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Abstract. For the abelian Higgs model we introduce a new gauge invariant
observable which in Landau gauge is φ(x)φ(y). In three or more dimensions
this observable is used to show that the global gauge symmetry is sponta-
neously broken in the lattice theory for a suitable range of parameters. This
observable also provides a gauge invariant order parameter for the phase
transition in this model.

1. Introduction

The Higgs mechanism plays an important role in determining the particle
structure of gauge field theories. This mechanism provides a natural way for the
gauge bosons to acquire a mass. The standard explanation of this mass generation
assumes that the global gauge symmetry is spontaneously broken [2].

One of the simplest gauge theories which is believed to exhibit spontaneous
symmetry breaking and the Higgs mechanism is the abelian Higgs model. It has
been rigorously established in Euclidean lattice versions of this model that there
exists a phase in which the photon is massless and a phase in which it is massive
[1, 7, 8,17,18].

These proofs of the Higgs mechanism are quite different from the heuristic
explanation and do not address the question of spontaneous symmetry breaking.
In this paper we introduce a new order parameter and use it to prove spontaneous
symmetry breaking in the abelian Higgs model in dimension three or more. Our
result is proven for the Euclidean lattice version of the model with a noncompact
action.

In the abelian Higgs model spontaneous symmetry breakdown would mean
that (φ(x)y = φo φ 0, where φ(x) is the Higgs field. This would mean that the Higgs
field has long range order (LRO) like the spins in a ferromagnet at low
temperature. However, φ(x) is not a gauge invariant observable, so this picture
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may be true in some gauges and false in others. For example, Frόhlich et al. [10]
have shown it is false in axial gauge for the lattice theory.

By analogy with the ferromagnet, another criterion for LRO is that the two-
point function (φ(x)φ(y)y does not decay to zero as |x — y\->ao. A natural gauge
invariant observable that might be used to test this idea is the string

/ y \ _
<^(x)exp( —iel A dl \φ(y). However, the vacuum expectation value of this

\ X /

observable always decays to zero for the lattice theory [10]. Other criteria for LRO
based on the behavior of this observable have been introduced in [3, 13].

Another gauge invariant observable involving ^(x) φ(y) is the smeared string

G(x, y) = φ(x) exp [ - ie f dz A(z) - h(z)] φ(y),

where h is the d-dimensional Coulomb field generated by charges — 1 at x and +1
at y. We are working with the Euclidean theory, so A and h are rf-component

vectors, and z is integrated over IRd. Under a gauge transformation A-»A+ - Vχ,
φ ^eίχφ, the smeared string transforms as e

ieί dz A(z) h(z)-*ieJ dz A(z) h(z) + i\dz Vχ(z) h(z).

After integrating by parts and using V h(z)= — δ(z — x) + δ(z — y), the second
term becomes iχ(x) — iχ(y)> This exactly compensates for the effect of the gauge
transformation on φ(x)ϊj>(y), so G(x,j;) is gauge invariant. In Landau gauge
(V A = 0), G(x,y) is equal to φ(x)φ(y), since h is the gradient of a potential.

The expectation that we use is defined with a non-compact gauge field A(x) and

a gauge-fixing term — Σ|P A(z)|2 in the action. In three or more dimensions

this model has been shown to have a phase in which the photon is massive [1] and
a phase in which it is massless [8]. We will refer to these phases as the Higgs phase
and QED phase, respectively.

Our main result is that for the lattice theory in three or more dimensions there
is a range of parameters for which <G(x,j;)> does not decay to zero as |x — j;|->oo.
This range of parameters overlaps the Higgs phase. We also prove that <G(x, y)>
decays to zero for a range of parameters overlapping the QED phase. Thus we
prove that the model has a phase transition with order parameter

GOO = tim

|x-y|->oo

These results were announced in [15]. We do not prove that this transition
coincides with the transition between the Higgs and QED phases.

The expectation <G(x, y)> is independent of α, since G(x, y) is gauge invariant.
Landau gauge is obtained by taking α = 0, so

\\
ndau *

Therefore we have shown that the Higgs field has LRO in Landau gauge in the
same sense as the spins in the classical, d-dimensional X—Y model. We conjecture
that the translation invariant pure phases of the lattice abelian Higgs model in
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three or more dimensions are parameterized by an angle θ e [0, 2π), and that

in the pure phase labelled by θ. We do not prove this conjecture here. Our
definition of the expectation does not break the global U(l) symmetry. So this
produces a mixed phase with <^(X)>Landau = 0.

The existence of LRO in Landau gauge does not mean that φ(x) has LRO in
other gauges. For example, we can consider the decay of (φ(x) φ(y)y when the
parameter α in the gauge-fixing term is not zero. We prove that in this case
(φ(x)φ(y)y decays to zero as \x — y|->oo in dimension four or less.

Our last result concerns the decay of the truncated two-point function. For a
region of parameters where G^ is not zero, we prove that <G(x, y)> — G^ decays to
zero as \x-y\2~d. This massless behavior indicates the presence of Goldstone
bosons. However, we do not expect these massless particles to couple to states in
the physical Hubert space (see [2]).

Our proofs rely on the transformation of Balaban et al. [1] to write our non-
compact model in a compact formulation. In the non-compact model there is a
global U(l) symmetry, so a Peierls argument or standard expansion methods
cannot be used to prove LRO. This continuous symmetry is integrated out by the
transformation of [1], and so does not appear in the compact formulation. Thus
we can use a standard polymer expansion for the compact model. Proofs of phase
transitions in other lattice models with a continuous symmetry which use a
transformation to remove the global continuous symmetry include [14, 12].

It would be interesting to extend our result to the compact version of the U(l)
Higgs model. It would also be of interest to prove a corresponding result for the
non-abelian Higgs models. However, it is difficult to see how the smeared string
can be constructed for these theories. It might be possible to work directly in
Landau gauge and to prove that <^(x))Landau *s also an order parameter for these
theories.

We define our model and state the results in Sect. 2. Some of the easier results
are proven in this section. Section three contains the proof of long range order.
Massless decay of the truncated two point function is established in Sect. 4. Section
five and Appendix B are devoted to technical estimates. A correlation inequality
relating the fixed and variable length models is proven in Appendix A.

2. Statement of Results

Our model is defined on a finite, d-dimensional rectangular lattice A with unit
spacing. We will prove the existence of the infinite volume limit in Sect. 4. We
denote by Λ* and Λ** the oriented bonds and plaquettes respectively in A.
0-forms, 1-forms, and 2-forms are functions on /ί, Λ*, and A** respectively. The
scalar field (or Higgs field) is a complex-valued 0-form, which we write as φ(x)
= r(x) exp [iθ(x)]? with r(x) e [0, oo) and θ(x) e [0, 2π). The vector field (or gauge
field) is a real-valued 1-form, written A(b), where b is a bond in A*. We shall write
(/, g) for the /2-inner product of p-forms. Thus if/, g are 1 -forms, (/, g) involves a
sum over A*; if 2-forms a sum over A**. The lattice exterior derivative on A is d,
and its adjoint with respect to ( , ) is d* (for a review of notation see [9, 14]).
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We have results for a fixed length scalar field (\φ(χ)\ = ά) and for the more
general case of a variable length field. The action of the fixed length model is

S(A9 6>) =4 (a A, dA) + ̂ ~ (d*A9 d*A) -a2 Σ cos [dθ(b) - eA(bJ] . (2.1)
I ϊtt beΛ*

The term —(d*A, d*A) is the standard gauge-fixing term; α = 1 corresponds to

Feynman gauge and α = 0 to Landau gauge. For the variable length scalar field we
use the action

S'(A, φ)=\ (dA, dA) + 1 (d*A9 d*A)+±Σ \Dφ(b)\2 + Σ V(φ(x)) , (2.2)
£ ^% ^beΛ* xeΛ

where the covariant derivative is

Dφ(b) = φ(b+)-exp[ieA(by]φ(b-)9 (2.3)

and b + , b _ are the endpoints of b. The single site potential is V(φ(x)) = \ m2\φ(x)\2

+ λ\φ(x)\4, where λ>0 and m2 can be positive or negative. The potential can be a
single or a double well depending on the sign of m2. By taking m2 = —4λa2 and
sending λ to infinity, the variable length model with action (2.2) reduces to the fixed
length model with action (2.1).

For any functional F defined on field configurations on A, we introduce
expectations by

F = Z-1DADΘFeji-SA9θ)']9
(2.4)

9φ) ] 9

where Z, Z' are partition functions that normalise the expectations. We will use the
non-compact version of the model in this paper, so

00

SDA= π ί ΛA(b).
beΛ* -oo

Also Dθ and Dφ denote products of Lebesgue measure on the circle and on (C. For a
gauge-invariant functional F, both <F> and <F>X are independent of α, the
parameter in the gauge-fixing term [6].

The inclusion of the gauge-fixing term -~(d*A,d*A) and our choice of

boundary conditions make the integrals in (2.4) converge. In other words, the
equations dA = 0 and d*A = 0 have the unique solution ^4 = 0 (recall that d* is the
adjoint of d restricted to Λ9 so it does not annihilate constants). However for a
0-form /, the equation df = 0 is satisfied by / = const. So the Laplacian on 0-forms
A = d*d is only invertible on the orthogonal complement of the constant functions,
and we denote its inverse on this subspace by C.

We can now introduce the smeared string observable described in the
introduction. Define

(2.5)

where h is given by

h = dCg9 (2.6)
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and g = δx — δy. We write δx for the lattice delta function at site x. So h is the electric
field produced by charges — 1 at x and 4- 1 at y. In d dimensions, the electric field
produced by a unit charge at the origin decays as r1 ~d, which is square integrable
for d^ 3. It will be crucial for our results that h is ^2 uniformly in x, y and Λ for

We can rewrite (2.5) as

G(x, y) - r(x) r(y)ei(Θ>g)~ ίe(A>h} .

Under a gauge transformation θ\-^θ 4- #, A\-+A -h - dχ, the term e(,4, ft) transforms
as β

The gauge invariance of G(x, y) follows from the fact that d*h = g, since this gives
(dχ9K) = (χ,g). Furthermore, since

(A9h) = (d*A9Cg)9

it follows that in Landau gauge (d*A = 0) the observable G(x, y) reduces to
φ(x)φ(y).

Our main result concerns <G(x, y)>. The theorem below says that if a is large
and e is small, then the smeared string has LRO, but if a is small it does not. The
main part of the proof is given in Sect. 3.

Theorem 2.1. (i) For d^3 and for any 0 < y < 1 , there are constants e(y), a(γ) such
that for e < e(γ) and a > a(y)

(2.7)

(ii) There are constants δ, ρ, c such that for a^δ and for all e,

ρ|x-j,|]. (2.8)

Remark. Theorem 2.1 proves that the model has a phase transition in dimension
d^3. The natural order parameter for this transition is

G^ lim <G(x,)0>.
|χ-;y|-+co

Proof of Theorem 2.1. The body of the proof of (i) appears in Sect. 3. We complete
that proof here and also prove (ii). The invariance of the measure under A\-* — A,

— θ implies that

To prove (ii), we use the correlation inequalities of Brydges et al. [6]. Recall that
they prove the following result for all values of the parameters:

<P(r) cos [(n, θ) + e(f9 Aft β(r) cos [(m, θ) + e(g9 A)} /^ 0 , (2.9)

where P, Q are polynomials in the variables {r(x)} with positive coefficients, n and
m are integer-valued 0-forms and / and g are real-valued 1 -forms. From (2.9) we
immediately deduce that ,

-<G(x,y)>'^0. (2.10)
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We will use this result later. Also by rescaling A\-*-A and using standard
substitutions like e

1 \dA(p)\2 = limε-2[l -cos(ε<L4(p))] ,
ε-»0

we get ,
— <G(x,)OX^O. (2.11)

Since (2.11) holds also for the fixed length case, we may bound <G(x, y)> from
above by the same expectation with e = Q. However this is exactly the spin-spin
correlation of the d-dimensional X — Y model at inverse temperature β = a2.
Therefore for a sufficiently small, this decays exponentially.

We prove (i) in Sect. 3 for the range of parameters e<e(y), ae>μ(y). Using
(2.11), the result extends to the range e<e(y), a>a(y) with a(y) = μ(y)/e(y). D

We point out that since taking e = 0 gives the X — Ύ model, Theorem 2.1
provides a new proof of LRO for the X — Ύ model in d ̂  3 for earlier proofs see
[Π, 12].

Corollary 2.2. In d^3, for sufficiently low temperature the two-point function of
the classical X—Y model is bounded away from zero.

As mentioned before, we can also show that the variable length model has a
phase transition. If the Higgs potential is a deep double well, there is LRO for the
smeared string. There is no LRO for a single well potential.

Theorem 2.3. (i) Ind^3, for any λ > 0 there are constants e0, R(λ) > 0 such that for
all e<e0 and —m2> R(λ),

Vx,yeΛ. (2.12)

(ii) For m2 > 0 and all λ, e, d,

<G(x,y)X^c/exp[-m|x-y|], (2.13)

where d depends only on m and d.

Proof. Part (i) is proved in Appendix A, using a correlation inequality to relate
<G(x, y)> and <G(x, y)χ. To prove (ii) we use (2.10) and (2.11) to bound <G(x, y)>
from above by the two-point function of a free scalar field with mass m, from which
(2.13) follows. D

Theorem 2.1 shows that in Landau gauge the expectation of the observable
φ(x)φ(y) is bounded away from zero for a suitable range of parameters in d^3,
indicating that ^(x) has LRO. As an interesting contrast, we show that ^(x) does
not have LRO for any choice of α different from zero. The proof uses a complex
translation method similar to that in [16]. Although our theorem concerns the
fixed length case, it is straightforward to extend it to the variable length model.

Theorem 2.4. For d = 3,4, αφO, eφO, and any α>0,

-»oo. (2.14)
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Proof. We will rewrite the action (2.1) as

S(A9θ,β)=l:(dA9dA)+l-(d*A9d*A)-β Σ cos [dθ(b) - eA(b)~\ ,
2 2α beΛ*

and denote by < > (β) and Z(β) the corresponding expectation and partition
function. Then the correlation inequality (2.9) implies that

Therefore

-l(<L4,<L4)-^-
I ^ ^QC

Π ί Σ δ(dθ(b) - eA(b) + 2πn(b))} exp [i(θ,

;τm]Jj, (2.15)

where the sum is over integer-valued 1-forms. Since the integrand in (2.15) is
periodic in each θ(x) (the sum over n is part of the integrand), we can make a
complex translation in θ. Define H = (d*dd*d) ~1 on the orthogonal complement of
the constants, and translate θ in (2.15) by

(2.16)

Then after bounding the resulting complex integrand, we get

K^(x) φ(y)y\ ^ a2 exp[- \e2a(g, HgJ] . (2.17)

As \x — y\-+ao, (g,Hg) behaves asymptotically like \x — y\ in d = 3 and like
ln|x — y\ in d = 4, so this proves (2.14) for αe2>0. Π

Finally we state a result concerning the existence of massless excitations in the
fixed length model. Recall that G^ was defined as the limit of <G(x, y)> as

Theorem 2.5β Ind^3 there are constants e0 and μ0 such that for e<eQ and ae>μ0,

(2.18)
J*-jf"

where σ is a positive constant.

Theorem 2.5 is proved in Sect. 4. At first sight it is surprising, since it implies the
presence of Goldstone bosons in our theory, at least in Landau gauge. However it
has been known for a long time [2] that when this model is quantized in Lorentz
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gauge (the continuation to Minkowski space of Landau gauge) Goldstone's
theorem cannot be evaded. The Hubert space contains Goldstone bosons, but
these are orthogonal to the sector containing physical states. Although we do not
prove it, presumably the Goldstone bosons of Theorem 2.5 do not couple to
physical states.

3. Proof of LRO

We begin this section by applying the transformation of Balaban et al. [1] which
changes the non-compact model into a compact model. Then we perform a
polymer expansion for this compact model. We use this expansion and some
technical estimates to prove Theorem 2.1 (i). These estimates are proven in Sect. 5.

In [1] the transformation from a non-compact model to a compact model was
applied to observables which were both gauge invariant and periodic in each A(b).
Our observable is not periodic, but the transformation can still be applied. As
remarked in [1] the transformed observable will be a function of the vortices v as
well as the compact field A.

The result of the transformation for the un-normalized expectation of G(x, y) is

j;) = JV Σ $ DA
v:dv-Q c

Γ I / 2π 2π \ 2 Ί

[ 2 V e "' e / α

 6 J
•exp

_ z \ e e / ί, j

(3.1)

The integration in the right-hand side is over A(b)e( — π/e,π/e). We have
emphasized this with the subscript c on the integral. The sum over v is over integer-
valued, closed (dv = 0) 2-forms. For each such 2-form v, nv is an integer valued
1-form such that dnv = υ. N is a constant which depends only on α and e.

The choice of the ny's is not unique. At first glance, exp[ — 2πi(h, nj] depends
on this choice. However, it actually only depends on v. To see this let nv and nv be
1-forms with dnv — dήυ = v. Then there is an integer valued 0-form s such that
ήv =

 nv + ds. Now (Λ, ds) = (d*h, s) = (g, s), which is an integer. So exp [ - 2πi(Λ, nj]
= exp[-2πi(ft,ήι;)].

If we apply the transformation to Z, we obtain the right-hand side of (3.1)
without the factor of a2 and with h replaced by zero. Thus

(3.2)

with

[ 1 / o o \ ~1
--(dA+—υ,dA+—υ)

2\ e e J_\

• exp[-ie(A, h)-2πi(h, nj\ . (3.3)

The measure dμ(A) is the product measure
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where A(b) ε( — π/e, π/e), and N is chosen so that dμ(A) is a probability measure.
We will use this compact version of the model for the remainder of the paper.

In our expansion we will think of the geometrical objects involved as sets of
sites rather than sets of bonds and plaquettes. This is a slightly different approach
from that of [18]. It has the advantage that the natural definition of connectedness
is sufficient to insure that the constraint dv = 0 factors. We would like to identify a
set of bonds or plaquettes with the set of sites belonging to the bonds or plaquettes.
However, two different sets of bonds or plaquettes can give rise to the same set of
sites. So we make the following definitions.

Definition 3.L The support of a set of bonds ZcΛ* is

suppZ = [x E A: x e b for some bond b e Z} .

The support of a 1-form / is

supp/ = {x E A: x E b for some bond b with f(b) φ 0} .

For a set of plaquettes YC/L** and a 2-form g, supp 7C A and suppgC A are
defined similarly. A set X C A is connected if any two sites in X can be connected by
a path of bonds whose endpoints all lie in X. Finally for a connected set XcA,
B(X) will denote the smallest rectangular parallelepiped in A which contains X.

The individual terms in our expansion will not be independent of the choice of
the nv's. The convergence of the expansion will require further properties for the
Wj/s. We state these properties here and then show in Appendix B that there is a
choice of nv's having these properties.

Lemma 3.2. For each closed integer-valued 2-form v in three or more dimensions,
there is an integer-valued l-form nv such that

(a) dnv = υ,

(b) nv — Σ nVt where v=Σvi and suppt^ are the connected components of suppy,
ί i

(c) n-υ=-nΌ9

(d) suppnyc£(suppι;),
(e) IIn J oo ̂  c(v9

 v)2> where cis a constant which depends only on the number of
dimensions.

Remark. We have shown that Z(h) is independent of the choice of the nv's. The
same argument shows exp[ — 2πi(h9n_,,)] = exp[2πϊ(/ι5nj]. So by making the
change of variables A-* — A, υ-+ — v, we see that Z( — h) = Z(h). Equation (3.3) can
be used to define Z(/) for any l-form /. However, Z(/) will in general depend on
the choice of the n/s, and the equality exp[ —2πi(/, «_„)] = exp[2πi(/, nv)~\ is no
longer automatic. But property (c) of Lemma 3.2 implies this equality, and so
Z(— /) = Z(/) for any l-form /. This property will be important since we will
expand about ft = 0.

Our expansion is a standard polymer expansion about v = 0 and the product
measure dμ(A). (See [18] for a discussion of similar expansions.) For this
expansion to converge we will need not only that e is small but also that the mass ae
is large compared to the lattice spacing of one. As we saw in Sect. 2, correlation
inequalities allow us to enlarge the region of parameters for which we know there is
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LRO. The more sophisticated expansion of [1] is about a Gaussian measure for A,
and so has a larger domain of convergence. Presumably, this expansion could be
adapted to our situation to further enlarge the region of parameters for which we
know there is LRO.

For each plaquette p and bond b, define ρ(p) and σ(b) by

[ 1 o "1
-τ\dA(p)\2-—dA(p)υ(p)\,

2* £. I
(3.4)

Next we expand the products:

Π [i+β(p)]= Σ Πβ(p),
peΛ** YCΛ** peY

Π[l+σ(fc)] = Σ ΠσtfO
beΛ* ZCΛ* beZ

Y and Z are summed over all possible sets of plaquettes and bonds respectively.
We now have

z(h)= Σ Σ Σ k(v,γ,z),
v:dv = 0 yc/L** ZCΛ*

with

k(υ, 7, Z) = exp Γ - \ (—Y (υ, v) - 2πi(Λ, nv)\ J dμ(A) Π <?(p) Π σ(&).
\_ l\e J J p ey & e z

(3.6)

Given t;, 7, and Z, let Jf l5 . . .,XΛC^1 be the connected components of suppz;
usuppFusuppZ. We are using the notation of Definition 3.1. Let

v(p) if P C X ,
0 otherwise.

If b e Z or p e 7 then there is exactly one Xί which contains all the sites in b or p. We
have denoted this by bcXi or pCXi. The same is true for a plaquette p with
u(p)Φθ. Thus 7= (J YJ , Z= U Zί? ι;= X^, and supp^usuppί^usuppZ^Jί^

i i i

The sets supp^ , suppYJ, and suppZt need not be connected.
It follows from part (b) of Lemma 3.2 and the fact that dμ(A) is a product

measure that

k(v,Y,Z)= Y l k ( v i 9 Y i 9 Z i ) .

We claim that the constraint dv = 0 is equivalent to dvt = 0 for i = 1,..., n. Suppose
dv(c) = 0 for a cube c. Our definition of connectedness implies that all the
plaquettes in c on which v is nonzero will fall into the same Xt. So dv^c) will also be
zero. Forj 'Φz, dVj(c) vanishes trivially.
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We now have
oo ] n

Z(h)= Σ-Γ Σ' nK(Xt,h), (3.8)
n = o nl χι...χn i = ι

where the primed sum is over connected subsets X 15 . . . , Xn of Λ with the hard core
condition that X^Xj is not connected for iΦj. (This implies that Xt and Xj are
disjoint and that no site in Xt is a nearest neighbor of a site in Xjf) Also

K(X9h) = Σ k ( v 9 Y 9 Z ) . (3.9)
u , Y , Z

supp v u supp Y usuppZ = X

This sum has the usual constraints on v, Y, and Z, i.e., dv = Q, YcΛ*, and ZC/L**.
In Sect. 5 we will prove the following estimates on K(X, h) and its partial

derivatives with respect to the variables h(b). We denote the partial derivative with
respect to h(b) by the subscript b. For example,

Lemma 3.3. For any M > 0 there exist ε > 0 and μ < oo swc/z ί/zaί if e < ε arcd ae > μ

Furthermore, the same bound holds for Kb(X,h), Kbtb,(X,h), and Kbtb>tb,'(X,h)
where b,b',b'ΈΛ* and h is any l-form with \\h\\ ̂ ^c.

The estimates in Lemma 3.3 are uniform in Λ. We will use Lemma 3.3 to prove
Theorem 2.1 (i). We carry out this proof in a finite volume Λ, but we will not bother
to mention obvious constraints such as XtCA. The estimates in the proof will be
uniform in A and so carry over to the infinite volume limit. We prove the existence
of the infinite volume limit in the next section. The bound on Kbib>ίb»(X9 h) will not
be needed until we study the decay of the truncated two point function in the next
section.

Proof of Theorem 2. 7(i). Our goal is to show that <G(x,y)> is close to a2

uniformly in x and y. By (3.2) this will follow from showing that \nZ(h) — InZ(O) is
small uniformly in x and y. We will use polymer expansions for InZ(fe) and InZ(O).
As noted in Sect. 2, \\h\\ 2 is bounded uniformly in x and y if d^3. This will be the
key ingredient in bounding the difference of the two polymer series.

If we choose M large enough in Lemma 3.3, then we have a convergent
polymer expansion for \nZ(h). (For example, see [5, 18].)

l n Z ( Λ ) = £ ~ Σ ψc(Xl9...9XjflK(Xi9h), (3.10)
n = ι nl χt,...,χn i = ι

where ψc(Xί9 . . . , Xn) is the connected part of the hard core interaction (X^jX^ is
disconnected) in (3.8). The sum is over all choices of connected sets Xi9 but
ψc(Xl9 ...,^Λ) vanishes unless (J Xt is connected.

i

For 56 [0, 1] define an interpolating function

= lnZ(sh). (3.11)
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By the remark following Lemma 3.3, H(-s) = H(s). So JEΓ(0) = 0. Thus

lnZ(Λ)-lnZ(0) = H(l)-fί(0)= f ds(l-s)fί"(s). (3.12)
o

By part (d) of Lemma 3.2, K(X, h) only depends on h(b) with beB(X\ Thus

H"(s)= Σ h(b)h(b')m(b9b'), (3.13)
with b,b'

oo 1 n

)= Σ -T Σ Σ i
n = ι nl ί j = ι xίt...,xn

bCB(Xl),b'CB(Xj)

Π K(Xk,sh) Kb(Xi9sh)Kb,(Xj9sh). (3.14)

Of course the i=j terms contain Kbtb,(Xi9sh)9 not Kb(Xi9sh)Kb,(Xi9sh).
Lemma 3.3 and standard techniques [5,18] can be used to bound m(b, b'). We

sketch the argument. The function ψc(Xί9 ...9XJ is non-zero only if (j Xi is
i

connected. Thus we can use part of the smallness provided by Lemma 3.3, say
exp( — \M\X\), to extract a factor of exp[ — jMd(b, bj] from m(b, b'). This leaves
us with

oo 1 n

Σ V V 1/1 (Ύ Λ

—r 2^ 2w ΨA^ ι > * * ? ̂

bCB(xl),b'CB(Xj)

We can now drop the constraint b'CB(Xj). For a fixed Xi9 the sum over the other
X's can be bounded by \Xt\ δn(n— 1)!, where δ can be made arbitrarily small by
making M sufficiently large. Thus we are left with

00

Σ nδn Σ |X|exp(-iM|X|).
n = l X : b C B ( X )

The final result is the bound

Iw(fe, b')\ ^ δ' exp [ — ̂  Md(b, bj] , (3.15)

where δ' can be made arbitrarily small by making M sufficiently large.
By the Cauchy-Schwarz inequality

IH^I^II/zll^supΣWfc^OI^^ΊI^IIlΣexpC-iM^bO]^ (3.16)
b' b b

For d ̂  3, || fe || | is finite and bounded uniformly in x, j; and Λ. Combining (3.12) and
(3.16) completes the proof. D

4. Decay of the Truncated Correlation

In this section we will prove Theorem 2.5, which establishes massless decay for the
truncated correlation <G(x, j/)> — G^. In order to do this, we first take the infinite
volume limit of <G(x, j;)>.
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Up till now we have considered the model only in a finite volume. In this
section we will distinguish finite volume quantities with a subscript Λ. So the
expectation of the smeared string (2.5) becomes (GΛ(x,y)yΛ. Note that GΛ(x,y)
depends on Λ because hΛ = dΛCAg depends on Λ. The existence of the infinite
volume limit is usually an immediate consequence of the convergence of the
polymer expansion. However, in our case it is also necessary that hΛ converges in
(2 as A / 2£d. Let ft denote dCg, where now C is the inverse of the infinite volume
lattice Laplacian. We extend hΛ to a 1-form on TLά by defining hA to be zero outside
Λ*.

Lemma 4.1. In rf^3, hΛ converges to ft in f 2 .

Proof. It suffices to show (ft^ft) and (hΛ,hΛ) converge to (ft, ft). However using
d*hΛ = dAhΛ = g, we have

(hA, ft) = (hA, dCg) = (d*hA, Cg) = (g, Cg) = (ft, ft).

Furthermore (hA, hΛ) = (g, CAg), so the proof reduces to the pointwise convergence
of CΛ to C, which is standard. Π

Lemma 4.2. The infinite volume limit of (GA(x, y)}Λ exists and equals a2 expF(ft),
where

F(h)=Σ^ Σ ψe(Xί,...,X^\UK(Xί,h)-nK(XM. (4.1)
w = ι n\ χit...,xn \_ i i J

The X^s are summed over connected subsets of ΊLd.

Proof. Since (GA(x,y)yA =α2exp[lnZy4(ftγl) — InZ^O)], it is sufficient to show
F(h)-F(hA) and F^J-lnZ^^J + lnZ^O) both converge to zero as Λ/I?. To
bound the first expression we use the interpolating function

H(s, ί) = F(i s(h + hA) + i ί(ft ~ ftj) - F(i 5(/z + Λ J - i ί(fc - ft J) . (4.2)

Since F(h) = F(-h),

0 0

As in the proof of Theorem 2.1 (i) in Sect. 3,

=Σ m(b, b') (h + hΛ) (b) (h - hΛ) (V) ,
b,b'

which is bounded in absolute value by c\\h + hΛ\\2 \\h — hΛ\\2, since

So Lemma 4.1 implies F(h) — F(hA) converges to zero.
The term F(hΛ) - lnZA(hA) + lnZA(0) equals expression (4.1) with the constraint

that (J Xt contains sites in both A and Zd\A. Let H(s) be this expression with hΛ
i

replaced by shΛ. Again following the proof of Theorem 2.1 (i) in Sect. 3,

Q)= S ds(l -s)H"(s)
0
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and
H"(s}=Σm(

b,b'
with

This bound on m(b, fox) and the convergence of hΛ to h in /2 imply that F(hΛ)
— lnZΛ(hΛ) + lnZA(0) converges to zero. D

One expects the limit ofF(h) as \x — y|->oo to be 2F(Λ0), where h0 = dCδ0 with
δ0 the delta function at the origin. So we consider

<G(X y)> - fl V
F(Λo) - α VF(Λo)[y (/l) - 2f (Λo) - 1] .

We will show that F(/z) — 2F(/z0) equals σ\x — y\2~d to leading order. This will
prove Theorem 2.5 and will also show that

(4.3)

Therefore the proof of Theorem 2.5 is reduced to the following proposition.

Proposition 4.3.

W-̂ ^̂ p^pr). («)
Proof. We use Taylor's theorem to extract the leading order term in F(/z) — 2F(/z0).
We can write h = hx — hy, where hx = dCδx. By translation invariance, F(/z0) = F(hz)
for all z. So define

Then

F(A)-2F(A0) = H(1,1) =
0 0

(4.6)

The leading order term σ\x~y\2~d comes from -—-(0,0). The Odx-yl1"^)
Λ 2 r τ OSOt

terms come partly from (0,0) and partly from the higher derivatives in (4.6).
OSOt

These higher derivatives can be easily computed. They give

— Σ hx(b) hy(b/) hy(b"} q(b, b\ b"}. (4.7)

The same argument used in the proof of Theorem 2.1 (i) in Sect. 3 gives the bound

where d(b, b', b") is the size of the smallest connected set of sites containing b, V,
and V. As |x-j;|-»oo, ^h\b)hy(b}2 behaves asymptotically like |x-;y|1~d. We

&
leave it to the reader to use (4.8) to show that (4.7) has the same asymptotic
behavior.
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The leading order term in (4.6) can be written

f>,θ)= Σ
With dsdt M

(b, b') (4.9)
uaui b,b'

" 1 J
Σ ψc(X1,...,Xll)\τiK(Xj,Q)]Kb<^Xl,(S),

«= = X i , . . . , X n : |_jΦί J
b,b'CB(Xl)

(4.10)

where we have used Kb(X,Q) = Q.
We can separate (4.9) into two sums. The first sum is over bonds b and V which

are parallel. This sum can be written as

\ ΣΣίhx(Tzb)hy(b} + h*(bW(W]m(b, TJ,), (4.11)
L z b

where Tzb is the translate of the bond b by the lattice vector z. We have used the fact
that m(b,b/) = m(b\b). This expression equals

, Tzb) - Σ m(b, Tzb) [hx

z,b Λ z,b

(4.12)

We define
(4.13)

This is independent of fe, so the first sum in (4.12) is

m0(fcx, hy) = m0C(x, y) = ^ + 0 i-l

The expression (4.10) implies that m(b, Tzb) decays exponentially in |z|. The leading
order contribution to m0 comes from the z = 0 term in (4.13), and this is positive for
ae sufficiently large and e sufficiently small. We can use bounds like

\hx(Tzb) - hx(b)\ ̂  c\z\ dist(x, b)-d

and the exponential decay of m(b, Tzb) in |z| to show that the second sum in (4.12) is
0(\χ-yΓ").

The second sum in (4.9) is over b and b' which are not parallel, i.e., b and b' point
in orthogonal directions. Let Rbb' be the reflection of b' in the line through b. Then
m(b,b') = m(b,Rbb'), so we can write the second sum as

~. Σ rn(b,bKh\b) + h*(Rb.bK^^ (4.14)
4 &,b ' : i

Note that Rb changes the orientation of bonds which are not parallel to b. For each
b and b' there is a lattice vector z such that Rb,b is Tzb with its orientation reversed.
So

hx(b) + hx(Rb,V) = hx(b) - hx(Tzb).

The length of z is bounded by 2d(b, b'). Thus (4.14) can be bounded in the same way
as the second sum in (4.12) and so is 0(\x — y]1'**)- Π
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5. Bounds on K(X, h)

We now complete the proofs in Sects. 3 and 4 by proving the bounds on K(X, h)
and its derivatives stated in Lemma 3.3. We will prove these bounds for e small and
ae large. We must show that there is a small factor e~M for each site in X. This
smallness arises in two different ways. For plaquettes p with v(p) φ 0, the factor

exp — - 1 — 1 v(p)2 is small since e is small. For plaquettes p e Y with v(p) = 0,

the factor ρ(p) provides smallness because A has a large mass ae. For bonds b e Z,
the factor σ(b) provides smallness for the same reason.

We will first bound K(X, h) and then show why the same bounds hold for the
derivatives Kb(X, h), Kb^(X, K), and Kb#tV.(X, h). Recall that K(X, h) is a sum of
terms k(v, Y,Z) with X = suppι;usupp ΓusuppZ [see Eq. (3.9)]. For a plaquette
p e Y with υ(p) φ 0, we use

υ(p}2

So

|ρ(p)| = exp - - dA(p)2 - dA(p) v(p) - 1

For a plaquette p ε Y with v(ρ) = 0,

-1

Γ~2~

Finally for a bond b e Z, we use

- 1 1 ̂  e| A(fe) h(b)\ ^ cve\A(b)\ ,

since \\h\\ ̂  is bounded uniformly in x,y, and /L.
Combining these bounds gives

Π
v(ρ) Φ 0

• Π dA(p)2 Y[
p e Y : ^ beZ

ι>(p) = 0

By the Cauchy-Schwarz inequality,

(5.1)

THUS

Π
peY

where r = 2(d— 1) is the number of plaquettes which contain a fixed bond.
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Therefore (5.1) is bounded by a sum of terms of the form

Σ A(b)2]
bcx ]bcx

with q(b) ̂  2r + 1 and Σ q(fy = Ά ϊ>l + |Z|. We have denoted {p e Y : υ(p) = 0} by
bCX

Y\v; \Y\v\ is the number of plaquettes in Y\v, and |Z| is the number of bonds in Z.
The number of terms of the form (5.2) is bounded by 4 |YH (Note: the V in \ne~ 1 is
the electric charge.)

Lemma 5.1. For any Mx>0, 3μ>0 such that for ae>μ,

(b}. ' (5.3)

Proof. Since dμ(A) is a product measure over bonds, (5.3) reduces to the one-
dimensional integral

~
JN -π

where π/e

JV= J
-π/β

By rescaling A by - and using simple bounds, we get (5.3) with M' = ln(αe) for ae
e

sufficiently large. G

Since dμ(A) is a product measure, Lemma 5.1 gives the bound

,,,)],
J

(

where M" can be made as large as desired by taking M' large enough and e small
enough. We have used X = suppi usupp YusuppZ to bound \X\ by 4(t;, v) + 4| Y\ϋ|
+ 2|Z|. The number of choices of 7 and Z is bounded by c1*1, as is the number of
terms of the form (5.2). So

\K(X,h)\ = Σ k(υ,Y,Z)
v,Y,Z

£c^e-M"W. (5.4)

This proves part (a) of Lemma 3.3 since M" can be made arbitrarily large by taking
e small and ae large.

The derivatives of k(v9 7, Z) with respect to h(b) can either pull down a factor of
2πinv(b), or change σ(b) to ieA(b)e~ieA(b]h(b\ Additional derivatives produce similar
factors. By Lemma 3.2 part (e), \nv(b)\ ^ φ, v)2, and so the sum over v in (5.4) may
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contain an additional factor (υ, υ)2p, where p = 1,2 or 3. However, the sum is still
bounded by c1*1. The extra factors of eA(b) coming from the derivatives of σ(b) may
increase Σ #(fr)> but this only improves our estimates.

bCX

Appendix A

In this appendix we will prove a correlation inequality which relates expectations
in the fixed length and variable length models. The proof is quite similar to the
proofs of correlation inequalities presented in [6]. The analog of this inequality for
a one-component classical spin system was proved by Wells [19]. Bricmont et al.
[4] remarked that the inequality also holds for a two-component classical spin
system. We first introduce duplicate variables and consider the integral

/ = I dμc(A) dμc(A/) dv(r)DΘDΘ'

• {r(x) r(y) cos [(0, g) - e(A, ft)] - a2 cos [(0', g) - e(A'9 ft)]}

•expΓΣ r(z)r(w)cos(dθ-e^) + α2 Σ cos(dθ'-eA')\ .
[_<ZW> <ZW> J

The measure dv(r) is the product over sites of the radial measure
rdrexp[ — λ(r2 — σ2)2], where

Also dμc(A) is the gaussian measure with covariance

C=[d*d+-dd*
V α

and the sums are over bonds <zw> in Λ*. Since we wish to prove that <G(x, y)/
^<G(x,y)>, it is sufficient to prove that 7^:0. We will prove that 7^0 provided

2α^σ. (A.I)

This implies Theorem 2.3, since by taking e sufficiently small and a sufficiently
large, we have <G(x, y)> ̂  c. Then (A.I) implies the same for <G(x, y)/ for any λ
provided — m2 is sufficiently large.

We wish to make the following change of variables; define

In order to see how the terms in 7 change as a result we will use the following
identity:

4(xyz - x'y'z*) = (x + x') (y + /) (z - zO + (x - x7) (y - Ϋ) (z - z')

There is a corresponding identity for xyz + x'/z'. We will apply these identities to
the terms in / taking x and y equal to r( - ), x' and y' equal to α, and z and z' equal to
the cosines of unprimed and primed variables. Expanding out the exponential in a
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power series, we get a sum of terms with positive coefficients. It is sufficient to show
that a typical term is positive. Using simple trigonometric identities a typical term
can be written

,-!•)}/
where n(z\ m(z), n(z, w), m(z, w) are non-negative integers, C = 2C and / is either
sin or cos. Therefore it remains to prove positivity of the radial integral. Since it
factorizes over sites, we just need to prove positivity of the following integral,

o

By rescaling, we can set σ = 1. Simple estimates show that

1 0

For any λ > 0, we have

i ~~ o

and therefore Kn > m^0 for all n, m if α g^.

Appendix B

This appendix is devoted to the construction of integer- valued 1 -forms nv which
have the properties listed in Lemma 3.2. We will first carry out this construction
for closed 2-forms v which have connected support. The construction is in two
steps. First we construct a 1-form n'Ό with dn'v = v. A bound on H ^ H ^ is immediate
from this construction, but suppn'v need not be contained in B(suppv). So the
second step is to gauge transform riv-*nv so that suppπt;cJ5(suppι;).

We construct riυ using a maximal tree. To avoid technical problems we choose a
particular such tree T C Λ* . We choose coordinates (x0, x1 , . . . , xd __ J for the points
in Λ so that x^O, 1, ...,L f. T contains all the bonds in the 0-direction, all the
bonds in the 1 -direction which lie in the x0 = 0 hyperplane, all the bonds in the
2-direction which lie in the x0 = 0 and x^ = 0 hyperplanes, . . . , and all the bonds in
the (d— 1) - direction which lie in the x0 = 0, xx =0, ..., and x d _ 2 = 0 hyperplanes.
The origin is a natural base for this tree.

For any xeΛ there is a unique path Γx in T from the origin to x. Given
<;x};>e/l*, let Sxy be a surface whose boundary is the loop <xy>u( — Γy)uΓx.
Define

= Σ v(p). (B.I)

The surface Sxy is not unique. However, n'υ is well defined because v is closed. We
leave it to the reader to check that driv = v, i.e., property (a) holds. Definition B.I
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implies | | n ύ l l o o ^ ^^^(z;, v). The second inequality holds because v is integer-
valued.

The only thing wrong with riυ is that it can have support outside of B(suppv).
We rectify this by defining a 0-form s so that n'v = ds outside B(suppv) and then
letting nv = riv — ds. Fix a point x0 just outside of 5(supp v) so x0 φ supp v, but some
nearest neighbor of x0 is in ^(suppί;). For xeΛ\B(suppv) let

s(χ)= Σ n;(&), (B.2)
beΓXQlX

where ΓXQίX is a path from x0 to x which is entirely outside of 5(suppι;). In three or
more dimensions closed paths in Λ\jB(suppί;) can be expressed as the boundary of a
surface which lies entirely in Λ\B(suppv). But dn'v(p) = v(p) = Q for plaquettes p in
Λ\B(suppv)9 so s(x) is independent of the path ΓXQtX and so is well defined for
xεΛ\B(suppv). Furthermore

ds(b) = n'υ(b) for bcΛ\B(suppv). (B.3)

If x is just inside of B(suppv) we define s(x) as follows. There is a path ΓXQtXίτom
x0 to x such that no bond b in ΓXQtX lies entirely in B(suppv). Define s(x) by (B.2).
For plaquettes p which contain sites both in B(suppι ) and in Λ\B(suppι;)9

dn'Ό(p) = §. So the argument of the preceding paragraph shows s(x) is well defined
and ds(b) = n'v(b) for bonds b which connect £(suppί;) and Λ\B(suppv).

For the remaining x in B(suppu), we let s(x) = 0. Define

n = n'-ds.

Then suppnyc£(suppz;), i.e., property (d) holds. Property (a) still holds since
d2s = 0. To bound H^H^, we need a bound on ds(b) for bcB(suppv). By choosing
the path in (B.2) to have minimal length, we get

for xeβ(suppt ), where f(v) is the sum of the lengths of the sides of J3(suρpι;).
Hence

But suppί; is connected, so t(v)^cv(y, v) for a constant cί which only depends on
the number of dimensions. Hence

which is property (e).
As noted in Lemma 3.2, any 2-form v can be uniquely written as Σvί> where

i

supp^f are the connected components of suppt>. As shown in the discussion
preceding (3.8), if dv = 0 then ̂  = 0. So we can define

Then property (b) is satisfied.
Property (c) remains to be verified. The closed 2-forms v may be grouped into

pairs v and —υ. For each pair we can define nυ as above and then define n_υ to be
-nfϊ. D
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