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These results, developed by Donsker and Varadhan and to a lesser 
extent by Gartner, are treated very well in the book. A certain 
amount of hard analysis is required to handle the ergodicity re­
quirements. These problems of suitable ergodicity conditions for 
the Markovian case as well as mixing conditions for the non-
Markovian case take up the last chapters of the book. 

The book contains an extensive list of references as well as de­
tailed historical comments. 

Those interested in connections with statistical mechanics should 
read references [2] or [3]. 
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I am glad, but also a little embarrassed to present this book 
because Emery's work is very closely connected with Paul André 
Meyer's and mine, these two last ones being also much intertwined. 
A large part of the book is an exposition of previous work, but also 
much of the material is new. Anyway, the presentation is always 
original and interesting. I always prefer intrinsic formulations for 
manifolds "à la Bourbaki," giving the expression in coordinates 
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only later, as a tool for proofs or an illustration; Meyer usually 
goes in the inverse direction. Emery stays in the middle. Each of 
us tried to help the probabilists absorb stochastic infinitesimal cal­
culus of the second order "without tears"; I don't know whether 
any of us succeeded or will succeed. But I guess that Emery's 
way will possibly be the best one for that, with his always clear, 
well-explained, and short statements. This part of probability in 
differential geometry has become recently more and more impor­
tant, for instance in large deviations, or in Bismut's proof of the 
Atiyah-Singer index theorem. 

§1. PRELIMINARIES ON PROBABILITIES 

We shall go fast, not defining everything. (Q, &, P) is a proba­
bility space, equipped with a filtration (^)t>0, an increasing right-
continuous family of sub-a-fields of y , indexed by the time t. 
&t represents the past and the present at time t. A process X is a 
map R + x f l - > £ , adapted to the filtration; Xt : co *-> Xt(co) is the 
state at the time t, it should be ^"-measurable, and X(co) : t H-> 
Xt(co) is the orbit defined by co ; a process is a random path on E. 
The process X, if E is a df-dimensional vector space, is said to be 
a semimartingale, if it can be written as a sum X = XQ + A + M, 
X0 is the value at time 0, ^ a process with (locally) finite vari­
ation, M a (local) martingale; A is a signal, M a noise. A is 
called the compensator of X and denoted X, M the compen­
sated and denoted Xe ; they are unique, up to a set of P-measure 
0 (P. A. Meyer) if X, A, M are continuous (a.e.), which will be 
always assumed. The word "local" will always be omitted. 

K. Ito introduced the stochastic integration with respect to a 
martingale; P. A. Meyer introduced the semimartingales to extend 
it to them; it is 

(1.1) / = i / -X , ƒ,= ƒ HsdXs 
Jo 

(co is always omitted), where H is an optional (some criterion 
of measurability), locally bounded process, £f{E\ F)-valued (F 
another vector space), and then / is F-valued; / is a new semi­
martingale and is of finite variation or a martingale if X i s l . 

All these results can be found in the appendix of P. A. Meyer at the end of 
Emery's book, with also further references. 
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A martingale is so oscillatory that it has no finite variation, so 
also X in general; but it has a quadratic variation (coming from 
the martingale part only), and a 0 cubic variation. This defines the 
bracket: 

[X, X], = Xl + Hm £(X,j+iA, - XtjJ, 

the square being taken in the tensor product E®E or the symmet­
ric tensor product E®E (factor space of E®E), then [X, X] too; 
the limit, as the size |A| of the subdivision A = (*0 = 0, t{, t2,... ) 
converges to 0, is a limit in probability, uniformly for t in any 
compact set of R+. 

At the end of Emery's book there is an appendix by P. A. Meyer, 
giving the bases of probabilities. 

Later on, Ito's differentiation formula is the following: 
If <£> is a C2 map E-+F, vector spaces, X and 2?-semimartingale, 
then O(X) is an F-semimartingale, with the integral formula: 

(1.2) *{Xt) - O(X0) = jf' *;<*) dXs + i jf' ®"(XS) d[X, X)s. 

The occurrence of the second derivative is due to the quadratic 
variation of X, making necessary a Taylor formula of the second 
order. One may write (1.1) and (1.2) in differential expressions: 

(1.3) dJt = HtdXt 

(1.4) d{*(X))t = *\Xt)dXt + \<S>\Xt)dXtdXt, 

from which we deduce 

(1.5) d(<P(X))td(<s>(X))t = a>'(xt)e<!>f(xt)dxtdxn 

where dXtdXt or dXt®dXt or dXtedXt = d[X, X]t is adapted 
to the definition of the bracket as quadratic variation. Emery 
doesn't use differential expressions much which I personally prefer; 
let me use them here systematically. 

Now one comes to stochastic differential equations (SDE): 
m 

(1.6) dXt^Hk(Xt)dZ^f * 0 = x, 

meaning 
(1.7) *, = * + £ / Hk{Xs)dZk

s. 
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Here the Zk are given real semimartingales, Hk given vector 
fields on E, x given the initial value, and X is the unknown, 
Is-valued semimartingale. One may abbreviate that by 
(1.8) dXt = H(Xt)dZt9 X0 = x, 

Z being a given G-valued semimartingale, G a vector space, and 
H an <S?(G\ 2s)-valued vector field on E. The field H has to be 
locally Lipschitz. Then the equation has one and only one solution 
a.e., with a death-time Ç, random variable œ »-• Ç(co) < + oo ; on 
{£ < +00}, Xt converges to infinity in E if t converges to £. 
Emery writes only that X([0, £]) is not relatively compact, but 
specifies that Xt may or may not converge to infinity for t -• £ < 
+00 (page 87); actually it converges to infinity, I proved it myself.2 

§2. PRELIMINARIES ON DIFFERENTIAL GEOMETRY 

The vector spaces are replaced by C°° manifolds. Let TX(M) 
denote the tangent vector space at the point x of the ^-dimen­
sional manifold Af, T(M) the tangent vector bundle; T*(M), 
the dual of TX(M), is the cotangent space, T*(M) the cotangent 
vector bundle. A C°° field of tangent vectors, or a Lie field, is 
a C°° differential operator of order 1, without term of order 0; a 
field of cotangent vectors is a differential form of degree 1. 

A bilinear form (C°°) will be a section b of the vector bundle 
(T(M) 0 T(M))*. All these C°° fields are C°° modules, finitely 
generated (using the embedding property of Whitney, of M into 
R2d). In a chart, M = E, vector space, TX(M) = £ , T*(M) = 
E*, a bilinear form at x is a bilinear form on E x E or a linear 
form on E®E. Therefore, TX(M) and T*(M) have dimension 
d, as does M. With coordinates, £ e £ , £ = £***^*; <f e 
£*,«* = Zkb*kdxk; then «*,«)*.,* = £*****• If ^ is a 
C1 real function on E, Z>V(*) = ç?'(x) = ^2kDk<p(x)dxk ; for 
É € £ , (fr)(x) = <£>W), O = Ekb

kDk(p(x). 
It's necessary, for the infinitesimal stochastic calculus, to intro­

duce also the second-order fields or covector fields. The space of 
second derivatives at x e M will be denoted by rx(M)9 r(M) 
will be the second-order tangent bundle. A second-order tangent 
field will be a differential operator of order at most 2, without term 
of degree 0. Similarly, r*(Af) will be the dual of rx(M), r*(M) 
the corresponding second-order cotangent bundle. 

2 [46] in the bibliographical index of Emery's book, Proposition 7.4, page 97. 
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If M = E,L e rx(E), then 

A : = l i , . 7 = 1 

It is often convenient to write an element of tx(E) by a vertical 
matrix, 

/ J2 pkD \ ( ^ \ 

therefore, rx(E) and also rx(M) have dimension d+d(d+l)/2. 
An element of T*(2?) will be written as a horizontal matrix: 

L* = ^b^dx +^2a* jdx1 dxJ, atj = ajti 
k ij 

or 

L* = I E bk dxk E aïj dx dxJ *> 

the second term is not an exterior form of degree 2, but a bilinear 
symmetric form on £ x £ , o r a linear form on E ®E. 

Then T* (2?) = E* ®(E®E)* or, as a horizontal matrix, (E* 0 
(E®E)*) ; it also has dimension d + d(d + l)/2, and r*(Af) does 
too. 

If (p is a C2 real function on E, D2(p{x) = p'(#) + ?>"(*), or 
{(p\x) <p"(x)) (horizontal matrix); for Le E ®(E ®E), 

Ltp(x) = (D2<p(x), L) = 2 * ^ ^ W + E aiJDfij9(x). 
k i,j 

We keep (E®E)*, and don't identify it with £* ©£* ; it has the 
advantage of cancelling a lot of factors 1/2. A symmetric bilinear 
form will be considered as a bilinear form, that is, an element 
of E* <g) E*, which happens to be symmetric. Thus dxldxJ is 
dxl <g> dxJ, and is not symmetric, but 

atj dx dx is if atj - ajt. 

On a manifold M, it is no longer true that rx(M) = TX(M) 0 
(TX(M) 0 rx(Af)), but 7;(M) c rx(M), and the factor space 
rx(M)/Tx(M) is canonically isomorphic to TX{M)®TX{M). One 
has the exact sequence 

(2.0) 0 -+ TX{M) -* TX{M) -+ TX{M) 0 TX(M) -• 0, 
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which splits if M = E, a vector space. On the duals, T*(M) is 
the factor space of T*(M) by the orthogonal TX(M)+ of ^(Af); 
one has the exact sequence 

(2.1) 0 - Tx(Mf - <(A0 -> K(M) -> 0, 

with TX(M)+ = (TX(M) © ^(Af))* ; it also splits if M = E ; the 
image of Z)2 in (E ® E)* is called the Hessian of ç?, Hessç? = 
Hess(Z)2p) = E/)jDiDjç>dxidxj . 

If O is a C2 map from Af into another manifold N, it has 
tangent maps, TX<S> : TX(M) -* T^N and T^O : ^(Af) -+ 
r®(x)N> Tx® educes Tx<b on 7^(A/), therefore there is a factor 
map TX/TX: 

xx{M)/Tx{M) -> ^ ( A O / T ^ A O ; with respect to the above 
exact sequence, it is exactly the map 

Tx<i> © Tx® : TX(M) © TX(M) - T^x)N © T^x)N. 

In other words, the following diagram is commutative: 
O-T^Af)-» xx{M) ^Tx(M)®Tx(M)-+0 

,Tx* 

x)N~*r<l>(x 

TX<D | r x « © r x » 

jW^W^W^0-
Such morphisms between second-order tangent spaces are called 

by Emery Schwartz morphisms; I am not the author of this termi­
nology, of course; such morphisms are known among differential 
geometers, but it is true that I was responsible for their introduc­
tion and systematic use in stochastic infinitesimal calculus. Using 
charts, if O is C2 : E -> F, and if we write elements of xx as 
vertical matrices, Tx(&) is the derivative ^ ( x ) , and TX(0) is a 
square matrix 

(2.2) T X O - ^ 0 tf(jf)0tf(jc)J. 

a Schwartz morphism 

\EeEJ \F®F, 
0"(x) is the usual second derivative, symmetric bilinear form 
E x E -• F, or linear map E © £ -> F; 0;(x) © O'(x) is the 
square tensor map E®E->F®F of O'(x) : E -> F. 

file:///EeEJ
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§3. SEMIMARTINGALES ON MANIFOLDS, 
AND THEIR DIFFERENTIAL CALCULUS 

Although Brownian motions of manifolds have been used de­
cades ago by Ito and other probabilists, curiously enough the no­
tion of semimartingales on manifolds had not been defined; I in­
troduced them and studied them only in 1980, and many results 
on them were given by P. A. Meyer and me, and many others. See 
references [3], [4], [5], [8], [13], [15], [16], [19], [34], [35], [36], 
[43], [44], [45], [46], [52]. 

A stochastic process X : R+ x SI -» M is said to be a semi­
martingale if, for every real C2 function (p , <p(X) is a real semi­
martingale. Consequently, if O is a C2-map M -+ N, O(X) 
will be a semimartingale on JV. Of course, a decomposition as 
X — X0 + A + M doesn't make sense, nor does the notion of a 
martingale on a manifold. But differentials of semimartingales will 
make sense. For the above map O : M -> N, if we take charts 
M ~ N, N ~ F, ( 1.4) and (1.5) will be written, according to (2.2): 

d(*(X))t \ 

jdmX))td(0(X))J 

[ÓA) -{ o <t>\xt)®*\xt))\yxtdxt)
9 

or, if we put 

then 
W ) ) , = ^ dXt. 

In coordinates, if X = ^ XkDk, 

dXt = £ XkDk + i £ dXl dXjDiDj. 
k i,j 

This becomes intrinsic and goes from the chart on E to the 
manifold M itself: to the semimartingale X on M 9 and the 
point x e M, we may affect dXt, differential of X at Xt, a "small 
element of semimartingale" at Xt, element of xx (M) ; there is no 
differential dXt e TX{M) (except if X has finite variation). This 
notion is rather sophisticated; Emery says humorously: "should 
the differential exist, it would have the geometrical nature of a 
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second order tangent vector; if you do not (or not yet) believe in 
dXt, the statement is vacuously satisfied." 

While the decomposition X = X0 + X+Xc doesn't make sense, 
one may write 

ƒ dX = dX + d Xe 

(3'2) { dXt e xX((M), dXt e xxM9 dXc
t e TX(M), 

and the common image of dXt and dXt on Tt{M) © Tt(M) by 
the canonical projection 

n : xt(M) -+ xt(M)/Tt(M) = Tt(M) © Tt(M) 

is \dXt © dXt (although dXt doesn't exist), it behaves under O 
as 

±d(<t>(x))tdmx))t = xtiTtm\dxtdxt 

= (Tt(®)®Tt(<s>))±dxtdxr 

One may say that dXc
t is the martingale component of dXt, 

dXt its finite variation component, and that dXt dXt is the bracket 
of dXt. All of that appears clearly in charts. 

More rigorous definitions of dXt, dXt, dXc
t , \dXt dXt should 

be given, though the previous intuitive approximations are suffi­
cient never to make mistakes in the applications. I gave this defini­
tion, using the notion of differentials of semimartingales, sections 
on vector bundles on R+ x Q ; 

Michel Emery knows that very well, but he resigned himself to 
define them in this way; it would have been too long here for a 
limited benefit; in deeper studies, it is indispensable. 

One may perform integrations with respect to these differen­
tials. If 6 is an optional locally bounded second-order form 
over X on M (not a differential form of order 2 which would 
be an exterior form, with an antisymmetric property), that is, 
Gt(co) e ^x(W){M), then formally (&(Xt), dXt), the scalar prod­
uct, is a small real number, and one has a stochastic integral 11-> 
JQ(Q(XS)9 dXs) which is a real semimartingale. These integrals 
are carefully studied in Chapter VI; there exists also ƒ (6 , d^), a 
real process with finite variation, ƒ (6, dXc), a martingale, if 6 is 
a differential form of degree 1, and f(b, dXdX) a process with 

[46] in the bibliography of Emery's book. 
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finite variation if b is a bilinear form (see beginning of §2); for a 
bilinear form which is not symmetric, we must consider dXt dXt 

as an element of TX(M)®TX(M) instead of ©, or replace b by its 
associated symmetric form. If T = D2cp, (p a real C2 function 
on M,then / 0

r ( Z ) 2 ^ ) , d ^ = ^ ) ^ ( I 0 ) . 
It is to be noted that Emery goes from elementary objects to 

more sophisticated ones (differential calculus "without tears"); he 
studies f(b, dXdX) early in the book, Chapter III, but ƒ (0, dX) 
only in Chapter VI. He makes an extensive study of the integrals of 
bilinear forms; f(b, dXdX) is the è-quadratic variation of X. 
It can be computed by a discretization and a limiting procedure. 
Emery goes still further in pushing dX far in the book: He studies 
in Chapter IV the semimartingales and connections, and in Chap­
ter V the Brownian motion on manifolds, all before the definition 
of dX. We explain them here in the inverse order, starting from 
Chapter VI; it doesn't deform his work at all. 

§4. CONNECTIONS ON MANIFOLDS, 
MARTINGALES WITH RESPECT TO A CONNECTION 

It is known that a linear connection with zero torsion on the fiber 
bundle T(M) is equivalent to a splitting of the exact sequence 
(2.1); it decomposes r(M) as a direct sum 

(4.1) T(M) = T(M) e H (M), 

where the projection of H(M) on T(M) 0 T(M) is bijective. We 
shall write it as 

(4.2) T(M) = T(M) 0 T(M) © T(M), 

T(M) will be called the vertical subspace of x{M), T(M)®T(M), 
the horizontal subspace. 

One has a corresponding decomposition of the dual space x*M : 

(4.3) T*(M) = T*(M)®(T(M) © T(Af))*. 

Without any connection, T(M) and T(M)+ = (T(M)eT(M))* 
are always subspaces, but here T(M) © T(M) and T*(M) too, in­
stead of T(M) © T(M), T*(M), factor spaces. Emery defines the 
connection by the operator Hess, as a generalization of Hess of 
(2.1) which corresponds to the trivial connection on E: Hess is 
the projection of x*(M) on T(M)+ = (T(M) © T(M))*. 

On a chart, the connection is defined by T, T(x) being a sym­
metric bilinear map: T (M) x T (M) -• T (M), or a linear map 
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TX(M) © TX(M) - TX(M) ; 

d 

T{x)= 53 Tk
ij(x)dx'dxJDk. 

The decomposition of an element (") of 

E 
e 

EQE 

as a sum of elements of TX(M) and TX{M)®TX{M) is 

(44) ^ = {u+nx)vy(-n:)vy 

(4.5) Therefore (W J is horizontal iff w + T(x)v = 0. 

The lifting 

EeE 
\EQ>E4 

is v »-+ ( ~r£*)v ) , -T(x) is the component of this lifting on E. 
The decomposition of (a P) e (E* e (E e E)*) is 

(4.6) {ap) = {a aor(x)) + (0 -aor(x) + P). 

Then 

(4.7) Hessr tp = Hessr(ç/ (p") - -cp' o r + 9" £ (E 0 JE)*. 

One can learn the main properties of connections, geodesies, 
and the Levi-Civita connection by these notations. 

The decomposition of the differential dX of a semimartingale 
in (3.1) has an analogy when there is a connection; one may write 

(4.8) dX = IX + ^dTdX, 

dXt e TX(M), ^dXt dXt G TX(M) 0 TX(M) ; 

jdXtdXt e TX{M) 0 TX{M) 

here there exists a dXt e Tx (M), and \dXt dXt lies in xx (M) 
while \dXt dXt lies in the quotient Tx (M) 0 Tx (M). We write 
dXt instead of dXt since it exists only because of the connection. 
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Let y be a smooth curve on M\ the speed yt is the image 
of 1 G R in Ty (M) through Tty, and the acceleration yt is the 
image of 1 © 1 € R 0 R c R 0 (R 0 R) in xy (M) through xt by 
(2.2): 

v" \ ( E \ 
i % t ) e I 0 on a chart. 

yt@v*' [EQEJ 
On E equipped with the trivial connection, y is a geodesic if 

it is a straight line, i.e. y" — 0 ; therefore one defines a geodesic 
of the connection as a curve whose acceleration y is horizontal, 
which is written on the chart, according to (4.5): 
(4.10) / ' + r ( y ) ( / , / ) = 0. 

It is well known! 
A function (p on E is convex if cp" > 0. It means that the com­

ponent of D2(p = ( / /') on (E®E)* is q>" > 0. Therefore one 
says naturally that a function cp on M equipped with a connec­
tion is convex if the component of D (cp) on (T(M) 0 T(M))* = 
T(M)+ is > 0, that is, if Hessç? > 0 (Hess of the connection!). 

Finally, using (4.7) and comparing with the case of E with its 
trivial connection, a semimartingale X on M will be said to be a 
martingale with respect to the connection if the vertical component 
dX of dX on TX{M) is a martingale, or if the component dX 
of dX is zero, and, according to (4.5), it is written, in a chart 

(4.11) dXt + T(Xt)^dXtdXt = 0 

or 

(4.12) dXk
t + i t j W j dX\ dx[ = 0 Vfc. 

This enables Emery to describe elegantly the main results of 
Emery, Zheng, Duncan, Darling, P. A. Meyer, and myself, on 
the relationships between geodesies, convex functions, and mar­
tingales, in a connection; also the convergence of martingales at 
infinity (t -• +oo) ; everything is going well and smoothly. Precise 
references are given at the end of Chapter IV of Emery, with the 
publications of the author at the bibliographical index page 125 of 
the book. 

Observe that I mentioned here dX ; it arises only in Chapter VI, 
while the previous results constitute Chapter IV. Then they have 

(4.9) 
-
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to be expressed without the notation dX, which is easy. It will be 
the same for the Brownian motion in Chapter V. It corresponds 
to the intention to introduce AX, probably the best tool in all of 
that, but rather sophisticated, as late as possible, after it has been 
used indirectly many times, so that it falls as a ripe fruit. 

§5. THE BROWNIAN MOTION AND 

THE L E V I - C I V I T A CONNECTION (CHAPTER V) 

The Riemannian structure is defined by the fundamental quad­
ratic form g £ (T(M) © T(M))*, g = YnjSijdx1 dxj on a 
chart. The Levi-Civita connection is defined by its Hess, 

(5.1) Hessp = \&v^g € (T(M) © T(M))*, 

3? being the Lie derivative. 
As it is usual now, a Brownian motion X on M, over a proba­

bility space (Q, ^ , P, (< )̂) is a semimartingale satisfying the 
following "problem of martingales": 

(5.2) Vç> C2 real, t » <p{Xt) - (p{X0) - Jj \Acp{Xs)ds 
is a real martingale, A is the Laplacian; one says 
also that X is a \ A-diffusion. 

As usual, this integral condition can be written in a differen­
tial form: A is a second-order differential operator, therefore, a 
section of the fiber bundle x(M) ; (5.2) is equivalent to: 

(5.3) dXt = ±A(Xt)dt 

A(Xt)erx(M). 

The various known expressions of A show that it is a differ-
ential operator of pure order 2, or a horizontal derivative, A e 
T(M) © T(M), with respect to the connection; that is, its compo­
nent on T(M) according to (4.2) is 0. Therefore, dXt is hori­
zontal too; the Brownian motion is a martingale with respect to 
the connection. Emery gives various interesting properties, but of 
course doesn't prove here the existence and uniqueness (in law) of 
it; this can be done only by solving a SDE, which is the subject of 
Chapter VI. 

§6. STOCHASTIC DIFFERENTIAL EQUATIONS (SDE) 

Chapter VI defines dX and will be able to put an SDE on a 
manifold in an intrinsic form. An equation such as (1.8) doesn't 
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make sense, since dX doesn't exist on M, only dX exists. On a 
chart, M ~ E, (1.8) is written 

(dXt = H(Xt)dZt 
1 ' ; \\dXtdXt = H{Xt) 0H[Xt)\dZtdZt, 
where [Z, Z] takes its values in G© G, and H®H is the square 
tensor map G®G->E®E of H : G -> E. 

Therefore dZdZ necessarily occurs. 
Let us consider more generally the equation 

(6.2) dXt = H(Xt) dZt + K(Xt) i dZ, rfZ,, 

where H is a field of S?{G\ £")-vectors, and # a field of 
-2*(G © G; £)-vectors. Then 

(6.3) « , . ( * W fl(4WTO)«/Z,. 
This square matrix defines exactly a Schwartz morphism from 

Ge(G©G) into E®(E®E). Therefore, one can go to manifolds, 
and define a SDE on M as: 

(6.4) dX = f(X)dZ, 
J'y 

where dfZ = {idzdz) ; Z is a given G-valued semimartingale, 
and ƒ is a given field of Schwartz morphisms, ƒ (x) is a Schwartz 
morphism from xxG = G 0 (G © G) into TX(M). 

Michel Emery gives a still better generalization which will surely 
prove very fruitful. He replaces G also by a manifold. 

Let M,N,be C°°-manifolds, and ƒ a field of Schwartz (T(M), 
T( JV))-morphisms on M x N: for ( x j j G M x i V , ƒ (x, y) is a 
Schwartz morphism rx(M) -• T (#) . 

Then if X is a given Af-valued semimartingale, Y the un­
known semimartingale on N, 
(6.5) dY = f(X,Y)dX, 

Y0 = j ; G N, is a SDE on iV in the most general form, every 
vector space has disappeared. If ƒ is continuous and locally Lip-
schitz with respect to the second variable, there is one and only 
one solution with a death time f, and the usual properties. 

§7. STRATONOVITCH AND ITO INTEGRALS 

Assume, coming back to §1, that H is not only optional, but 
more regular, i.e. a C1 function of a semimartingale. Then its 
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Stratonovitch integral is defined by 

(7.1) jlH*ÔXs = llH'dX> + \dHsdXs-
One may give another definition, using a notion of differen­

tiation of forms of degree 1 into forms of degree 2, introduced 
and studied by P. A. Meyer; these forms of degree 2 are not at all 
exterior forms, but sections of (T(M) ® T{M))* (neither antisym­
metric nor symmetric) as described already in §2; Emery makes a 
systematic use of this notion in this chapter. One of the great 
interests of the Stratonovitch integrals is that they don't use the 
second-order tangent vectors. The Ito formula is replaced by the 
Stratonovitch formula for a function O of class C2 and a semi-
martingale X: 

(7.2) ÖQ{X) = Qf(X)SX$ 

analogous to the usual transform when X has a finite variation. 
Therefore always second-order tangent or cotangent vectors of 

the second order will be replaced by the analogous ones of the 
first order. But, of course, there are some inconveniences. For 
instance, if X is a martingale, ƒ HôX need not be a martin­
gale; the Stratonovitch integral doesn't allow us to distinguish the 
martingales among the semimartingales; one must always go to 
Ito integrals for that. Also one cannot handle directly the rela­
tionship with the connection, and a more complicated way is nec­
essary. But another interest of the Stratonovitch formalism is the 
transfer principle of Malliavin (an intuitive one): "every" property 
which is true for smooth curve extends to semimartingales, using 
Stratonovitch integrals. For instance, nice discretizations exist for 
the computation of integrals or of solutions of SDE. 

On a manifold M, the Stratonovitch differential SXt of a semi-
martingale X exists, and it is a first-order tangent vector at the 
point Xt, SXt € Tx (M). If 0 is a process of first-order cotangent 
vectors above X, 6(t, co) e T*X,AM), regular enough, then the 
integral ƒ (0, ÔX) exists. 

Finally, one may define a SDE on N by the same way as (6.5), 
but with first-order tangent vectors. If e is a field of (T(M), 
r(AO)-morphisms on M9N9e{x9y) € &{TX{M)9 Ty(N)), of 
class C^-Lipschitz and if X is a given semimartingale on X, 
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then the following formula is a Stratonovitch SDE for Y on N : 
(7.3) SY = e(X9Y)ÔX9YQ=y; 
it has a unique solution, with a death time f. 

There is the very interesting property: there exists one and only 
one ƒ as in (6.5), f(x, y) Schwartz morphism rx(M) -> T (JV), 
having the following property: if x and y are curves on M, N 
respectively, of class C2, such that y = e(x, y)x, then the accel­
erations satisfy y = f(x9 y)x. Then (7.3) is equivalent to 
(7.4) AY = f(X,Y)dX. 

Thus Stratonovitch SDE is led back to Ito SDE. 
There exists another way, completely different from the Straton­

ovitch one, to write SDE only with tangent vectors. Put on M, N, 
two arbitrary connections with no torsion. First of all, if 8 is an 
optional process cotangent of second order above X, ƒ (8, dX) 
exists according to the end of our §3, also the differential (8 , AX) ; 
therefore (&9dX) and Q^dXdX exist also, for instance (Q9dX) 
= (8 , dX + T(X)\dXdX) on a chart; but, if 0 is an optional 
process of order 1 above X, it is a fortiori of the second order 
because, with the connection, TX{M) ~ TX(M) c T (̂Af) ; there­
fore (0, dX) exists too, which is normal because T%{M) is the 
dual of TX{M) and lx e TX(M) : 

(d9dX) = (d 0.r{x))(dX+^r(X)dXdX\ 
(7.5) V ° / 

= (0, </JT + ^T(X) dX dX)E* E in the chart. 

This result is due to P. A. Meyer. [33], [34], [37] are in the bibli­
ographical index at the end of the book, page 125. 

In the same way, if X, Y are semimartingales M, N, they 
have differentials dX, dY according to (4.7). Therefore, one may 
write a SDE by writing 
(7.6) lY = e(X, Y)dX9 Y0 = y. 
And Every proves that the properties are the same. 

One can prove that there exists one and only one Schwartz mor­
phism ƒ of the type (6.5), equal to e on T(M), commuting with 
the given connections. This means that the image by ƒ(x 9y) of a 
(vertical or) horizontal element of rx(M) has the same property 
in ty{N). Then (7.6) is equivalent to (7.4) again. This property, 
due to Emery, isn't given in the book, but in a further article of 
Emery which has not yet appeared. (Emery asked me to point out 
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that the beginning of the last paragraph on page 88 of his book 
is trivially false. He gives the necessary corrections in his not yet 
appeared article.) 

This book ends with a chapter on parallel transports, moving 
frames, lifting, and developments with respect to a connection; 
it's also very rich in various results. Most of them are known (it's 
one of the first ideas of Malliavin about the transfer principle: 
parallel transport can be done along a smooth curve, therefore also 
along a semimartingale) but all are expounded following the ideas 
explained before: all the weapons have been now fully prepared 
for such an exposition. 

I apologize for such a long analysis. I think the book deserves 
it, and I hope it will help people to read stochastic infinitesimal 
calculus without tears! 
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The topology of 4-manifolds, by Robion C. Kirby. Springer-Verlag, 
Berlin, New York, 1989, 106 pp., $13.50. ISBN 3-540-51148-2 

In the years between roughly 1975 and 1985, the modern theory 
of four-dimensional manifolds was born as workers came to rec­
ognize that there was a fundamental difference between the topo­
logical theory of these manifolds and the corresponding smooth 
theory. One of the most striking aspects of this difference is that 
there are smooth manifolds homeomorphic to 4-dimensional eu-
clidean space which are not diffeomorphic to it, a phenomenon 
which happens in no other dimension. 

During the 1950s and 60s, great progress was made on basic 
existence and classification questions for manifolds in dimensions 
greater than 4. Thorn's theory of transversality and Smale's theory 
of handlebodies were used to reduce many outstanding problems to 
a mixture of algebraic A -̂theory and homotopy theory. Through­
out much of this period the results applied only to smooth or PL 
manifolds, but in 1969, Kirby and Siebenmann were able to prove 
that these transversality and handlebody techniques were also valid 
for topological manifolds. 


