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Abstract. We obtain the quantum expectations of gauge-invariant functions of the
connection on a principal G = SU(N) bundle over S2. We show that the space
sH<§m of connections modulo gauge transformations which are the identity at one
point is itself a principal bundle over ΩG, based loops in the symmetry group.
The fiber in sdj(Sm is an affine linear space. Quantum expectations are iterated
path integrals first over this fiber then over ΩG, each with respect to the
push-forward to s^/^m of the measure e~S{A)!2>A. S(A) denotes the Yang-Mills
action on si. There is a global section of j//&m on which the first integral is a
Gaussian. The resulting measure on ΩG is the conditional Wiener measure. We
explicitly compute the expectations of a special class of Wilson loops.

Introduction

We consider the expectation of a gauge-invariant function / with respect to the
formal measure \e~S{A)3)A, where S(^) = ^ | | F v 4 | | 2 and si is the space of all

connections on a G = SU(N) (trivial) bundle over S . This measure pushes forward
under the projection si -> «s//^m, where ^ m is the space of gauge transformations
which are the identity at a given point meS2. The push-forward measure formally
defines a measure μ which differs from the natural measure on si/@m by a factor
describing how the size of the orbit varies within «a//0m. The devices of gauge-fixing
and Faddeev-Popov ghosts give a presumably well-defined measure on si, whose
push-forward agrees with μ. This agreement permits us to compute the expectation
of / directly on si/^m with respect to the measure μ.

The space siβm is homotopic to ΩG, based loops on G as shown in Atiyah
and Jones [1] and Singer [2]. Section 2.1 presents the homotopy equivalence via
a map ξ\sέ'/&„-*ΩG. In fact, ξ is the projection map of the bundle sij(Sm over
ΩG with an affine space as the fiber.

Integration on sij(Sm is integration over the affine fibers followed by integration
over ΩG, with respect to the measures μ induces. We exhibit the measure on each
fiber as a Gaussian. Integrating over the fibers defines the push-forward measure
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ξ^.μ. We show ξ^μ is the Wiener measure on ΩG, written as e~(1/8)ιmι <&ym Thus, we
interpret the integral J f(A)e~S(A)@A to mean: integrate / over each fiber, using the

Gaussian measure, to define a function / on ΩG, then evaluate J /(y)e~(1/8)imι 3>y.
ΩG

We illustrate this procedure in the case G = SU(2) with some special choices for
the function /. In particular, if ΊV* denotes the Wilson loop given by parallel
transport along a longitude from the north pole to the south pole of S2 and back
along a longitude at an equatorial angle φ relative to the first, and if χλ denotes
the trace of 1V in the representation λ, we show the expectation is given by

Σ Σ"

This extends readily to expectations of functions of products of Wilson loops.
After a brief section on notation, this paper proceeds as follows:

Section 1 presents the measure μ on s//&m and relates it to the gauge-fixed measure
on si of the Faddeev-Popov approach.

Section 2 describes the map

Section 3 exhibits the Gaussian measures on the fibers of

Section 4 links ξ^μ to the Wiener measure.

Section 5 computes some examples.

Conventions

On a product bundle, a connection A is a Lie-algebra-valued 1-form, and a gauge
transformation ψ is a G-valued function. The effect of a gauge transformation on
a connection is

The horizontal lift according to a connection A of a curve y(t) in S2 is a G-valued
function UA which satisfies the parallel transport equation along γ

with UA(γ(0)) = 1, the identity element in G. Parallel transport about a closed path
in S 2 is a Wilson loop. If the closed path begins at the north pole, where the gauge
transformation are the identity, the corresponding Wilson loops are gauge
invariant.

The curvature of a connection is a Lie-algebra-valued 2-form FA. The
G-invariant metric on the Lie algebra combined with a metric on the base space
defines a G-invariant metric (,) on Lie-algebra-valued forms. The Yang-Mills action
S(A) is the integral over the base space of the square in this metric of the curvature.

The metric on s/ induces a metric on sij(3m by distinguishing a natural choice
of representative in Ts/ for each element of T(s//&m). Denoting the tangent to
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the gauge orbits by Ύv si, the metric on A defines an orthogonal complement
ΎHsi. This distinguishes representatives in Ύsi for elements of T{si/^m). The
induced metric is the metric on si applied to these representatives. Explicitly, Tvsi
is the image of the covariant differential DA on Lie-algebra-valued functions which
are 0 at the north pole. The orthogonal complement is kerί)*[, s o the induced
metric on si/&m is the metric on si restricted to

1. Path Integration and Gauge Invariance

In general, the path integral computation for the expectation of a gauge-invariant
function /, which, with the normalization constant Z o = J e"S{A)BA9 is the formal
integral **

requires interpretation. Naively, the invariance oΐS(A) under gauge transformations
makes the integral over even the subset $mΆczsi (A some fixed element of si)
proportional to the volume of ^ m , which is infinite. We interpret the path integral
(1.1) to mean the integral of the gauge-invariant function/(Λ) over the space s//&m

of inequivalent connections with the push-forward measure π^(e~S{A)ΘA\ where

O * π-ι{0)

for any open set O c s^/^m.
The push-forward measure π^(e~S(A)@A) is some Jacobian factor times

e~S{A)Q)fSγnA, where 3ι9mA is the natural measure on si/y. The natural measure
corresponds to the metric on si/(Sm which the metric on si induces as above. See
Moore and Nelson [3] or DΉoker and Phong [4] for a discussion of the sense in
which a metric determines a measure on an infinite-dimensional space.

In the finite-dimensional analogue of the above situation, the Jacobian depends
only on the differential of the group action. For the analogue, replace ^m acting
on si by a compact Lie group H acting isometrically on a manifold M. In this
case, the metric on M defines a measure through the volume form volM, as well
as a metric on M/H and its corresponding volume from volM/H. The projection
π:M->M/H pushes the measure on M forward to the measure π^volj^) on M/H,
where

ί /π*(V 0W) = ί / ° π V°1M
M/H M

That is, integration using ^(volj^) in M/H is the same as integration over the
orbits in M using volM. The differential of the action of H at each point of M
defines a map α from the Lie algebra of H to the tangent space of M at that point.
The Jacobian relating the push-forward measure to the natural measure volM/#
proves to be the determinant of this map,

= det1/2(α*α)

The right-hand side of (1.1) indicates an integration over the orbits in si, so,
by analogy, the Jacobian relating this to integration using 29 A should be the
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determinant of the infinitesimal action of ^ m . The infinitesimal action, which maps
Lie-algebra-vaued 0-forms vanishing at the north pole to elements of Tysrf is,
again, the covariant derivative. Thus, up to a constant, the measure

μ = det 1 / 2 (D$DA)e-SiA)%mA, (1.2)

is 7i^(e — S{A)<3A). The constant reflects the fact that the volume of ^m is not unity.
In Sect. 3, a slight modification of this analogy will yield the integration over those
gauge orbits which constitute the afϊine fiber in s^j^m.

The above analogy is very loose. For instance, it treats c§m as though it were
compact, with unit volume. In some sense we are factoring out the infinite volume
of cSm from π^(e~S{A)@A) to leave the measure μ. This analogy does agree with the
Faddeev-Popov approach. Indeed, lifting μ to a measure on stf via a gauge-
condition and representing the overall determinant function as a fermionic integra-
tion yields the usual gauge-fixed measure on J ^ , as follows: Let J^: A1(M9g)-^
Λ°(M, g) be an admissible gauge. That is, for a fixed Aoes/, Ao + βr~1(0) is a slice,

and d # " | κ , the restriction of the differential of J^ to the vertical directions, is 1-1.
To lift μ to a measure on s/9 introduce a Gaussian integration over Λ°(M,g),
normalized to one,

— J f
N

where Nζ is a normalization constant depending on the parameter ζ and Θ
is an arbitrary open set. The integration over Λ°(Λί,g) is equivalent to an
integration over C3m (at least perturbatively, or for sufficiently large ζ). The resulting
iterated integral over <§m and Θ corresponds under a change of variables given by
3* to an integral over π~ι{&) as follows: The tangent to si decomposes as
Ts/ = Ίystf 0 TH<srf, with THs/ ~ T{jtf/&m). Thus, d#Ίκ provides an isomorphism
Ίstf ~ Λ°(M, g) © T(j2//*J. The induced metric on T(s//9J makes the map from
THstf to T(s^/^m) an isometry, so the Jacobian for the change of variables is
det 1 / 2 (dJ Σ Γ |^d#' | F ). Thus, changing variables gives

j μ = — J d e t 1 / 2 ( D * Z ) > - S ( κ ) d e t 1 / 2 ( d e r | * d ^ | κ ) β - ζ < ^ ^ > ^ A

Assuming the determinants multiply as they would in finite dimensions, the product
of determinants corresponds to det M, where Jί ~ d^\v°DA: Λ°(M,g)-> Λ°(M,g).
Finally, replacing det Jt with a fermionic integration, det Jί = je'^'^^Φψψ, gives

j> = — J ^e-[SiA)+ζ<^^> + <^^>^φ^φ^A.

The right-hand side is the push-forward to s//&m of the standard gauge-fixed
measure on <$/.

The measure μ thus agrees with the gauge-fixing prescription as a measure on
gauge-invariant functions. The above argument is closely-related to one Gawedzki
[5] presents for Yang-Mills on R4 in the case of space-like gauges. Having
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established the agreement between μ and the gauge-fixing prescription, we will
work directly with the measure μ, taking advantage of the homotopy equivalence
between s//&m and ΩG.

2. From sό\<&m to ΩG

The construction of the map ξ\stflc&m-*ΩG is as follows. Introduce the usual
spherical coordinates (θ, φ) on S2, choosing as the north pole (θ = 0) the point at
which all the gauge transformations are the identity. Now consider a family of
closed curves each of which originates at the north pole, follows the longitude at
equatorial angle 0 to the south pole, and returns to the north pole along the
longitude at some equatorial angle φ. Figure 2.1 illustrates one such curve. Let
yA{φ) denote the parallel transport according to A about the curve returning at
angle φ. The angle φ ranges from 0 to 2π, and yA(0) = yA(2π), so yA(φ) is the value
at φ of a loop, yAeΩG. Since yA is parallel transport about a loop from the north
pole, where the gauge transformations are the identity, yA is gauge-invariant. Define
the map ξ by ξ(Λ) = yA. The gauge-in variance of yA means ξ depends only on the
gauge-class of A, hence ξ maps sί)^m to ΩG.

The image of ξ will depend on which connections are in its range. The physically
natural class of connections is the space of connections whose Yang-Mills action
is finite. Notice these are also the connections on which e~S(A) is non-zero. As shown
in Uhlenbeck [6], the space of finite-action connections is the Sobolev space of
connections whose first derivatives are square-integrable. The corresponding class
of gauge transformations are those whose second derivatives are square-integrable.

In light of the Sobolev embedding theorem, Lζ a Cι for p — > /, not all

connections on S2 with finite action are continuous. The gauge transformations
between them are continuous, but need not be C1. Henceforth, srf will refer to
connections with finite Yang-Mills action, and $ and ^m will refer to the gauge
transformations which preserve this condition. Similarly, ΩG will refer to loops with
finite energy.

Defining the usual (local) projection of a 1-form to its components by
ω = Pθωdθ + Pφωdφ on ωe A*(M, g),

Fig. 2.1
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Theorem 2.1. «s//^m is a principal bundle over ΩG with projection ξ and fiber ker Pθ.

To prove this, we begin by showing that the image of ξ is ΩG. For any loop
yeΩG, let XnyeΩg be a choice for its logarithm. As a parametrized loop in g, lny
need not be continuous, even if G is simply-connected. For example, in 5(7(2),
viewed as the sphere S3, take y to be a great circle through the identity. Then, In y
is a line through 0 in su(2\ viewed as the tangent to the sphere. From 0 this line
extends in both directions to oo.

Nevertheless, consider any connection whose 0-comρonent is

for some fixed function a which is zero in sufficiently small neighborhoods of the

north and south poles and satisfies f α = —1. Such connections have parallel
transport along longitudes, °

Here U^(θ) denotes parallel transport from the north pole an angle θ along the
longitude at equatorial angle φ. The corresponding loop is

ξ(A)=U°A(π)U*(πΓ1=y.

If lny is not continuous, neither is A. However, as will become clear in Sects. 3 and

4, there is a choice for the φ-component of A such that S(A) = - f (yA

 ιyA, yA

 1yA),
8 si

the energy action of the loop yA, which, by assumption, is finite. (The proof of this
statement is strongly motivated by integration techniques which belong in the
latter sections.) With this choice of ^-component, A is a connection with finite
action such that ξ(A) = y. This completes the proof that the image of ζ is ΩG.

To see that ζ~ί(y) is isomorphic to kerPθ, let A and B be any two connections
in the fiber over y, so ξ(A) = ζ(B). Consider the G-valued function

Notice these parallel transports involve only the ^-components of the connections.
Regarding φ9 which is the identity at the north pole, as a gauge transformation,
the connections B and φΆ agree on parallel transport in the ^-direction.

The 0-component of the difference of these connections must vanish. That is, there
is a τekerPθ for which

Since B was an arbitrary connection for which ξ(B) = ξ(A)9

Conversely, since the addition of τekerP0 has no effect on parallel transport in
the ^-direction, the inclusion also goes the other way, and
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Thus, for every y in any open set Θ c ΩG, a choice of [ A ] G ^ ~ ι(y) determines an
isomorphism between ξ~ 1(y) and ker Pθ. Taken together these give an isomorphism
between ξ " 1(G) and G x ker Pθ, which completes the proof that s^l(§m is a principal
bundle over ΩG with fiber ker Pθ.

Under p°ξ, where p denotes the projection p:jtf->jtf/<gm9 the energy action on
ΩG pulls back to a gauge-invariant function on si. The energy action for a loop
yA = poξ(A) is the square norm oiyA

ιyAeΩTeG ^ Ωg. To relate this energy to the
Yang-Mills action for the corresponding A, we use a covariant version of
Stoke's law for a region of finite length and infinitesimal width. The product
ΎA(Φ)~ιyA(Φ + dφ)9 which is 1 +yA

1yAdφ to first order in dφ, is also parallel
transport about a closed path of infinitesimal width bounded by the longitudes at
φ and φ + dφ. If the connection satisfies a limited continuity constraint, Stoke's
law relates this parallel transport to the line integral of the curvature along the
longitude at φ.

Stoke's Law 2.2. For a connection A whose φ- and θ-components are continuous as
a function of θ along each longitude and whose φ-component vanishes at the north
and south poles,

yAΦY'yAΦ + dφ) = l - 1 u*A(θ)F^θ, φwwywdφ,
0

to first order in dφ.

The relation between the energy action as a function of yAeΩG and the curvature
of the connection A follows from

Corollary 2.1.

3. The Measure on the Fibres in

Referring to the discussion in Sect. 1, the restriction of the measure μ to the fiber
ζ~ι{y) should be the integral in si over (ζ°p)~1(y), up to a factor of the volume
of ^ m . Formally,

volume^ x J / ( M ) f t l b e r = f f{A)e~s^9A.
ξ'Hv) (ξop)~Hy)

We will evaluate the right-hand side as an integral over ker Pθ x <£m of something
which is constant in the ^ m direction. Formally dividing by the volume of ^ w , we
will obtain

Theorem 3.1.

ί f(ίAl)μmer = det1/2(D*PθDA) J f(A + τ)e's^+^τ9
ξ~Hy) kerP0

where A is any connection in (ζ°p)~ι(y).

Figure 3.1 indicates the relation between y9ξ~ί(y)9 and (ξ°p)~1(y).
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Fig. 3.1

Let A be any connection in (ξ°p) x(y). As shown in Sect. 2, every other such
connection is of the form φ-(A + τ), where ψe&m and τeker Pθ. The connection A
represents a choice of origin in the affine fiber.

We intend to express the integral over ξ~1(y) as an integral over kerP β x ^ m .
The change of variables J between these two spaces is

dJ) VOl k e r P # v

Thus,

and

The differential dJ maps T ( τ ^(kerP θ x ^ w ) to Tψ.iA+τ)((ξop)~1(y)). Since kerP β is
linear,

T ( t ^(kerP β x 4 ί m ) ~ k e r P β Θ Λ°(M,g).

To evaluate the Jacobian, we prove a similar decomposition for the tangent
space to (ξ°p)~1(y); namely,

7;.M + t)((ί o p)~ 1 ω)-ad^(kerP β )ΘPa^.M + τ)(Λ 0 (M,g)). (3.1)

The tangent space in s/ to {ξ°p)~1(y) at the point ψ-(A + τ) consists of the elements
obtained by separate variations of τ and φ. These are

d_

Jt
d_

Jt
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and

at
ψe«-(A + τ) = ^

> at ί = 0

for /eΛ°(M,g). Thus, the spaces ad^-i(kerPβ) and Dψ.{A+τ)(A°(M9g)) span
Tψ.(A+τ)((ζop)~1(y)Y These spaces are linearly independent. Were they not, there
would be some A, τ and / as above for which DAf = τ. Since / must be zero at
the north pole, such an / must vanish identically. Therefore, the direct sum
of ad^-i(kerPθ) with the projection of Dψ.iA+τ)(A°(M,g)) to the orthogonal
complement of the first space is an orthogonal decomposition of Tiξop)-iiy)s#. The
projection Pθ is projection to the orthogonal complement of ker Pθ. This commutes
with ad^-i, so PθDιj,.u+τ)(A0(M9g)) is the desired orthogonal complement of
ad^-i(kerPθ) in the tangent to (ξ°p)~1(y\ which completes the proof of the
decomposition (3.1).

In terms of the above decompositions of the tangent spaces, the differential of
J is the operator-valued matrix,

0 PΘDψ.iΛ+τ)

and

dJHJ =

This reduces, due to the G-invariance of the metric and the usual formula for the
effect of a gauge transformation on the covariant derivative, to

Thus, the Jacobian is

det 1 / 2 (άJ+άJ) = det 1 / 2 (ad,- χD\PBDA ad^) = det 1 / 2 (D*APΘDA\

assuming that det [(/ta)*(βα)] = det [(α*α)(β*β)] as in finite dimensions. This does
not depend on φ or τ, so the Jacobian is a constant along the fiber in «a//^m. This
completes the derivation of Theorem 3.1 for the measure on the fiber.

To be able to compute the integral over the fiber, we now make a specific
choice for the gauge-class of the origin in each fiber. This constitutes a section of

ίm over ΩG. Since, for τeker P θ, [τ Λ τ] = 0,

and the action is quadratic in τ:

S(A + τ) = i < F x , FA > + KPΦD*AFA, τ> + |<τ, PφD*DAPφτ). (3.3)

The standard technique for integrating the exponential of a quadratic action is to
shift the integration variable to a new variable, differing by a constant, in which
the action is purely quadratic. For any shift τ 'ekerP a , the connection A = A — τ'
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represents a new choice of origin in the fiber. The section we would like to use to
compute the integral corresponds to a choice of origin for which S(A + τ) = S(Λ + τ)
is purely quadratic in the shifted variable τ = τ + τ'. According to (3.3), for the
linear term to vanish, A must satisfy

iy>|F,~ = 0. (3.4)

Theorem 3.2. There exists a unique section of s//^m such that every point on this
section has a representative A satisfying PφD*Fχ — 0 and the continuity conditions
in our statement of Stoke's Law 2.2.

To prove this, let A be some connection in (ξ°p)~1(γ). Without loss of generality,
we may assume A satisfies the continuity condition. Were it not to do so, an
appropriate gauge transformation would make the 0-component continuous (even
smooth) as a function of θ. Adding an appropriately discontinuous element of ker Pθ

(which we could choose to be piecewise covariant constant along longitudes) would
allow the ^-component to satisfy its part of the continuity condition. First we will
show there is a unique τ'ekQτPθ such that A = A — τ' satisfies Eq. (3.4) and the
continuity condition. Then we will show the gauge class of this A is independent
of the initial choice for A.

In terms of the connection A9 the condition that the shifted connection satisfy
Eq. (3.4) is

(PφD*ADAPφ)τ' = PφD*AFA. (3.5)

Thus, the required A will exist if the image of the operator PΦD%DAPΦ±GT Pθ-+ker Pθ

contains PφD^FA for all Aesrf. A direct computation shows PφD%FA is orthogonal
to every element of coker (PφD^DAPφ); hence, it lies in im (PφD%DAPφ). This
proves the existence of the required A.

The continuity condition uniquely determines τ', and hence A, since
kQτ(PφD^DAPφ) is trivial on elements of kerPθ which are continuous along
longitudes and vanish at the north and south poles. (Note that kQτ(PφD^DAPφ)
includes coyariantly linear elements of ker Pθ.) Shifting A by this τ' defines the
connection Ae(ξ°p)~1(y) satisfying Eq. (3.4).

To show the gauge class of A is independent of the initial choice A, we again
note that any other such choice is of the form Ax = φ (A + τ x) for some φe&m and
τ1ekετPθ such that Ax satisfies the continuity condition. In particular, τx must
vanish at the north and south poles. This follows from the effect of a gauge trans-
formation on the connection: PφA1 =(φ~ιAφφ + φ~ιdφφ)Aφ + τx. The continuity
of φ implies dφφ must vanish at the north and south poles. By hypothesis, both
PφA and PφA1 vanish there, so τί must follow suit. The usual formulas for the
effect of a gauge transformation on the covariant derivative and the curvature
imply that τ\ = ψ~ι(τ' + τx)φ satisfies Eq. (3.5) with A1 replacing A. The vanishing
of τί at the north and south poles implies this is the unique shift of Ax to a
connection which satisfies the continuity condition. This shifted connection is

= φ\A-τ').
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The condition (3.4), with the continuity requirement, thus distinguishes a well-
defined choice of origin in the fiber of stfβm over each loop γ.

We now use this choice to compute the integral over the fiber. The purely
quadratic action is

S(A + τ) = ±<Fλ9 Fλ} + i(Dλτ9 Aλτ} = Sy + i<τ, PφD*DλPφτ\

where, because A depends only on y, Sγ is an action on ΩG. The integral over the
fiber is, from Theorem 3.1,

f /([Λ])fW = det1'2(D*APβDA)e's, J f(A + τ >
iξ°p) \y) k e r P β

F o r / = 1, performing this Gaussian integral yields the push-forward measure ξ+(μ)
on ΩG. For any/independent off, the integral over ker Pθ is (def)" 1 / 2 {PφD\DAPφ\
where the prime indicates the restriction to the orthogonal complement of the
kernel of PφD*ADAPφ. Thus,

where vol β G indicates the measure on ΩG which the metric ( , ) o n i induces.
More generally, if / is a polynomial in τ, the integral over ker Pθ is some function
of [A] times the same determinant. We write this as f{y){άQt')~ιl2{PφD

:\DAPφ).
For the integral over the fiber, we have shown

Corollary 3.1.

In particular,

\P*D
ζ * w = e ~7fHet'W2fp n*n p \VO1ΩG'(αet) \rφυAυArφ)

The most direct approach to computing the path integral for the expectation
would have been to decompose each connection as A = PΘA 4- PφA = A0dθ + Aφdφ,
and to integrate first over Aφ9 then over Aθ. After a suitable shift of Aφ, the first
integration becomes a Gaussian, and so forth. This corresponds exactly to the
above approach with PΘA as the initial choice to represent the origin in the fiber.
However, this approach tends to obscure the gauge-invariance of the distinguished
choice of origin, thereby confusing the account of integration over the gauge orbits.

4. The Integration over ΩG

In this section, we will evaluate Sγ9 the ratio of determinants, and v o l β G .
Letting Q)y denote the measure on ΩG corresponding to the metric il<5y||2 =
j (δγ(φ\δγ(φ))dφ, we will prove
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Theorem 4.1.

ί
(ξ°p) 1(v)

where f is defined as in Corollary 3.1. in particular, up to a factor independent ofy,

The expectation of a gauge-invariant function is a normalization constant times
the integral with respect to μ. The above theorem thus implies

Corollary 4.1.

> = — { f(y)e-
{υmn2$y.

4.1. Evaluating Sy. We begin by showing that the induced action on ΩG is the
energy action. That is,

s y = έl i? l l 2 . (4.1)

To prove this, we use the special property Eq. (3.4), of the section to compute

In terms of the Hodge star operator, D%= *Dχ*. On Lie-algebra-valued 1-forms,
pφ* = *pθ9 so Eq. (3.4) is the condition

PθDλ*F = 0.

That is, * F must be covariantly constant along longitudes. Taking the standard
metric on S2, there must be some Lie-algebra-valued function a(φ), for which

To determine α, multiply both sides by Uχ on the left and JJχ1 on the right,
and then integrate over θe[0,π]:

0

Comparison with Corollary 2.1 for y^yχ gives

* = bλιyλ

Since the metric on ΩG is G-invariant, this gives

52 sin o

\ I (yλ ' UΦl Ίλ ' UΦ)) ̂ n θdθdφ

as Eq. (4.1) requires.
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4.2 The Ratio of Determinants. The ratio of determinants in Lemma 3.1 also
reduces to a function of the loop yA; namely, a constant function. This is because
the operators in numerator and denominator, though operating on different spaces,
are closely related. The first is DAPΘDA on fe Λ°(M, g) for which f(θ = 0) = 0. The
second is PφD%DAPφ on the orthogonal complement in keτPθ of ktτ{PφD^DAPφ).
Suppose {/,} is a complete set of eigenfunctions. of the first operator,, so
DUPβ^A/i — λifi for the corresponding eigenvalues** {/ίj. We will show that
Pφ*DA: Λ°(M, g) -> ker Pθ has trivial kernel on the span of {/J and that its cokernel
is contained in the kernel of PφD%DAPφ. It thus maps {/J one-to-one to a complete
set in the orthogonal complement of the latter kernel. Moreover, Pφ*DA takes
eigenfunctions of the first operator to eigenfunctions of the second, preserving the
eigenvalue. That is, apart from zero eigenvalues, the two operators have the same
spectrum. We will thus conclude,

det (D*PΘDA) = det' (PφD*ADAPφ). (4.2)

To see that PΦ*DA has trivial kernel, suppose Pφ*DAf = 0. As above, this
implies PθDAf = 0. The only solution satisfying f(θ — 0) = 0 is the trivial solution.

If η is in the cokernel of Pφ*DAf, then

0=<η,Pφ*DAf>=fPφηΛDAf,
s2

since * 2 is 1 on 1-forms. Integration by parts shows that, for this to hold for
arbitrary f,DAPφη must vanish, so ηekeτ(PφD%DAPφ). This shows coker(Pφ*DA)cz
ker (PφD*DAPφ).

The spectra are identical, since

^P4*DAfd = Pφ*DA*DAPφ{Pφ*DJi)

This proves the validity of Eq. (4.2), which implies the ratio of determinants in
Corollary 3.1 is the constant 1.

4.3 Another Jacobian. The measure μ is the product of the measure μ f iber and
the measure volβ G, where the metric in jtf on T^(^/^m), the orthogonal
complement of the fiber directions at each A, defines the induced metric cor-
responding to volβ G. The map ξ acts as a change of variables from stf(Sm to ΩG.
The tangent space to si decomposes into the tangent in directions which project
under p^ to the fiber in sίj(Sm plus the orthogonal complement of these directions.
The differential p^ of the projection maps this orthogonal complement to TH(stf/&m)
and induces the metric on the latter space. On the tangent spaces the change of
variables is

Thus, vol β G is $)y times the Jacobian det~1/2(d<i;|£df |j/) of this mapping.
(The minus sign in the exponent is consistent with the plus sign in the exponent
in the derivation of Theorem 3.1, since in that case the map J went in the opposite
direction.)

We will show the Jacobian άe\{άξ\%άξ\H) is independent of γ. First compute
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Λξ\H on ηeTstf representing an element of TH(^/^J. Since
must be orthogonal to the fiber directions, which means

<PθDAf,η} = 0 and η = Pβη9

for all continuous 0-forms / with /(0 = O) = O. To keep track of a possible
discontinuity at the north pole, which will prove important, regard S2 as a disk
D in the plane with the boundary circle 3D identified to a point. Take this point
to correspond to the north pole, the origin to correspond to the south pole, and
radial lines to correspond to longitudes. The condition on η becomes, upon
integrating by parts,

- f / Λ DAPφ*η + j / Λ Pφ*η = 0.
D dD

For this to hold for all allowed /, η must satisfy

DAPφ*η = Q and JPφ*f/ = O,
dD

since continuity requires that / be constant on dD. With the standard metric on
S2, the solution to the first condition is

U^mU (4.3)
'• sinθ

where ή could be any map from Sι to g. The second condition restricts ή, requiring

)*U*A(πΓ1ήV*(π)dφ = Q. (4.4)
0

The map dξ\H from the tangent η to a tangent to ΩG at yA follows from the
effect of η on parallel transport:

d
dξ\H(η) = -Γdt

-£
dt t=o

To first order in ί,

uA+tη~ι

as follows directly from the parallel transport equation (0.1). For η satisfying (4.3),
this means, abbreviating ξ(Λ) as yA,

r = 0

where C is an infinite constant,

1

dθ.
o sin0

Thus, the change of variable is,
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To compute the determinant of άξ\%άξ\H, suppose {η1} is an orthonormal basis
for the orthogonal tangent space. Since

0

= C UήWdφ, (4.5)

the corresponding ή* are orthogonal with norm y/l/C as elements of Ω(g). In the
given basis, the ij-th element of the matrix for d£|£d£|H is

= C2 T ([y; V (O)ŷ  - ήφ)! LjA1n0)yA - ήj(ΦΏ)dφ

= C2 J2π(>f (0), *'(0)) - [ j {y21ηi(0)yA9 ήj(Φ))dφ + ( / -

As in (4.5) the last term is y/ϊ/Cδij. Writing yA as UA{π)Uφ

A{π)~ι and using the
G-invariance of the inner product changes the cross term to

-17l/S(*Γ V(0)t/2(πλ T UiiπrWφMWdφ^ + (i«τ)J.

By the boundary condition (4.4) on the if s, each of these summands vanishes. Thus
the matrix for dξljd^l^ is the same as the matrix for

C[l +2πC(evaluation at 0)*(evaluation at 0)].

This does not depend on the loop γA, so the determinant is some universal constant,
as claimed. Hence, up to this constant, integration with respect to volβG is
integration with respect to @γ.

Replacing each term in Corollary 3.1 with its corresponding expression in terms
of loops completes the proof of Theorem 4.1. Corollary 4.1 follows from the
observation that the integral with respect to μ is the integral over each fiber with
respect to μfiber followed by integration over ΩG with respect to volβG. The above
constant, representing the switch from volβG to 2γ, simply becomes an extra factor
in the normalization constant Z o .

5. Some Examples

We begin this section by computing the expectations of functions of the form

f = fι(y(Φi))f2(y(Φ2))-fn(y(Φn)l

where / ι:G-»R. As a function on s/9y{φ^ is the Wilson loop determined by the
closed path which runs from the north pole to the south pole along the longitude
at 0 = 0 and back along the longitude at φt. As shown in Sect. 2, y(φi) is
gauge-invariant, so / is a gauge-invariant function of the connection.

The expectation of / is a normalization factor times its integral in the Wiener
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measure. To compute this integral, we refer to Glimm and Jaffe [8, Chap. 3, Sect.
1] for a formula relating the (conditional) Wiener measure to the heat kernel.
Regarding ΩG as paths in G which begin and end at the identity and applying
this formula to paths in G gives,

<fHv(Φi))-Γ(y(Φn))>

= ^r f f1(y(Φi))'"fn(y(Φn))e-(l/mn2^y
^0 ΩG

^ 2 π

where A is the G-invariant Laplacian on G, and the / ' act by multiplication. In
Glimm and Jaffe, the energy is \\y\2 rather than il|y||2. The difference in the
measures is a constant factor, which we absorb into the normalization constant
Z o . Since A is G-invariant, we may write

The above formula is thus,

',2π- φn)dQi-dgn. (5.1)

We begin by computing the normalization constant Zg. It is the Wiener measure
of the function of the above form for which all the fι are the constant function
equal to the real number 1. Due to the multiplicative property of the heat kernel,
which is

the integral on the right-hand side of Eq. (5.1) collapses in this case to give

π). (5.2)

To compute the measure of more general functions, we refer to the expansion
in Fegan [9] for the kernel in terms of the characters of the highest-weight
representations of G. The character of a representation at an element gsG is the
trace of the linear transformation corresponding to g in that representation. The
expansion we will use, which is a consequence of the fact that the characters are
the eigenfunctions of the Laplacian, is

The sum is over highest weights in a fixed Weyl chamber and c{λ) is the eigenvalue
of — A in the representation labelled by λ. (This differs slightly from the expression
in Fegan, due to a difference in conventions for the sign of the Laplacian and its
numerical coefficient in the heat equation. We follow Glimm and Jaffe who take
the Laplacian to have negative eigenvalues and to appear with a factor of ^ in the
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heat equation). The characters are normalized so that

χλ(l) = the dimension of the representation indexed by λ.

In this normalization, Fegan also gives the convolution property

(5.3)

To integrate functions against the heat kernel we will also expand them as sums
of characters;

As usual for eigenfunction expansions, multiplying both sides by a character,
integrating over G, and using the convolution property (which is an orthogonality
relation) yields a formula for the coefficients. In this case,

fμ = $f(g)χμ(g-ι)dg. (5.4)

Substitution the expansions for H and the / ' into Eqs. (5.1) and (5.2) yields an
expression for the expectation. We will compute this in the case G = SU(2) to obtain

Corollary 5.1. For G = Sl/(2),

<fHy(Φi))-fn(y(Φn))>

where μ and v are multi-indices: μ = (μo,μ1 - μn) and v = (v 1,v 2,. . .,vw). For each
i, μ{ ranges over all positive elements of Z/2, while vt starts at \ vt _ x — μt \ and increases
by integer increments to vi-1 -h /x£. Here, and in the exponential, vo~μo. Finally,
φo==0 and φn+1=2π.

To prove this, we require the following lemma:

Lemma 5.1.

SU(2) μ v = |λ-μ |

where μ ranges through the positive half-integers, and the sum over v is by integer
increments.

To prove the lemma, we first substitute in the expansions for / and H,

J j 2 ) xΛg)f(g)H(g~ ιg; φ)dg = X UΛg)fμχμ(g)xβ(i)χP(g- ιg)dge~2c^.

Next, we again refer to Fegan for a few facts about SU{2). Take the highest weights
to be positive elements of Z/2. The eigenvalues of - Δ are then c(λ) = ̂ λ(λ + 1).
For future reference, we note χλ(l) = 2λ + 1.

To evaluate the integral, expand χλ{g)χμ{g) as a sum of characters and use the
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convolution property. In SU(2), the sum is the Clebsch-Gordon series

λ + μ

Xλ(g)χμ(g) = Σ xM\
v = |λ-μ|

where, again, the sum over v is by integer increments. Making these substitutions
reduces the integral to

λ + μ γ ίa\

i χΛg)f(g)H(d-1gιΦ)d9 = ΣfAW Σ K ^
SU(2) μ,p v = |λ-μ| XvW

proving the lemma.
We now use the lemma to show by induction on n that

ί - ί H(gι;φ)f1(gί)'-fn(gn)H(g-1gn+1;φn+1-φn)d9i" dgn
SU(2) SU(2)

Σ
ί = l

where the sums over the μt are over elements of Z/2 greater than zero and the
sums over the vf are by integer increments in Z/2. When gn + 1 = 1 and φn + 1= 2π,
the above equation, with Eq. (5.2) for Z o and Eq. (5.1), is the corollary. Suppose,
as the induction hypothesis, that Eq. (5.5) holds for some n. Abbreviating the
right-hand side by Σ EVnχVn(gn + 1), and using this hypothesis to evaluate the integral
in the (n+ l)-case,VM

= ί ΣEvnXvn(βn+l)
SU(2) vn

Lemma 5.1 computes the integral on the right-hand side as

V " Mn + 1 Vn + 1 = I Vn - μn + 1 I

Substituting back for EVn proves the (n + l)-case.
We now show Eq. (5.5) holds for n = 1; that is,

J H(g1;φί)f(gί)H(g^g2;φ2-φι)dgί
SU(2)

= Σ Λ. T ' Wi)xv(0)e~[μo<μo+1)

μo.^i v = \μo-μι\

Substituting its expansion in characters for Hig^φi) makes the left-hand side

μo SU(2)

Applying Lemma 5.1 once more yields Eq. (5.5) for the case n — 1. This completes
the proof by induction, thereby establishing Eq. (5.5) for all n. Corollary 5.1 follows
immediately. For G = SU(N)9 the same techniques would produce a similar result,
but the analogue of the Clebsch-Gordon series is complicated.
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We now specialize further to the case in which / depends on the value of γ at
only one point φ. In particular, we take / to be the trace of γ(φ) in the adjoint
representation. That is, f(g) = χ^g). The expansion for / is then trivial: fμ = δμl.
Corollary 5.1 becomes

Σ "i'

To close, we compute the expectation of a more general Wilson loop; namely,
parallel transport from the north pole along the longitude at φγ to the south pole,
and back along the longitude at φ2. This Wilson loop is y(Φι)~1y(φ2)- Notice that
when Φι =0 this reduces to the previous example. Further, if the theory is invariant
under rotations about the north pole, replacing φ by φ2 — Φι in the above formula
should give the expectation for the corresponding function of this Wilson loop. In
fact, for G = SU(2\ the expectation of the trace in any representation λ of this loop is

Corollary 5.2
λ + μ

Y Y X (1)X (l)e~μiμ+lκφ2~φl)e~v{v+1)l2π~iφ2~φl)]

μ

To prove this directly, we begin with the expression for the expectation,

= $H(gί;φ1)χλ(gϊ1g2)H(gϊ1g2;φ2-φi)H(g2-
1;2π-φ2)dgιdg2.

First, we change variables in the ^-integration to g = gϊ1g2, using the invariance
of the volume: d{gϊ 1g2) = dg2. Then, we expand H(g; φ2 — φjand apply Lemma 5.1
to perform the gr-integration, thereby reducing the expectation to an integration
over gx\

1 λ + μ

/ ί ( ^ ) Σ ( i ) e - " ( " + 1 ) ( ψ 2 - ψ l ) Σ Xv(0Γ>-

| |
Finally, changing variable from gγ to gϊ1 and applying Lemma 5.1 yields the
corollary. As in the previous examples, a minor modification of this computation
serves as the induction step in computing the expectation of arbitrarily many
products of functions of such loops. In particular, the expectation of a function of
the product of Wilson loops proves to be invariant under rotations about the
north pole.
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Conclusion

In this paper, we have interpreted the Yang-Mills measure as measure μ on

We have used the description of sί/^m as a bundle over ΩG to calculate μ. Restricted

to the fibers, and relative to a special choice of origin in each fiber, μ is a Gaussian

measure. By integrating over the fibers in «^/ ÔT, we have shown that μ descends

to the Wiener measure on ΩG. As a result, every expectation for Yang-Mills on

the two-sphere reduces to an expectation for a free theory of ΩG via an expectation

for a purely quadratic theory of Lie-algebra-valued functions on the two-sphere.

We have derived, for G = 517(2), explicit formulae for the quantum expectations

of a special class of gauge-invariant functions on 5 2.
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