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Abstract. In this paper we generalize the classical two-dimensional Apollonian
packing of circles to the case where the circles are no more tangent. We introduce
two elements of SL(2, <C) as generators: R and T that are hyperbolic rotations of

— and — (JV = 2,3,4,...), around two distinct points. The limit set of the discrete
3 N

group generated by R and T provides, for N = 7,8,9,... a generalization of the
Apollonian packing (which is itself recovered for JV = oo). The values JV = 2,3,4,5
produce a very different result, giving rise to the rotation groups of the cube for
JV = 2 and 4, and the icosahedron for JV = 3 and 5. For JV = 6 the group is no
longer discrete. To further analyze this structure for JV ̂  7, we move to the
Minkowski space in which the group acts on a one sheeted hyperboloid. The
circles are now represented by points on this variety and generate a crystal on it.

I. Introduction

In a classical construction of an Appolonian packing, one starts with a curvilinear
triangle and constructs the inscribed circle, thus creating three curvilinear triangles
out of the original one. This process is then repeated with each of the resulting
curvilinear triangles and their descendants. The method for producing the inscribed
circles can be realized with inversions [1] or Mobius maps [2].

In this latter case, one sees that the Apollonian packing is the limit set of a
discrete subgroup of 5L(2, C). We present here a technique for generating non-
tangential disk packings as limit sets of discrete groups which include as a special
case the Apollonian packing. Extension to higher dimensional sphere packings
will be presented elsewhere.

Disk and sphere packings are natural models for porous media [3,4] and a
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parametrized family of such packings would be a valuable tool for making models
of various media having different porosities. The group in variance would be useful
in the study of flows in such models. These considerations, prompted by the
experimental results of [5] were the motivation for our initial investigations.

More recently, the fact that the computer pictures of our packings bear some
resemblance to X-ray scatter plots of crystals and quasi-crystals [6] has lead us
to wonder if there might be some connection between our work and these areas.
The family of groups related to our packings contains the finite groups of
symmetries of the cube and icosahedron; so there is an (unexpected) relation to
crystals. In addition, the typical fractals generated by our infinite group only realize
their total symmetry in the limiting process. This is somewhat akin to the long-range
symmetry of quasi-crystals [7]. Furthermore the fact that there is a one-to-one
correspondence between these fractals and a regular lattice drawn on a one sheeted
space-like hyperboloid may give some support to these considerations.

The paper is organized as follows:
In Sect. II, we give the basic geometric construction and derive the related

family of groups which depends on a parameter α. We show that the group can
be generated by two rotations, one of 2π/3 and one of 2α, and that the group
always contains the alternating group on four elements. %

In Sect. Ill we study the disk packing aspects. We prove that α = — for ΛfeN,
and N ̂  7 is a necessary condition to have a packing. N

In Sects. IV and V, we consider a representation of our groups as groups of
isometries on a four-dimensional Minkowski space and represent the action of the
group in terms of Chebyshev polynomials.

In Sects. VI and VII, we study the case α = π/JV for 2 ̂  JV g 5 and N = 6
respectively. In the former case, we obtain the group of the cube and icosehadron;
in the latter case the group is not discrete.

In Sect. VIII, we indicate higher dimensional extensions.

II. The Basic Construction

Consider three circles with equal radii r and centers at cubic roots of unity: 1, ω, ω 2 .
Label the circles Xί9 X2, X$ in counterclockwise order starting with the one whose
center is at 1. We seek a fourth circle Xo and three Mόbius maps 7\, T2, T3,
such that

tXj^Xj, jΦU U = 1,2,3, (HI)

o, (Π.2)

-\

T3 = J R T 1 R , l '

where R is a rotation of H around the origin. It follows that Xo will have

center at 0 because it is invariant under R:

RX0 = RT.X, = RT1R~1RX1 = T2RXX = T2X2 = Xo. (II.4)
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One can construct Tt as a composition:

T^SJ, (115)

where S is the reflection through the axis of symmetry of X2 and X3 and J is the
inversion with respect to a circle orthogonal to X2 and X3. Some elementary
computations (see Appendix A) reveal that

where / is the center of the circle of inversion:

The fixed points of 7\ are the points of intersection of the inversion circle J
with the axis of symmetry of X2 and X3. These are / and / * (see Fig. 1),

/=-£ + #, (Π.8)
where

β= IΪ^2 = - , Sing - (Π.9)

For the moment we shall consider that r vary from zero where all Xt are reduced

to points, to rm a x = ̂ —, where all Xt are tangent. In this range of values of r, no

Xi intersect (except for r = rm a x).
The angle α in Fig. 1 which is the argument of (/ + /) is defined by:

^ (11.10)
k

or in terms of r:

1 / 9 - 8 r 2

 2 3 1~2cos2α / τ τ l l .
cosα = - / or r2 = . (Π.11)

2 V 3 ( l - r 2 ) 2 1-3cos2α
The radius p0 of the circle Xo (of center 0) is easily computed (see Appendix A).
We also introduce the circle X^ defined by:

X00 = TΓ 1 X 1 . (11.12)

One checks that the center of X^ is 0. Therefore I w is invariant under R and we
see that:

Xa) = T7>Xh i= 1,2,3. (11.13)

The radius p^ of (X^) is given in Appendix A. In particular we have:

l 2

2(3 cos 2 α - 1)
(11.14)
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(Xoo)

Fig. 1. The basic construction, α = π/8, r = 0.744, / = 1.568, k = 1.157, p0 = 0.164, p^ = 2.706

For the reader's convenience, we recall that a Mδbius transformation:

T = I with ad-bc = l
d

(11.15)

transforms the circle of center γ and radius r into a circle of center / and radius
r' with

a 1 1 1

c c (cy 4- d) r2

r =- (11.16)

Equation (II. 16) allows to check that the center of X^ is 0. In particular we have

2(/-i) -/(/-I)'

/6/(/-l) 76/(7-1)

2 2/

/6/(/-l) J6I(I-\)

cos α — Λ/cos2 α — 2/3

1 1

2^/cos2 α — 2/3 cos α -f ̂ c o s 2 α — 2/3

(11.17)
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We notice that T[" x is given by the same matrix, choosing the other determination
in the square root of (II.7). Therefore, the other determination generates the same
group, with Xo and X^ interchanged.

Mobiϋs transformations in the form of (II. 15) are commonly classified according
to their trace: Tr T = a + c, [8]. We are interested in the values of r that make 7\
be either parabolic {(Tr 7\)2 = 4} or elliptic {(Tr T1)

2e[0,4)} in which case 7\ is
a rotation by 2α. We have the following:

Proposition 1. 7\ is parabolic if and only if r2 = 3/4. T\ is elliptic if and only if
either r2 ^ 9/8 or r2 < 3/4.

In the range 0 :§ r2 g 3/4, α decreases from - to 0. The case r2 = 3/4 corresponds
6

to mutually tangent circles Xl9X2,X3 with Xo the inscribed circle and X^ the
circumscribed circle. The images of Xo under the members of the group produce
the classical Apollonian packing that has been investigated and extensively studied,
[1,9,10,11]. In the cases 0 g r2 < 3/4 it is necessary that the T/s generate a discrete
group if we are to obtain a packing from the image of Xo under the group elements.
In these cases 2α, the angle of rotation, should be a rational multiple of 2π. That
is, a necessary condition to have a packing is

_kπ
α ~ ~N9

We shall prove later on, that for 0 g r2 ^ f, it is necessary to choose k = 1, otherwise
the orbit of Xx under the cyclic group generated by T2 will consist of overlapping
circles. Also in this case N is necessarily at least 7. In any case we shall restrict
our discussion to

α = - (11.18)
N

and distinguish two cases: (i) N = 2,3,4,5,6. (ii) N^Ί.ln case (ii) to be discussed
in the next section, the limit set of the group generated by Tl9T2, T3 appears to
consist of infinitely many non-overlapping circles which form a packing of X^
the common image of T7lXt. In case (i) the geometry of the circles {Xt} does
not play a central role. We note here a common feature of all cases.

Proposition 2. TtTjl generate an isomorphic copy of A4, the alternating group on
4 elements.

Proof From the fact that

T71Xi=Tr1Xj = X00 for O ^ r g ^ 3 (11.19)

one checks immediately that TtTJl acts for iΦj as a cyclic permutation on
XhXj,X0 and leaves the remaining circle invariant. The group relation implied
by this being analytic in r, will remain true for any complex value of r. From:

T' T - l y γ . T HΓ~ 1 V V T T~ 1 V VI 1 j Λi — Λ 0 , l i l j Λj — Λ h l i l . Λ o — Λp

iΦj, { U = 1,2,3}. (11.20)
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we see that the group generated by Tt TJx is isomorphic to Λ4 and:

& = T 3T 2- 1=(2,3,0)(l),

c = T 1 T 3 - 1 =(l,0,3)(2). (11.21)

The twelve elements of the group isomorphic to A^ are:

{/, α, α2, b, b2, c, c2, ab, ba, ca9 be, ac2} « A4. (11.22)

Here explicitly, we have

α = (l,0,2)(3); a2 = a~ι =(2,0,1)(3); b = (2,3,0)(l); b2 = b " 1 = (0,

cα = (3,l)(2,0); αe = feα; be = (2,3, l)(0); cb = a; α2c = (3,l,2)(0). (11.23)

abc = b.

It follows that K corresponds to be. Therefore the elements of order 2 of the group
are ab, ba, ca and the Tt TJ1 are order 3 elements. One can construct easily the
multiplication table of this group.

Proposition 3. Similarly T7xTj generate an isomorphic copy of A4.

Proof. Replace Xo by X^ everywhere in (11.20).
We shall denote by < 7\, T2i T3 > the group generated by TUT2,T3. We notice

that TiTJ1 or (T7ιTj) is a finite subgroup of < >, isomorphic to A4 which is the
group of symmetries of the tetrahedron. This remark will be useful later on.

III. Packing Aspects

In this section, we shall consider the case where 0 g r < ^—, 7\ is elliptic. If we
want the group to be discrete, α should be of the form ^

kπ
α = — .

N

If we want the images of Xx under the successive powers of 7\ not to overlap
then necessarily N ^ 7 and k = 1,

α = ^ , N = 7,8,9,.... (III.l)
N

To prove statement (III.l) we need several steps which are outlined in the following.
To study more conveniently the action oϊ Tx on Xt, we have to move to a

system of coordinates in which T1 is diagonal. The diagonalized form of 7\ reads:

°Λ (ΠI.2)

Let A be the transformation which diagonalizes 7\:
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With / and / * (11.8) being the fixed points of 7\, we have

**-*£
Λ\z)

The study of the maps of X± under the various powers of 7\ is therefore equivalent
to the study of the maps of Λ~1Xί under the powers of D.

Using formulae (11.16), and (II.8), (II.9), we find the center γ and radius r of
Λ~iXί to be

3
7

cos 2α

D rotates Λ~1Xί =Xi by 2α. From 0^ the center of rotation of D, one sees the
circle Xx under an angle 2φ:

/ ( I I I . 6 )
Ifil 3 V 1 2

or, using (11.14):

/2(2cos2α-l)
- -;, (III.7)

V 3 c o s 2 α - l

k
oc being of the form — π (k and Λf relatively prime), the rotation D defines exactly

N 2π

N angular sectors of angle — (see Fig. 2). If we want the various images of Xγ

under D not to overlap, it is necessary that Xί be entirely contained in one of
these sectors, that is:

0<2φ<~. (III.8)
N

We remark that N has to be ^ 7 in order for α to be < - . Then (III.8) implies,
using (III.7): 6

a n d N ^ 7 (fc, AT) relatively prime, (III. 10)

/cπ π
0 < — < ~ . ίlllll)

AT f yAAJL. 1 J . I

iV 0
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Fig. 2. The action of D on X t for N = 8

From (III. 11) we see that

π π . π π
— < — which implies — < .
N 6k N ~ 6 / c + l

If we square (III.9) we get

1 Λ ' 2kπ ' 2k71

1—4 sin — sm —
N N

. 2kπ . 2 π
1 — 3 sin — sin —

N N

< 1

with

N " 6/c + 1

(III. 12)

(111.13)

Equation (III. 13) implies that k = 1. The proof is a consequence of the following
lemma.

Lemma. For k ^ 2 and 0 ^ £ ̂  — — , fceN,
6/c+ 1

The proof of this lemma can be found in Appendix B.



Generalized Apollonian Packings 301

Fig. 3. The limit set for N = 8

Fig. 4. A blow-up of Fig. 3
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We have performed computer graphical experiments with α of the form
—,JVg:7, and constructed the successive maps of Xγ under the full group

(T1,T2,T3y see Figs. 3 and 4, we have never observed overlapping of circles.
However we presently have no proof of the following conjectures, although some
hints toward a proof will be discussed in the later section.

Conjecture 1. For α = —, iV^7, the circles obtained by applying the full group
N

<Γ l 5 T2, T3> to Xt do not cross each other, and each circle which is obtained an
infinite number of times remains inside I ^ . W e therefore obtain a packing of X^.

Conjecture 2. For α = — , k ^ 2 ( k , N relatively prime) the circles obtained in the
N

above fashion form a nowhere dense subset of <C. That is ^TxT2T2y is dis-
continuous.

IV. Polyspherical Representations

In order to try to prove that our circles do not overlap and to gain further insight
into our problem, we introduce polyspherical coordinates for our circles. A more
precise name would be tetracircular coordinates. An introduction to this subject
can be found in [12 or 13].

I V.I. Notations and Definitions. S(a, r) denotes the inner part of the circle of center
a and radius r if r > 0; if r < 0 it will represent the outer part. Let

X = S(a,r\ Y=S(b9s). (IV. 1)

Then the "distance" between X and Y is

) .
Irs

In particular
Δ(X,X)=-l

\Δ(X,Y)\>1

if X and Y do not intersect. \Δ(X, Y)\<ί means that the two circles X and Y
intersect and the angle of intersection is:

cos θ = - Δ(X, Y). (IV.5)

The circles are oriented clockwise when r > 0 and anticlockwise when r < 0. The
tangent are oriented accordingly, and θ is the supplement of the angle between
the two oriented tangents. Given four circles Zί9Z29 Z 3 , Z o in the plane, one defines
the matrix G according to:

This is a real 4 x 4 symmetric matrix. If

d e t G # 0
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the matrix is invertible, and the four circles Xt are said to be independent.
Let us define the contra variant coordinates of a circle Y by:

}f = Δ{Y9Zi) i = 0,l,2,3. (IV.8)

The "polyspherical coordinate of 7" will be the covariant components of Y, using
Gij as metric tensor,

yι=JΣ Gijy

j = GijyJ with G f JG* = 5*. (IV.9)

(We use the convention of summation over repeated indices, when in upper and
lower position.)

Notation. For simplicity we shall denote by Yc the set of covariant components

of(Y):

and Yc the set of contra variant components of (Y):

Yc = (y°,y\y\y3) (iv.ii)

Here are some basic facts: the proofs follow the lines of [13] and can be found in
Appendix C.

(i) For any given circle U9 V

= uJVj = UjVJ. (IV. 14)

(ii) If ε1, ε2, ε3, ε° are the curvature of Zγ ,Z2^Z^ Z o , then the curvature Y is given by

εγ = yiε\ (IV.15)

(iii) The polyspherical coordinate of Z ( ί ) are the coordinates of the standard vector et:

We now specialize to the case where Z{ = Xh where Xl9 X2, X^ ^o a r e ^ e circles
of the basic construction. In this case one verifies that there is a positive constant
γ > 1 so that

Δ(XhXj) = GiJ = y for iφj. (IV. 17)

In fact with a = —(N>6)
N

l - 2 s i n 2 -

1 (IV18)yN

l - 4 s i n 2 -
N

y reaches the value 1 for N = oo (the Apollonian case).



304 D. Bessis and S. Demko

The matrix G can be rewritten:

G = - (1 + γ)I + yj, (IV.19)

where / is the unit matrix and J is the matrix consisting of Γs. Since the spectrum
of yJ is {Ay, 0,0,0}, we see that the spectrum of G is

Therefore the signature of the quadratic form associated to Δ will always be
+ . Our space will be the four dimensional Minkowski space. Relations
(IV. 14) tells us that:

4(1/, 17) = - l = u f u \ (IV.21)

Our circles are therefore space-like vectors of norm 1 in the Minkowski space.
Therefore we move or transfer our Mobius maps 7\, T2, T3 to this four dimensional
setting. (The Minkowski four dimensional space.)

Remark I V.I. Δ(U, V) is clearly invariant under any Mobius transformations.
The basis: (Xo), (X1),(X2),(X3) is transformed by T " 1 into a new basis:

(Xx), (X^), (X2\ (X3). Clearly the G matrix associated to this new basis is the same
as the previous G matrix. It is useful to compute the contravariant component of
(X^) in the initial basis, an easy calculation gives:

(IV.22)

where

Δ{X(

Δ{X

Δ(X

Δ{X

T ~~
I —

Λ l

/

1,xco

2,xx

2γ

2γ-

τ

2 ( τ -

) = ;

) = 1

) = Ί

) = :

1

1)

' = XU'

. In
Z cos

N9

* 2π

2 cos —
N

2cos 1
N

Proposition 1. There are matrices Mhi= 1,2,3 so that for any circle Y:

Proof.

— Π'1 Δ(XuTtY)
Δ(X2,TiY)

and by invariance of the scalar product

(IV.23)

(IV.24)

(IV.25)

(IV.26)

(IV.27)

(IV.28)
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A{T7ιXx,Y)
(IV.29)

Δ(T^X39Y)

For clarity of the proof we specialize to i = 1, choosing T{ = Tι then

, Y)

Δ(X2, Y)
(IV.30)

Each component of the column vector in (IV.30) is a linear combination of the
Yk9 therefore (Tu Y)c is of the form (IV.26).

We have to find the explicit form of the M t. Let us for example, compute Mt.
The columns of Mt are M 1 ^ 0 , M1el9 Mιe2, Mxe3, from left to right. Now:

T1X1=X0 -+Mίe1=e0

rrt y Λ/-

1 ιΛ2 —Λ2 •

1 0 .
We only have to compute

1e0 = (T1X0)c.

(IV.31)

(IV.32)

[Remember that (IV. 14) tells us that the poly spherical coordinate of the basic
circles are the basic vectors coordinates!]

( T 1 ^ 0 ) e = G- 1 (Γ 1 Jf 0 ) c ( I V 3 3 )

and

Δ(XO,TUXO)

Δ(Xl3TltX0)

Δ(X2,TuX0)

Δ(X3,TUXO)

Δ(XUXO)

Δ(X2,X0)
Δ(X3,X0)

(IV.34)

and finally using the fact that

Therefore we get

-1---I-Γj—U/l
1 + τ L 3 y - l J"

or

= τe0 —

τ

- 1

τ

τ

f xe0

(IV.35)

(IV.36)

(IV.37)
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and
τ 1 0 0

- 1 0 0 0

τ 0 1 0

τ 0 0 1

In the same way we get:

M2e0 = τe0 •

M2e1=el9

and

M3e0 = τe0 + τex

M3e3 = e0.

Therefore

and

τ

τ

- 1

τ

τ

τ

τ

- 1

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

0

0

Γ

0

0

0.

(IV.42)

The eigenvalues of M t are: 1, l,e±2iπ/N. The eigenvectors corresponding to the
eigenvalues 1 are trivial to find. The one corresponding to e±2iπ/N are for Mt:

(IV.38)

(IV.39)

(IV.40)

(IV.41)

icos-

— e
±i*/Na 9 + iπ/Ne1±-

2π

~N

π
sin —

N

(e2 + e3). (IV.43)

Remark. It is fundamental to notice that all these formulae and the isomorphism
between the Mt and Tt make sense only for N ^ 7. If one would extend the previous
results to ΛΓ = 2 for instance, we should have M? = /, however:

- 2 1 0 0

- 1 0 0 0

2 0 1 0

2 0 0 1J

(IV.44)
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and M\φl while T\ = /. The eigenvalues of M are 1 ,1,-1,-1 and only 3 eigen-
vectors exist in this case e2, e3 and e0 + ex - e2 — e3. Therefore the group generated
by Mx is infinite, being isomorphic to a translation group, while for 7\ it is finite
of order 2.

To further study why the analytic continuation of the two groups (Tl9T2,T3}
and (MuM2,M3y which are isomorphic for N^Ί do not continue to be
isomorphic for N :§ 6, one must go back to the fundamental quadratic form
generated by G.

XjGXc=-l. (IV.45)

Using (IV. 18), we see that the eigenvalues of G are such that the form is:

for N ^ 7 a one sheeted hyperboloid (signature H ),

for N = 6 degenerate into a cone,

for N = 5 a prolate ellipsoid,

for N = 4 sphere,

for N = 3 an oblate ellipsoid,

for N = 2 a cylinder.

V. Representation of the Matrix Elements of the Group
in Terms of Tchebycheff Polynomials

Clearly the group {Mί,M2,M3y is generated by two generators. For instance
Mγ and P, where P corresponds to the rotation R for the group <TX, T2, T3>. P
is simply the permutation:

P = (l,2,3)(0). (V.I)

The most general element of the group can therefore be written:

M\ιPM\2PM\*P-. (V.2)

It is therefore a product of elements of the form

En = M\P. (V.3)

[We only need to consider non-negative powers rc, because M\ = /.] Let us find
the action of En. We have

£Bβ3 = M ^ 1 = M - 1 - 1 M ^ 1 = A f » 1 - 1 ^ o (V.4)

Therefore it suffices to study M\e0 for n ^ O . We have the following result (see
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Appendix C for the proof). For n ^ 0

. 2π, , v . 2π 2 π . , Λ π . n π
sin — (n-fl) sin — n c o s — s i n n + 1 - sin —

N N N N N
( + ) ( V . 5 )

. 2π
sin —

N

^ . 2π
sin —

N

π . π . π
c o s — sin— sin —

N N N

( v 6)

where qn and rΛ are polynomials in τ with integer coefficients. Actually qn is the

Tchebycheff polynomial of second kind Uk ί -

Let us define a "word" w as being a certain product

w = £ Π l £ n 2 £ n k . (V.7)

The "distance" between two circles is:

) = Δ{wιX09w2X0)9 (V.8)

where wl9 w2 are words made from the group, those words map Xo onto X and
Xo onto 7. Because of the invariance of Δ under any Mobius transformation

Δ{X9 Y) = Λ(X0, w- x w 2X 0) = Δ{X09 wX0). (V.9)

If we want that no circles intersect we must have

\Δ{X09wX0)\^l. (V.10)

If furthermore we want to have all circles inside XaD9 that is no circle inside XOf

we must have, either:

Δ{X09wX0)=-l (V.ll)

when wX0 = Xo or

when Xo Φ wX0. The equal sign occurs only for N = oo. Combining (VII. 11) and
(VII. 14) we have:

or writing
we0 = w o β o + wxex + w2e2 4-

we find
4(X 0, wX0) = - w0 + y(W l + w2 + w3). (V.15)

Clearly the wf being polynomials in τ and y being a rational in τ, all elements here
belong to cyclotomic fields.

Let us consider the next word after w:

Let us remark that we can consider any values n= 1,2,...,ΛΓ- 1 for n, because
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for n = 0, W and w give the same A. We now compute

w'3 = w2 + worn + w3r/ι_1.

The qn are the Tchebycheff polynomials of the second kind and verify

Let us apply the previous results to the case N — oo. In this case we cannot take
only n positive, but for any neZ, we have:

1« = n + 1

and (V.17) reads

w'o = (w + l)w0 -h

w ; = _ [n W o + (n - l)w3],

w'2 = wx + n{n + l)w0 + n(n - l)w3,

w'3 = w2 + n(n + l)w0 + n(n - l)w3. (V.20)

If we compute A — Δ we get

4' - 4 = 2n[nw0 + (n - 2)w3]. (V.21)

The w, being integers the difference of any Δw and Aw has to be an even integer!
Because Δ(X0, Xo) — — 1, it then results that

4 W = odd integer, (V.22)

and therefore

|4J^1 (V.23)

as it should. We have rederived here a well known result [13]. Inside the cyclotomic
field, A is a finite sum of integers over the various components of the field. We
shall explore in forthcoming papers this structure.

VI. Recovery of the Platonician Groups

r2 ^ | ,
values 2,3,4,5. From (II.8) the fixed points of 7\ are:
This case corresponds to r2 ^ | , and therefore when α = —, N can only take the

fi ^

/+ = - - + r2--=--+^ I * " " * " . (VI.l)
2~V 4 2~ 2 Vl-3cos2α
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They are both real and 7\ is elliptic. The values of r2 and α of interest are:

α

r2

π
—
5

3(3 + ^/5)

2

π
—
4

3

2

π
—
3

6

5

π
—
2

9

8

We used the fact that cos- = ^— and cos — = — . Since
5 4 5 4

we can find a dilation factor d so that:

In fact

(VI.2)

(VI.3)

(VI.4)

or Ti(z) = dT1(d~1z). (VI.5)

Then < 7\, T2, T3 > is a group of rotations of the Riemann sphere.

Proof. We first recall that the necessary and sufficient condition for an elliptic
Mόbius transformation to be a rotation of the Riemann sphere is that

d = .v/2(l-3cos2α).

Proposition 1. Lei d given by (VIA) and define:

7 7*ZflZf
*—7*—Zf2~ (VI.6)

where zfi and z / 2 are the fixed points of the transformation. It then follows that
T\ is a rotation of the Riemann sphere. Now, the fixed points of f2 are wdf± and:

(ωdf+)*(ωdf-) = df+df_ — — 1. (VI.7)

So f2 is also a rotation (of the same angle 2α), as is T3. Therefore 7\, Γ2, T3 are
three rotations of the same angle 2α of the Riemann sphere; we now determine
the angles between the axes of rotation.

We represent the Riemann sphere, as a sphere of radius 1, which intersects the

( 2x 2v |z | 2 — l \
— — — I is the point on the
|x | 2 + l | z | 2 + l | z | 2 + l /

Riemann sphere corresponding to z = x + iy in the complex plane, and if Pω and
Pω2 correspond respectively to ωz and ω2z, then:

Π z l 2 - D 2 - 2 l z l 2

PPω = PωPω2 = Pω2P =" ' , / < x ' = cosy. (VI.8)

Computing, with z = d/_, we get:

|d/_|=-d/.= X ' - 3 cos 2α + - cos 2α} (VI.9)
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and

cos 7 =
cos2α

cos 2α — 1'

311

(VI. 10)

where y is the common angle between the three axes of rotation corresponding to
the rotations t l 9 t 2 , f3.

For our cases:

α

cosy

π
—
2

1

2

π
—
3

1

3

π
—
4

0

π
—
5

1

Proposition 2. For α = - and α = - , < tl9 T2, T3> is conjugate to the rotation group
of a cube. ^ 2

Proof. For α = - , (f^)2 = 1 and the axes of rotation mutually meet at 60°. This is

the case when the axes of rotation pass through the centers of two adjacent edges.
See Fig. 5. %

For α = - , the axes of rotation are mutually orthogonal and pass through the

centers of the faces of the cube.
For JV = 4, we also give in Fig. 6, the set made of 4 circles which is invariant

b y < T 1 , Γ 2 , Γ 3 > .

TC 71 ^ ^ ^

Proposition 3. For α = - and α = - , < Tl9 T2, T3 > is conjugate to the rotation group

of an icosahedron or dodecahedron.

Proof Again, the angles are right. For α = - we consider a dodecahedron; the

axes of rotation pass through the centers of three pentagons that share a common

(1,-1,1)

( 1 , 1 , - 1 )

Fig. 5. The case N = 2

( - 1 . 1 , 1 )
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(X,)

ίX,)

Fig. 6. The case N = 4

vertex. For α = - , we consider an icosahedron; the axes of rotation pass through

the centers of three triangles that are adjacent to a single common triangle.

Remark 1. For Λf = 2,3,4,5 we can also consider α = — , we then discover that
N

we obtain nothing new. The result is obvious for N = 2,3,4. For N = 5 one could

think that α = - and α = — would give different results, however computing cos γ9

5 i 5 π 1 2π
one finds cosy = for α = - and cosy = H for α = — . This shows that

V5 5 yβ 5

the axes of rotations are in fact the same in both cases.

Remark 2. One should be able to prove that the only cases where a finite group
is generated is for N = 2,3,4,5.

VII. The Case a = ~
6

We come now to the case α = - . The fixed point of 7\ are, making use of (II.8)
6

and (II.9): ω and ω2. So the fixed points of T2 are ω2 and 1 and those of Γ3 are
1 and ω.

Let us send:
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with the transformation:

/ω=-:z — ω2

/ ω (vii. l)

define

So

T3z = e~2iπ/6z-ω.

The group <7\, Γ3> is a classical doubly periodic group, whose general element
has the form

e-2iπlβ; m + ,m_eZ, n= 1,2,3,4,5,6.

The only limit point is oo cf. [8].

Claim. The group (T1,T2,T3) has (C as its^limit and is thus not discontinuous.
Clearly the lattice is not invariant by T2 because

T2z= -°^ °^
ω +

z + 1 z + 1

while the various transformations z->z+l, z-+ωz,z^>z — ω leave the lattice

invariant, the transformation z->- does not.

z
VIII. Higher Dimensional Extensions

One can try to extend the method introduced here to higher dimensions by starting
with n + 1 n-dimensional spheres Xί9...,Xn with centers at the vertices of a regular
simplex in Rw and looking for a sphere Xo and conformal maps Tl9..., Tn satisfying
TiXi = Xo, TiXj = Xj for ΦI In R 3 the spheres X0,Xl9...,X4 turn out to be
mutually tangent and a packing investigated by Boyd [13] is the result. In this
case Tf = I. In R 4 we believe that there is a non-tangential packing generated by
maps that satisfy Tf = I. We believe that these exhaust the finite dimensional
packings that can be constructed with this technique. There is, however, an infinite
dimensional packing generated by maps satisfying Tf = I. Details of these cons-
tructions will appear elsewhere.

IX. Conclusion

We have studied a class of discrete subgroups of SL(2,(C) generated by two
rotations. These subgroups fall into two classes: finite and infinite. The finite
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subgroups give the symmetry groups of the cube and icosahedron. The infinite
subgroups have as their limit sets packings of circles. The action of the infinite
groups can be analyzed in a four-dimensional Minkowski space and some
preliminary analysis was made.

The next investigations will be to analyse the structure of the lattice on the
one sheeted Minkowski hyperboloid, in particular its projection on the three
dimensional Euclidean space. Also the generalization to higher dimensions, as well
as the construction of discrete groups depending on more than one parameter,
will be analyzed.

Appendix A

Denote the center and radius of the circle of inversion by — / and k respectively.
The circle of inversion J and X2 being by construction orthogonal at ξ2 (see

Fig. 1), we have:

(A.1)

(A.2)

(A.3)

(A.4)

We take the " + " sign. Later we will remark on the other choice of sign. We also
have:

For real x, we must have:

For the center of (Xo) to be at 0, we force, (using JXλ = SX0):

2

From these we obtain:

z(x +1)
- /

k2y
and Sz= (A.5)

where the upper line refers to the real part, while the lower one to the imaginary.
With

we derive from (II.5) and (A.5):

I-llz-I

(A.6)

(A.7)
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From (A.I) and (A.6) we obtain the radius of the circle of inversion k:
^ = ( / _ i ) 2 + 3_ r2 = 3 ( 1 _ J . 2 ) ( A g )

One also checks that:

k2r 2r2 - 3 + J9 - 8r2

or in invariant form

.̂ /cos 2α H-1 yj3 cos 2α — 1 — ̂ /3 cos 2α

P o = , =
^/ϊ{2 cos 2α - 1)(3 cos 2α - 1)

In the same way:

k
2
r ^/cos 2α + 1 ̂ 3 cos 2α — 1 -h ̂^3 cos 2α

r
2
-(2-/)

2
 ,/2(2cos2a-l)(3cos2a-l)

Appendix B

We are to prove that for k^2 and 0^ ξg , fceN, we have
6/c+ 1

l-3sin 2 /cξ sin

I sin ~ / Ύi
With χ = sin2 feξ we have sin ξ = sin < ^— > and the following inequality

equivalent to B.I: (. k J

<k, O^χ^sin2/ ~ ) (B.2)

sm
\-3χ

Now, for u ̂  0, sin u ̂  u so u ̂  sin 1 u. Also, for 0 ̂  w ̂  1/2, < by
the Mean Value Theorem. This gives u v 3

<Λ /^-^ (B 3)
sin

l - 3 χ

for 0 ̂  χ ̂  sin2 (-^—λ < -.

H 4
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l - 3 y
Since is increasing, we see that it suffices to show that

l - 4 χ

l - 3 s i n 2

l - 4 s i n 2 π \~4
(B.4)

or

Using

and

sur
π

π 1
1 — cos

2π

1 π
- = cos-
2 3

^ . (p + q\ (q~\
cos p — cos q = 2 sin I 1 sin I

We see that (B.5) is equivalent to

2π 1 1 1
cos >

1 2 " 6 k2 - 1

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

and that
2π 1 .

cos > 2 sin
. ( π

sin <
[36fe

> sin <
78 j [36fe

(B.10)

Now,

sin
π π

* cos^ cos
36/c + 6 36/c + 6 78

sinχsince = cosf/ for some 0 < η < χ and 0 < < — for k > 2.
X 36fe + 6 28

Therefore,

2π 1 Λ . 25π π π 5.2 1 5.2
cos > 2 s i n — c o s — >1 2 " 78 78 36fe + 6 36k + 6 6 6k + 1

(B.ll)

(B.12)
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Finally, the function f(z) = — is decreasing for z ^ 2, so — : — ^ —
k > 2. z2 - 1 6fc + 1 fc2 - 1

for

Appendix C

With X = S{a, r) and Y = S(i>, s) as in (IV. 1) we define

1
v(Y) = -

Then,

'\b\2-s2~
1
2

Re 6
Imft

and «(!) = -
r

1
2

| α | 2 - r 2

- R e α

— Imα

(Cl)

(C.2)

From this we obtain the Darboux-Frobenius formula: if XίtX^X^X^X^
and Yu Y2, Γ3, Γ4, 75 are circles in R 2 , then

άεt(Δ(Xi9Yj)) = 0. (C3)

This is because ^(Xf, Ŷ ) = v(Yi)
Tu(X^) and M(-XΊ), ..., u(X5) are linearly dependent

i n R 4 .
Now take ΛΓ1 = r 1 ==Z 0 , ^ 2 = ^ 2 = ^ 1 , ^ 3 = F 3 = Z 2 , Λ Γ

4 =y 4 = Z 3 and
AΓ5 = Z,Y5 = Y. (C.3) becomes (cf. IV.6)

det

Lzc
=0.

By expansion

4(7, Z)det G - (7c)Γ(adj. G)ZC = 0, adj. G = G" x det G.

If det G # 0, we obtain

which establishes (IV. 12). Assertions (IV.13-IV.14) follow from (IV.9).
For example, we see immediately that

(Yc)τG-ι(Ye)=YeGYe= -I.

(C.4)

(C.5)

(C.6)

(C.7)

Assertion (IV. 16) is a trivial consequence of the definition (IV.9).
For assertion (IV. 15), assume Y = S{b,s) and that Z is a line whose distance

from b is d and whose distance from the center of Zf is df. Then, the extension of
(IV.2) to the case of lines gives

where

and
Δ{Z, Zt) = d^i (without summation),

(C.8)

(C.9)

(CIO)
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where

Si = curvature of Z{ = . (C. 11)
radius of Z f

Now,
dη = Δ(Y, Z) = (Y'fG'^0. (C12)

Letting Z-* oo we see that — > 1. So, the d on the left of (C.I2) can cancel with
each dι in 2C yielding ^

(C.13)
ε2

which is what (IV. 15) says.

Appendix D

The proof proceeds by induction on n. When n = 0, we obtain M\e0 = e0. For n = 1,

Mxe0 = τe0 -e1+ (e2 + e3)τ. (D.I)

If we assume

M\ e0 = ^fc(τ)^o + Pkίτ^i + φ){e2 + e3), (D.2)

we will discover that

), (D.3)

+ ^ - i W , (D.4)
k

rk+1{τ) = rk(τ) + τqk(τ)= £ τqs{τ). (D.5)

Since q0 = 1 and 4i(τ) = τ, we see that

β*(τ)=t/Jί\ (D.6)

where

(D.7)

are the Chebyshev polynomials of the second kind.
Standard manipulation now gives (V.5).
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Platonician groups.
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