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SPECTRAL THEORY OF REINHARDT MEASURES 

RAUL E. CURTO AND KEREN YAN 

Let /a be a finite positive Borel measure on C n ( n > 1), with 
compact support K, let P2(/u) be the norm closure in L2{fi) 
of the algebra of complex polynomials in zx,..., zn , and let 
M. = (Af_ , ... , M_ ) be the «-tuple of multiplication operators 

Z Zj Zn 

y 

by the coordinate functions zl9 ... 9 z^ acting on P (//). Mz 

is the universal model for cyclic subnormal «-tuples of operators 
acting on a separable Hubert space. For n = 1, the spectral and 
algebraic properties of Mz have been the focus of extensive study 
(see [Con] for a survey account of the basic results in this area). 
One important instance, the case dfi(reld) = dp(r) x ^ (where p 
is a positive Borel measure on [0, +oo)), gives rise to the class of 
subnormal weighted shifts, via Berger's Theorem [Con, III.8.16]. 
Here, the spectral picture of Mz admits a very simple description: 

(i) o(Mz), the spectrum of Mz, equals D := {X e C: |A| < 
sap{\z\:zeK}}; 

(ii) The Fredholm domain of Mz is C\ôD/l ; and 
(iii) index(Mz - X) = -1 whenever A e int(Z> ). 
The circular symmetry of weighted shifts, reflected in the above 

description, appears in several variables in the notion of Reinhardt 
set; F C C " is Reinhardt if F = T _ 1 (T(F)) , where T:C" -> R" is 
given by z -> flzj, ... , | z j ) . Correspondingly, a compactly sup­
ported positive Borel measure // is Reinhardt if it admits a decom­
position d/i(reld) - dp(r)xdd/(2n)n , where p is a positive Borel 
measure on R" . For instance, volumetric Lebesgue measure on a 
complete bounded Reinhardt domain Q c C " is a Reinhardt mea­
sure, in which case P2{p) is actually A2(Q), the Bergman space 
over ÇI. 

Received by the editors April 18, 1990. 
1980 Mathematics Subject Classification (1985 Revision). Primary 47A10, 

47A53, 47B37, 32A07; Secondary 47B20, 32E20, 47B35, 47A50. 
The research of the first author was partially supported by NSF Grant MCS88-

0139 and by a University of Iowa Faculty Scholar Award. 
The research of the second author was partially supported by NSF Grant 

DMS 9002969. 

©1991 American Mathematical Society 
0273-0979/91 $1.00+ $.25 per page 

379 



380 R. A. CURTO AND KEREN YAN 

The spectral and C*-algebraic properties of Mz on A2(Q), 
for flç C" Reinhardt or pseudoconvex, have been extensively 
investigated, as have been those of Mz acting on the Hardy spaces 
over the Shilov boundary of bounded symmetric domains (e.g., 
[BC, BCK, BCZ, BdeM, Cob, CM, CS, DH, MR, P, Ra, SSU, 
U, V]). In this note we announce a complete description of the 
spectral picture of Mz in case // is a Reinhardt measure on C2 

whose associated weight sequences have limits at infinity in all 
directions (a notion to be defined later). 

To describe our results, we need some notation. Let 

V:={(zl,...,zn)eCn:zl z„ = 0}. 

Without loss of generality, we can, and shall, assume that K ç 
25" and that K is not contained in V, since otherwise Mz is 
unitarily equivalent to the orthogonal direct sum of «-tuples of 
the form (M(z ,, 0, ... , 0). For fi Reinhardt, the set of 
bounded point evaluations for JU is b.p.e. (/z) := {A € Cn:p -+ 
p(A), p e C[z], extends boundedly to P2(/u)}. The Taylor spec­
trum of Mz> oT{Mz), is a nonempty compact subset of C" de­
fined in terms of the exactness of a cochain complex, called the 
Koszul complex, built from the exterior algebra on n genera­
tors and the coordinates Mz , / = 1 , . . . ,« . The Taylor spec­
trum enjoys most of the usual properties of the spectrum of a 
single Hubert space operator, and supports an analytic functional 
calculus. There is also a notion of Fredholmness and of index 
for commuting «-tuples of operators. (For basic facts on joint 
spectral systems, the reader is referred to [Cu].) Finally, for a 
compact subset F of Cn, we let F denote the polynomially 
convex hull of F. If F is Reinhardt and 0 e F, then F = 
T_1{exp[convex hull(log(t(i7)\F))]}"". In particular, if z £ F 
then the polydisk {w e Cn: \w(\ < \z.\, i = 1, ... , n} is contained 
in F. 

Theorem 1. Let ft be a Reinhardt measure on Cn. Then 
(i) int£çb.p.e.(//) ç £ ; 
(ii) a r (M^) = £ . 

To prove Theorem l(i), we construct a dense-range operator 
from P2(ju) to the Hardy space of the «-torus, H2(Tn), and we 
then use it to pull back the Szegö kernel function from H2(Tn) 
to P2{n) ; part (ii) requires a spectral inclusion [Cu, Theorem 
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7.5(H)] together with the containment b.p.e.(//) ç aT(Mz). To 
discuss our calculation of the Taylor essential spectrum of Mz, 
we require some preparations. To begin with, the existence of 
bounded point evaluations in a neighborhood Q of the origin 
(Theorem l(i)) gives rise to a kernel function k(w, z) such that 
f(z) = (ƒ, fc(., z)> for all ƒ G P\ti), z e Q. Let k e tf\F and 
let e := (min, |Af-|)/3. Use of the Cauchy-Schwarz inequality now 
yields the following key estimate: There exists a constant C > 0 
such that 

[[_ \f\2dn<cff_ \f\2dn, 
JJD(0,e)nK JJK\D(0,e) 

for every ƒ e P (//), where D(0,e) is the open polydisk centered 
at the origin and of multiradius (e, ... , e). From this we can 
derive the next result. 

Proposition 1. Let IJL be a Reinhardt measure on Cn . Then Mz is 
(jointly) bounded below, i.e., there exists ô > 0 such that \\z^f\\2 + 
-- + \\znf\\

2>ô2\\f\\2 forall feP\n). 

Since Mz is bounded below, we can use the groupoid machinery 
introduced in [CM] to analyze C*(MZ). This is done as follows. 
First, observe that Mz is unitarily equivalent to an «-tuple of 
«-variable weighted shifts; for, if we let ea := za/\\za\\L2{jil)(a e 
Z" ), it follows from the Reinhardtness of // that {ea}aeZn is an 
orthonormal basis for P2{ju), and that Mzea = wi{a)ea, where 

^ ( a ) : = | | z ^ | | / | | z a | | , a G Z ^ / = l , . . . , A 2 , 

e , : = ( 0 , . . . , 0 , 1 ,0 , . . . ,0) . 

Similarly, if p e Z" , the powers Mz := Mz
 1 Mf*n are as-

-f Z Zj Zn 

sociated with weight sequences w^). Extend w* to all of Zn 

via Wp(a) := 0 {a £ Zn
+), and let sf be the closed translation-

invariant subalgebra of l°°(Zn) generated by {Wp}peZn , not in­
cluding the constants. The maximal ideal space of sf , denoted 
Y, is a noncompact, locally compact Hausdorff space on which 
Zn acts by translation. The map (p\Zn -• Y given by (p{ot)(a) := 
a(a), aGZ" , a G 7 , is injective and open, and X := p(Z" ) £ Y 
is compact. Thus, X is a suitable compactification of Z" [CM, 
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Lemma 2.1 and Lemma 2.3]. If we let 65 := Y x Zn\x := {(y, a) e 
Y x Zn: y e X and y + a e X} , we see that 0 is the groupoid ob­
tained by reducing the transformation group Y xZn to X 9 which 
therefore becomes the unit space of 0 . A careful analysis of X 
leads to a detailed description of the ideal structure of C*(MZ), 
based on the correspondence between open invariant subsets of X 
and closed ideals in C*(MZ). Since X is obtained from Z" by 
adding suitable limit points at infinity, we need to impose condi­
tions on ju that guarantee a tractable identification of X\7P+ . 

We shall say that a Reinhardt measure /u has convergent weight 
sequences if for every /, j = 1, ... , n and for every a e Z" , the 
sequence {wt(a + kej)}^=l is convergent. The following theorem 
says that one can always assume that // has no mass near the 
origin. 

Theorem 2. Let ft be a Reinhardt measure on Cn, let K := supp//, 
assume that /u has convergent weight sequences, let CI be a neigh­
borhood of dK, and let v := /z|Q. Then C*(Mz^) is ^-isomorphic 
to C*(Af^)). Moreover, M^ is a compact perturbation of M^ 
(when each is regarded as an n-tuple of n-variable weighted shifts 
on /2(Z")). In particular, Mz^ and M^ have identical spectral 
pictures. 

Our description of the spectral picture of Mz relies on some 
special properties of the Koszul complex for Mz in case n - 2. 
Recall that 

K{Mz): 0 - P\ii) - ^ P\n) © P\n) - ^ P\n) - 0, 
where 

D\v)f=zxf®z2f 
and Dl(n)(f®g) = -z2f+zlg{f, g e P\H)). 

It follows from Proposition 1 that D°(/JL) is bounded below, and 
a trivial calculation then shows that K(MZ) is exact at the middle 
stage, so that, by Theorem 1, index(M^) = 1 once we establish 
that 0 is in the Fredholm domain of Mz . In the sequel, we assume 
that n = 2. 

To analyze X, we proceed as in [CM]. q>(Z2
+ ) is an open in­

variant subset of X, whose associated ideal in C*(MZ) is the 
ideal of compact operators; on the other hand, we let oo^ de­
note the subset of X consisting of all limit points of sequences 
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{^(k0))}^i > where k\j) -» +00 for i = 1, 2. Clearly ooG is a 
closed invariant subset of X, and <5L = oor x Z2 . When both 

(p(Z+) and 00 G are removed from X, we are left with two disjoint 
subsets, 00^ and oo£ , consisting of all points in X obtained by 
taking limits along vertical and horizontal directions, respectively; 
e.g., 00^ := {x e X:x = lim;.^(k(7)), {k^} is bounded and 
k^ -> +00}. In the spectral and algebraic descriptions of Mz, 
the key role is played by 00 G , on which we now focus our atten­
tion. Given a direction ü e R+ we let 

003 := {x e X: 3{^(kü))}7°!1 with <p(kU)) X x, ku) 

^Pjü + qjiï1, andqj/Pj^O}. 

Clearly X = U^R 2 °°U ' although two directions may give rise to 
the same limit points, and different limit points may correspond 
to the same direction. Nevertheless, the sets oô  carry important 
information. 

A Reinhardt measure /x on Cn is said to have convergent weight 
sequences in all directions (c.w.s.a.d.) if for every direction ü e R2

+ 

and every sequence {k(;) = Pjü+qM±} -̂ —• x e 00̂  with QJ/PJ -> 
0, the convergence of {q,} to some q eR implies the convergence 
of {^ . (k^))}^ , i = l , 2 . Volumetric Lebesgue measure on a 
complete pseudoconvex Reinhardt domain and surface measure on 
the boundary of such a domain are two canonical examples of such 
Reinhardt measures; additional examples are given by Reinhardt 
measures /x such that supp//|a£ = KndK. Intuitively, a measure 
ix has c.w.s.a.d. if it admits "balayage" to the boundary. There 
are, however, measures which do not have c.w.s.a.d. 

Following the notation in [SSU], we let C be the closed convex 
hull of log(x(K\V)). Then dC = d°C U dlC (the boundary of 
C is the union of its 0- and 1-dimensional faces). 

Proposition 2, Let pc be a Reinhardt measure on C2, and as-
sume that JU has c.w.s.a.d. Then 00 ̂  can be identified with 
dC\(Fv i)FA), where Fv and Fh are the vertical and horizontal 
{open) faces of dC, if they exist. 

Each oblique 1-dimensional face of dC gives rise to a direction 
ü G R+ ; if ix has c.w.s.a.d., the corresponding 00̂  is topologically 
equivalent to the two-point compactification of the real line, with 
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the action of Z2 given by t + (a{, a2) = t + alui - a2u2. This 
puts into evidence the presence of a copy of an irrational rotation 
C*-algebra when uju2 £ Q, intrinsic to the proof of (iii) below. 

Theorem 3. Let JU be a Reinhardt measure on C2, and assume 
that ix has c.w.s.a.d. Then 

(i) Mz- X is bounded below if and only if 

X i (exp(d°C x T2))~ , 

(ii) Mz - X is invertible if and only if X £ K, 
(iii) Mz-X is Fredholm if and only if X £ dK, 
t \ • A / I / i\ f I if X e intK, (v) index(Mz-A)=(^0

 J
i f H L ' 

Theorem 3 should be compared with [SSU, Theorem 1.3], where 
fi is volumetric Lebesgue measure on a complete pseudoconvex 
Reinhardt domain. Unlike the sheaf-theoretical methods used in 
[CS], [P], and [SSU] for the Bergman space case (obviously not ap­
plicable in the case of a general measure), our proof uses J. Bunce's 
characterization of the left spectrum [B], results from multiparam­
eter spectral theory, and a covering lemma for the spectrum of 
C*(MZ) to reduce the problem to the case when int£ is the L-
shaped domain Clô ô := {(zx, z2) e C2:(|Zj| < Sx, \z2\ < 1) or 
(|Zj| < 1, \z2\ < S2} (0 < ô{, ô2 < 1). For Qâ â , we calculate 
oTe{Mz) by explicitly exhibiting a pair of (1-variable) bilateral 
weighted shifts acting on l2(T) (T a subgroup of R), obtained via 
a suitably built faithful representation of C*(MZ)/3T associated 
with the direction ü = (-log<?2, - l o g ^ ) . Our techniques also 
allow us to handle certain cases of Reinhardt measures which do 
not have c.w.s.a.d., e.g., the example studied in [S]. 

Details of this work will be forthcoming. 
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