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HYPERGEOMETRIC FUNCTIONS 
ON COMPLEX MATRIX SPACE 

KENNETH I. GROSS AND DONALD ST. P. RICHARDS 

0. INTRODUCTION 

In [6] we presented the general foundations for a theory of hy-
pergeometric functions of matrix argument over real division al­
gebras. In this note, we further develop the fine structure of these 
functions over the complex field, including series expansions, inte­
gral representations, asymptotics, differential equations, addition 
formulas, multiplication formulas, summation theorems, transfor­
mation properties, etc. Especially important in this paper are the 
operator-valued hypergeometric functions, required for (nonspher-
ical) expansions such as addition formulas by the noncommuta-
tivity of matrix multiplication. These functions generalize the 
operator-valued Bessel functions studied in [5]. 

Hypergeometric functions of matrix argument arise naturally in 
applications ranging from multivariate statistics, quantum physics, 
and molecular chemistry, to harmonic analysis, group representa­
tions, and number theory. (See the references in [6].) These di­
verse applications amplify the need to develop the fine structure 
systematically and to the greatest extent possible. 

We briefly review the definition of hypergeometric functions of 
matrix argument from [6]. Let F be the real field, the complex 
field, or the quaternions. Denote by S the space of all nxn Her-
mitian matrices s = s* over F, on which the group G = GL(n, F) 
of invertible nxn matrices g over F acts by s *-+ g* s g. Then 
K = {k € G : k*k = 1} is the isotropy subgroup of the identity 
matrix 1, the open cone P in S of positive-definite nxn matri­
ces is the orbit under G of 1, and P can be identified with the 
symmetric space K\G. A functions ƒ on S is K-invariant if 
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f(k~lsk) = f(s) for all s e S and k e K. 
An «-tuple m = (mï,... , mn) of nonnegative integers such 

that mx> --->mn is called a partition. Set |m| = w^ H h mw . 
As a G-module the algebra of polynomial functions on S is mul­
tiplicity free, the irreducible components are indexed by the parti­
tions m, and in the mth irreducible component is a ^-invariant 
polynomial Zm on S, homogeneous of degree \m\ and unique up 
to scalar multiples, called a zonal polynomial. The zonal polyno­
mials are normalized by the condition (trs) = J2\m\=d Zm(s) • I*1 

the terminology of harmonic analysis, the zonal polynomials are 
polynomial spherical functions for the symmetric space K\G. 

Let ax, . . . , ap and b{,... , bq be complex parameters. From 
[6, (6.1.1)], the hypergeometric function F of matrix argument 
is a AT-invariant function defined on S by 

m F (a a • b b - s) = V tfliJm'"IflplmZm(j) 

where [a]m = n"=i(^ ~ W• "" ^)I/)w. ^s ^ e 8enera^z^d truncated 
factorial for the matrix space [6; (5.7.2)], (a)^ denotes the or­
dinary truncated factorial, and v = dimR F. In analogy to the 
classical case, 0F0(s) = etTS and {F0(a ; - ; s) = A(l - s1)"""*. 

Hypergeometric functions have also been defined along the 
above lines on domains of positivity, a context which, in addi­
tion to the matrix spaces, also includes the Minkowski spaces (i.e., 
Rw+1 with signature (n, 1)) and a certain exceptional 3x3 matrix 
space over the Cayley algebra [4, 10]. 

For the remainder of this note we set F = C, in which case 
G = GL(n, C) is the complex n x n general linear group and 
K = U(n) the unitary group.1 Since a Hermitian matrix s can be 
diagonalized by an element of K, we can view the hypergeometric 
function (1) as a symmetric function of the eigenvalues sx, . . . , sn 

of the matrix s. Also, since the full matrix space Cnxn is the 
complexification of the real space *S, by analytic continuation we 
can view (1) as defining the hypergeometric function on Cnxn . 

Only for the case of complex matrix space, among all the domains of positivity, 
does the group G have complex structure relative to which the maximal compact 
subgroup K is a real form of G. This property over the complex field is the 
crucial structure upon which the detailed results of this paper ultimately rest. 



HYPERGEOMETRIC FUNCTIONS 351 

1. WEYL'S CHARACTER FORMULA 

The partitions m that index the zonal polynomials also param­
etrize the irreducible finite-dimensional (complex) polynomial rep­
resentations X = Xm of G. Set xm(s) = tr(Aw(s)). Then, over the 
complex field, the zonal polynomials are the normalized characters 

(2) Zm(s) = œmXJs) 

of representations of G. By Weyl's character formula [12] 

(3) Xjs) = ^ ( j ) 

where V(s) = V(sx , . . . ,*„) = Ili</<y<n(^ " *j) is the Vander-
monde determinant. The constant cam is available from the liter­
ature [9, 10], but our methods provide a direct proof that 

(4) a> = ' ' m 

Mm 

where dw is the degree of Xm . Formulas (2)-(4), together with a 
generalization of (1) involving two matrix arguments, lead to the 
following crucial result. 

2. EXPLICIT EVALUATION OF THE HYPERGEOMETRIC FUNCTIONS 

Let p^q denote the classical hypergeometric function (i.e., the 
case n = 1). Then 

(5) 
pFq(al9...9ap;bl9...9bq;s) 

= aet(s^J
p9q(al-j+l9...9ap-j+l'9bl-j+l9...9bq-j+l'9si)) 
V(s) 

Formula (5) allows one to transfer known properties of the 
classical hypergeometric functions to the matrix argument coun­
terparts. Examples include precise asymptotic information and 
systems of differential equations, of which the following are rep­
resentative samples. 

3. ASYMPTOTIC FORMULA AS S( -> oo FOR / = 1 , . . . , n 

Suppose p < q and the series (1) does not terminate. Let 
0 = q+l-p, a = £ÏLi<i/,and b = ï?Mbr Then 
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(6) n 
i<) 

Si SJ_ 
St-Sj 

F(alt...,a ;blt...,b ;s) pa 

nnl2 iiurM (dets) [(P-\)(n-l)+a-b]/ft 

exP /?x>; VP 

/=i 

Moreover, the error term is 0(Xw=i St l^) • 
In (6), and throughout, Tn{a) = nn{n~l),2Uti T(a+mr(i-l)) 

is the (generalized) gamma function for the cone P [6; (5.6.1)]. 

4. DIFFERENTIAL EQUATIONS 

For any subset A of {1, .. . , n), define the differential opera­
tors 

Ike A i=i 

where 9^ = skd/dsk , and set 

ruiM+*,-"+i) 

(8) £, = V(s) - 1 

i = i 

o, F ( j ) 

for 7 = 1, . . . , n (where (j) denotes the empty set). Then— 
subject to conditions of symmetry, analyticity, and normalization 
at the origin—the hypergeometric function (1) is the unique solu­
tion to the system £ .F = 0 of n partial differential equations. 

Note that the formulas in the previous two paragraphs reduce 
to well known classical results when n = 1. We remark that for­
mula (5) also yields new information about classical hypergeomet­
ric functions through use of the matrix-argument versions [7, 11]. 

5. OPERATOR-VALUED HYPERGEOMETRIC FUNCTIONS ON Cnxn 

Let A denote the determinant and dj be G-invariant measure 
on P. Fix a partition m and the associated representation X = Xm 

of G acting in a Hubert space *V, let J?^) be the space of lin­
ear transformations on 2^, and define a family of hypergeometric 
functions on C 

(9) 

with values in J?(2^), starting with 
t r z . 

0F0(A|z) = e / 
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where / is the identity on *V. For larger values of p and q, we 
employ inductively the definitions 

(10) 
A(z)-^n(z)-l

p+lFqWalf... , ap+l;bl9 . . . , bq; z~l) 

= f l ^ X ^ t r 2 r A ( r ) V U ( r ) ^ ( A | û l ' - • V *i » - • V' W*r 

and 

(11) 
A(Z) V l ^ ) - 1 ^ ^ , . . . , flp; ^ , . . . , ^ ; z"1) 

We call p F (Al^!, ... , ap ; b{, ... , b ; z) the operator-valued 
hypergeometric function on Cnxn of weight A. Note the covari-
ance property 

(12) pFqW*i> — > *Pl bl9 ... 9 bq; gzg~l) 

= Kg)pFq(t\*\ ,...,ap;b19...,bq; z)A(g)~l 

for g e G. 
We can establish analogues for operator-valued hypergeometric 

functions of matrix argument of familiar classical formulas. For 
example, the operator-valued binomial theorem xF^{k\a\ - ; z) = 
[a]mA(l - z)~flA(l - z)~l holds for Re z > 1. The operator-valued 
Bessel function, defined in [5; (4.1)] by an integral over K, is 
given by Jx(2rl/2) = nn{n-l)llX{rll\Fx{X\-\ n\ -r) for r e P. 
The operator-valued confluent hypergeometric function has an Euler 
integral representation 
(13) 

MXfabiz) 

for all z e Cwxn , validfor Rea > n-mn-l and Re(b-a) > n-\ ; 
and the operator-valued Gaussian hypergeometric function has an 
Euler integral representation 

(14) 

2Fl(X\a, b;c;z) 

14 r„(è)r„(c-è)1 ""y0<r<i 
/" A(r)*A(l - r)c"*~"A(l - zr)~aX(r)X(l - zr)~ld,r 

J0<r<l 
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for Rez < 1, which holds when Reb > n-mn-\ and Re(c--ô) > 

6. OPERATOR-VALUED DIFFERENTIATION 

By applying differential operators to the scalar-valued hyper-
geometric functions, we obtain the analytic continuation of the 
operator-valued hypergeometric functions. Specifically, if d/dz = 
(ô/dz y) , then 

(l5) pFq(X\al9...9ap;bl9...9bq;z) 
[ ) = W/dz)pFq(al9...9ap\bl9...9bq9z). 

7. ADDITION FORMULAS 

For z, w , and z + w in the domain of the hypergeometric 
function, 
(16) 

pFq{al9 ... 9 ap\bl9 ... 9bq\ z + w) 

= E Sïï *(**(* W*ml«i ,...,ap;bl9...9bq-9 w)). 
m ' '* 

The analogous multiplication formula 

pFq{aX9... 9 ap\bX9... 9bq\ zw) 

=Çwki^ , r (A" (z )A" ("" ) 

is rather trivial. 

8. CONCLUDING REMARKS 

The above results—together with generalizations of other as­
pects of the classical theory, such as summation theorems (e.g., 
Gauss' and Saalschutz' formulas, Kummer's and Thomae's trans­
formations, etc.), orthogonal polynomials, Mellin-Barnes repre­
sentations, differentiation properties, and contiguous relations— 
will be treated in full detail in [8]. A second paper, jointly with 
H. Ding, will develop a number of the new constructs—e.g., the 
operator-valued hypergeometric functions and differential opera­
tors—for all domains of positivity. In other related work, [3] ap­
plies the operator-valued Bessel functions on domains of positivity 
to representation theory of the automorphism groups of Hermitian 
symmetric spaces of tube type, and [1] and [2] initiate the study 
of operator-valued hypergeometric functions on Siegel domains of 
type II. 
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