bίa2 &ί2, we have

Comparing this with formula (33) we see that the product is a group multiplication
if and only if all conditions listed in Lemma 9.4 are satisfied. We shall prove one
half of these conditions (the second half is proved in the same way). Since

there exists xeX such that x = m(b1

 b2a, b2 a). We have

Φlb2)a' ( M 2 ) α = (ft 1 b2)a= cL{bγ - b2a)cL(b2 - a) eR(b2 a) = cL(x) eR(x) = x

= eL(x)cR(x) = eL(ft! b2a) c ^ ^ b2a)cR(b2 α) = b l(b 2α) b ^ ^ .

hence b l b 2 α = bl(b2a) and (^^2)" = b i * 2 α ' b2 BY (34)» projections in the double group
coincide with projections in (D, M). If eR(x) = eL(y), then

eL{m(x, y)) = eL(x) = eL(x - cR{y)),

cR(m(x, y)) = cR(x)cR(y) = cR(x c ^ ) ) ,

hence m(x, y) = xm cR(y). Similarly, we have dτ(x, y) = X' eR(y) if cR(x) = cL(y). Π

Corollary. The inverse in a union pseudogroup is an involution (because k = sr is the
inverse in the double group).

We conclude that union pseudogroups, union Kac algebras and double groups
are in fact the same objects. Now we characterize morphisms of union pseudo-
groups in terms of double groups.

Let (G; A, B), (Gf; A', B') be two double groups and let / : G^G be a relation.
We introduce base relations fo:A-*A\ f°:B'^B as follows

' x A), »(/°) = nfT)^(B x B').

Proposition 10.2. The following conditions are equivalent:
(i) / is a morphism of union Kac algebras (from (s/τ,@) to {stf'7,

(ii) f0 and f° are group homomorphisms such that

a'-b'e f(a b)od = fo(a), b=f°(b'), (35)
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and
bf'afef(b a)oaf=f0(a\b = f°(b'), (36)

for aeA, a'eA\ beB9 b'eB'.
(iii) f0 and f° are group homomorphisms such that (35) holds and

b'Ma) and fo(b'^) = f°(b')a (37)
for aeA,bfeBf.
(iv) f0 and f° are group homomorphisms such that (36) holds and

fo{af°m) = fo{af and n^%') = *ΠV) (38)
for aeA.b'eB'.
(v) <&{f) is a subgroup of G x G, f0 and f° are maps, and f(B) = B\ f(Af) = A.

Proof, (ii) <=> (iii) o (iv). It follows from equalities such as ba = ba- ba and ab = ab- ab.
(i) => (ii). It follows from Lemma 3.3 and the fact that f0 and f° are base relations of
morphisms of £/*-algebras.
(ii)=>(i). We shall prove for instance that fβ = β'(f®f). It follows from the
following equivalences:

α" b" e fβ(ab, a'V) ob = a'b\ a" = fo{aa'\ V = f\b")
and

a" b"eβ'{f®f){ab,a'b')o

there exist c, c'eff such that a">bμeβ'(fo(a)c, fo{ar)c'\ b = f°{c\ b' = f°{c')o

'\b' = f°(a") and fc = / ° ( ^ V ) ,
The equivalence of (v) with remaining conditions follows easily from formulas

(35H38).

Appendix: Abstract Union Spaces

Let ix:X-+BX denote the natural inclusion ix(χ) = {χ}. Then Umx = BiI: ΈBX
-*ΊBX is the operation of taking union of a family of subsets in X. A map F: ΊBX
-^BY is a union map if and only if F(0) = 0 and FUBX= t/B yBF.

An upper bound space (u.b.s., in short) is a triple (S,v,ή), where n is a
distinguished element of S, ι;:BiS->>iS is a surjective map such that υ(Φ) = n and

A morphism from one u.b.s. (S, ι;, w) to another u.b.s. (S\ v', nr) is a map F:S-+Sf

such that F{n) = ή and F*; = ι/BF.
A union space (BX, [7BX, 0) is an example of a u.b. space.

Lemma A.l. vis = /.

Proof vis = vUBsiBsis = v(TBv)iBSis = v(isvis). For each seS there exists 4̂C S such
that s = v{A\ hence s = ι<A) = vUBS({A}) = K{^)}) = *φ}) D

Lemma A.2. // a bisection F:S->S' is a morphism from (S, v, n) to (Sf, v', n'\ then F " x

is also a morphism.

Proof. Fv = v'BF implies F~1vf = vBF'1.
D
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Let (S, v, n) be an u.b.s. Let i: X-*S be the inclusion map of a subset X in S. Then
we say that an element seS has a decomposition on elements of X if there exists
AcX such that s = vTBi(A). X is said to be union independent if all such possible
decompositions are unique, i.e. the map vBi is injective. X is said to generate S if
each seS has a decomposition on elements of X, i.e. the map vTBi is surjective. X is
said to be a union basis in (S, v, ή) ύX is union independent and generates S9 i.e. the
map vlBi is bijective.

Definition. An abstract union space is an u.b.s. (S, v, n) having at least one union
basis.

Lemma A.3. In any abstract union space (S, v, n) there exists only one union basis
XCS and S^BX as u.b. spaces.

Proof. Let Ϊ.X-+S be the inclusion of a union basis. Then vBi:BX-+S is an
isomorphism of u.b. spaces. If j : Y-+S is the inclusion of another union basis, then
(vBj)~ x(vBi) is an isomorphism, hence there exists a bijection f:X-+Y such that
vBi = (vBj)Bf It follows that i=visi=vBiix = (vBj)(Bf)ix = (vBj)iγj=visJf=jf
hence Y=X. •

In view of Lemma A.3, we do not have to distinguish between abstract union
spaces and union spaces.

Example. Let (S, v, n) be a union space. Let S' = Map(X, S) be the set of all maps
from a set X to S. Then (S'9υ',ri) is a union space, if we set ri{x) = n, υ'{^){x)
= v{Λ(x), Aesί) for xeX, srfCS'.

Acknowledgements. The author is very much indebted to Prof. S.L. Woronowicz for his clarifying
remarks concerning quantum groups.
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