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The classical theory of Gelfand pairs has found a wide range 
of applications, ranging from harmonic analysis on Riemannian 
symmetric spaces to coding theory. Here we discuss a general­
ization of this theory, due to Gelfand-Kazhdan, and Bernstein, 
which was developed to study the representation theory of p-adic 
groups. We also present some recent number-theoretic results, on 
local e-factors and on the central critical values of automorphic 
L-functions, which fit nicely into this framework. 

1. COMPACT PAIRS 

Let G be a compact topological group. By a representation of 
G we will mean a continuous homomorphism from G to the group 
of unitary operators on a Hilbert space V. If V and W are two 
representations of G, the complex vector space HomG(F, W) 
consists of all continuous linear transformations from V to W 
which commute with the action of G. 

We say V is an irreducible representation of G if and only 
if there are no nontrivial closed subspaces of V which are G-
invariant. The irreducible representations of G are all finite di­
mensional [D, Chapter 3]. Let F be a fixed irreducible representa­
tion. Then V has, up to scaling, a unique G-invariant Hermitian 
structure, and any linear map from F to a Hilbert space W is 
continuous. If W is a representation of G, we define the multi­
plicity oî V in W as the dimension of the complex vector space 
Homö(K, W). We will only consider those representations W 
(often called admissible) such that dt = dimHomG(^., W) is fi­
nite, for all irreducible representations Vi of G. In this case, W 
decomposes as a Hilbert space direct sum: W ~ (B/^/P/ . We say 
W is multiplicity-free if dt < 1 for all i. 
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Lemma 1.1. W is multiplicity-free if and only if HomG(W, W) = 
EndG(W) is a commutative algebra. 

Proof EndG(W) contains the direct sum of matrix rings 

EndG(rf,F,) = Mat(rfpC) 
and is contained in their direct product, by Schur's lemma. Hence 
it is commutative iff all dx < 1. 

Let H be a closed subgroup of G, so H is also compact. We 
say that (G, H) is a Gelfand pair, or that H is a Gelfand sub­
group of G, if the following three equivalent conditions hold. 

(1.2) For every irreducible representation V of G the 
space Hom^(K, C) of //-invariant linear forms 
has dimension < 1. 

(1.3) The representation of G by right translations on 
W = L2(H \ G) is multiplicity free. 

( 1.4) The sub-algebra Ll{H\ G/H) of bi- //-invariant 
functions in Ll(G) is commutative under convo­
lution. 

In (1.3) and (1.4) the spaces L2 and Ll are defined using the 
unique Haar measure of volume 1 on G, and the associated G-
invariant measure on H\G. The equivalence of (1.2) and (1.3) 
follows from Frobenius reciprocity, which gives an isomorphism 

H o m G ( F , L 2 ( / / \ G ) ) ^ H o m ^ F , C). 

The equivalence of (1.3) and (1.4) follows from the injection 

Ll(H\G/H) C-> EndG(L2( / / \G)) , 

where L1 acts on L2 by convolution. Since the image contains 
the G-endomorphisms of finite rank, the commutativity of 

Ll(H\G/H) 

forces the commutativity of EndG(L2(H \G)). 
Since V is finite dimensional, and gives a semisimple represen­

tation of H, condition (1.2) is equivalent to 

(1.5) For every irreducible representation V of G,the 
space VH of //-invariant vectors has dimension 
< 1. 
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which is the usual definition of Gelfand pairs. Indeed, Hom# ( V, C) 
is canonically identified with the dual space (VH)*, as any H-
invariant linear form vanishes identically on the orthogonal com­
plement of VH in V. 

2 . GELFAND'S LEMMA 

If one knows the irreducible representations of G explicitly, 
condition ( 1.5) is probably the easiest to check. But condition ( 1.4) 
is extremely attractive, as it only makes reference to the internal 
structure of the pair (G, H). Recall that an anti-involution i of 
G is a bijection i : G -• G which satisfies i(gh) = i(h)i(g) and 
i2 = 1 ; a typical anti-involution is inversion i(g) = g~l. 

Lemma 2.1 (Gelfand [Ge]). Assume that i is an anti-involution of 
G, which stabilizes H and acts trivially on the double coset space 
H \ G/H. Then the algebra Ll(H \ G/H) is commutative and 
(G, H) is a Gelfand pair. 

We omit the proof, which can be found in [L, p. 53]. Here 
is a typical application [Di, p. 59]. Assume G acts two-point 
transitively on a metric space X. By this we mean that if (x, y) 
and {x , y') are pairs of points in X with d(x, y) = d{x , y'), 
then there is an element g e G such that gx = x and gy - y . 
Let H be the stabilizer of the point x0. Then G/H = X and the 
class of g in H\G/H depends only on the distance d(x0, gxQ). 
Since d(x, gx) = d(g~lx, x) - d(x, g~lx), we see that i(g) = 
g~l is an anti-involution which acts trivially on H\G/H. Hence, 
by Gelfand's lemma, we have shown the following. 

Proposition 2.2. If G acts 2-point transitively on a metric space X 
and H is the stabilizer of a point, then (G, H) is a Gelfand pair. 

Another application of Gelfand's lemma is 

Proposition 2.3. Assume that a is an involution of G such that 
every element g G G can be written in the form g - h* z with 
a(h) = h and a(z) = z" 1 . Then the subgroup H fixed by a is a 
Gelfand subgroup of G. 

Proof. Let i be the anti-involution i(g) = <r(g~"1); then i acts 
trivially on H \ G/H. 

To make new pairs from old, the following result is useful. 

Lemma 2.4. (a) If (G{, Hx) and (G2, H2) are Gelfand pairs, so is 
{G = GxxG2, H = HxxH2). 
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(b) If (G, H) is a Gelfand pair and H -+ H' is a continuous 
group homomorphism, then the subgroup H diagonally embedded 
in H'xG is Gelfand if and only if: for every pair of irreducible repre­
sentations W of H' and V of G we have dimHom#(W, V)< 1. 

(c) The subgroup H diagonally embedded in HxG is Gelfand 
if and only if the restriction of every irreducible representation V 
of G to H is multiplicity free. 
Proof, (a) This follows from (1.5). The irreducible representations 
F of G all have the form VX®V2, where Vx is an irreducible 
representation of G{ and V2 is an irreducible representation of 
G2. We have dim VH = dim Vx

Hl • dim V2
2. 

(b) The irreducible representations of H' X G have the form 
W ® V. But (W ® V)H = HomH(W*, V). 

(c) This follows from (b), taking W an arbitrary irreducible 
representation of H = H'. 

Proposition 2.5 (cf. [M]). Let H be a compact group. Then H is 
a Gelfand subgroup (diagonally embedded) of G = H x H. Fur­
thermore, H is a Gelfand subgroup of H x H x H if and only if 
the tensor product U{ <g> U2 of any two irreducible representations 
of H is multiplicity-free. 
Proof. The first claim follows trivially from part (c) of Lemma 
2.4. The second also follows from this lemma, as the restriction 
of the representation Ux <g> U2 of G to H is precisely the tensor 
product UX<8>U2. 

Note 2.6. One can also show that H is a Gelfand subgroup of G -
H x H using Lemma 2.1. Indeed, the anti-involution i(hx, h2) = 
(h2

l, AJ"1) of G acts trivially on the double coset space H\G/H. 
We remark that this double coset space may be identified with the 
set of conjugacy classes in H, under the map taking the double 
class of g = (hx, h2) to the conjugacy class of hxh2

l. 

3. SOME COMPACT EXAMPLES 
We use the results of the previous section to give some concrete 

examples. Let X be the n-sphere in Rn+l, with its standard 
geometry. The special orthogonal group G = SOn+l acts 2-point 
transitively on X with stabilizer H = SOn , and the double coset 
space H \ G/H is identified with the interval of distances [0, n] 
from gx0 to x0. Hence, by Proposition 2.2, (SOn+l, SOn) is a 
Gelfand pair. 
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In fact, the restriction of any irreducible representation of 
SOn+l to SOn is multiplicity-free (cf. [D, Chapter 2] for the case 
n = 2 ), so (SOn+l x SOn, SOn) is a Gelfand pair by Lemma 2.4, 
part (c). We note that 503 = H*/R*, where H is the algebra of 
Hamilton's quaternions, and S02 = C*/R* • This is a special case 
(F = R) of 

Proposition 3.1. Let F be a local field, with F ^ C. Lèt D be a 
quaternion division algebra with center F, and let K be a separable 
quadratic field extension of F. Then K embeds as a subfield of 
D, and H = K*/F* is a closed subgroup of the compact group 
G = D*/F*. 

The group H is a Gelfand subgroup of H x G, and the group 
G is a Gelfand subgroup of GxGxG. 
Proof. The first paragraph follows from the arithmetic of local 
quaternion algebras [V, Chapter II], which also shows that the 
normalizer of H in G is generated by a nontrivial involution 
aeG-H. 

To show (H x G, H) is Gelfand, we use the anti-involution 
i(h, g) = (h, ag~la~l). To show (GxGxG,G) is Gelfand, 
we use the anti-involution i(g{, g2, g3) = (g~l, g2

l, £3~
1). We 

leave the details of checking that these anti-involutions act trivially 
on the respective double coset spaces to the reader. 

Note 3.2. When F = R the above proposition shows that the ten­
sor product of any two irreducible representations of G = S03 is 
multiplicity-free. This is also true for its universal covering group 
G = SU2, by the Clebsch-Gordan formula [D, p. 13]. 

If G is a compact, connected, semisimple Lie group with invo­
lution a, the fixed subgroup H is always a Gelfand subgroup of 
G. This is proved using the action of a on the Lie algebra g and 
Proposition 2.3; the involutions which can occur were classified 
by Cartan (cf. [H, Chapter X, §3]). These Gelfand pairs (G, H) 
are called symmetric: they include (SOn+l, SOn) - take a to be 

conjugation by the reflection ( n . j in On+l. 

When G is a compact, connected, semisimple Lie group, let 
Gc be the complexified group, which is a semisimple algebraic 
group over C. Let Bc be a Borel subgroup of Gc and ^(C) = 
Gc/Bc the associated (projective) flag variety of Gc. Let H 
be a reductive, closed subgroup of G with complexification Hc. 
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Then {G, H) is a Gelfand pair if and only if Hc has an open 
orbit on X(C) [K-V]. The pairs (G9H) with G simple have 
been determined by Kramer [K], who also determines which ir­
reducible representations VofG have an H -fixed vector. These 
include the familiar symmetric pairs, but also some others, such 
as (S02n+l, U„) • 

Some interesting Gelfand pairs of finite groups correspond to 
miniscule representations M of simple Lie algebras g over C [Bo, 
§13]. Let G be the Weyl group of g ; then G permutes the weights 
in M 2-point transitively, given the metric d(x ,y) = \x-y\ in­
duced from the Euclidean structure on the weight lattice. If H is 
the stabilizer of a weight, then (G, H) is a Gelfand pair. Taking 
0 = s£n and M = A^C" gives the pair (Sn, Sk x Sn_k) where 
Sn is the symmetric group on n letters. Taking g = so2nJrX and 
M the spinorial representation of dimension 2n gives the pair 
(Sn x (Z/2)", Sn). Taking g = sp2n and M the standard rep­
resentation of dimension 2n gives the pair (Sn x (Z/2)n, Sn_x x 
(Z/2)"-1). 

For more examples of specific compact Gelfand pairs, see [Di, 
p. 59ff.] and the references cited therein. 

4. TOTALLY DISCONNECTED GROUPS 

Many authors have considered the generalization of Gelfand 
pairs to locally compact groups G, but the closed subgroup H is 
usually assumed to be compact [D, Chapter 8]. This hypothesis 
is too restrictive for various applications in number theory. We 
will consider the case when G is locally compact and totally dis­
connected, following Gelfand-Kazhdan [Ge-K] and Bernstein [B]. 
This gives a reasonable generalization of Gelfand pairs, assum­
ing only that H is closed and that H \ G carries a G-invariant 
measure. 

By a (smooth) representation of a locally compact, totally dis­
connected group G we mean a homomorphism from G to the 
group of invertible linear transformations of a complex vector 
space V, such that every vector v e V has an open stabilizer 
in G. We only consider representations which are admissible: by 
this we mean that the subspace VK fixed by any compact open 
subgroup K oî G has finite dimension. As usual, we say V is 
irreducible if there are no nontrivial G-invariant subspaces in V. 
If V and W are two representations of G, we let HomG!(F, W) 
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denote the complex vector space of all linear transformations from 
V to W which commute with the action of G. 

Let F be a representation of G and let F* = Hom(F, C) be 
the dual vector space. There is a canonical bi-linear form ( , ) : 
VxV* —> C defined by (v, £) = £(v) and we define an action of 
G on V* by the formula (gv, gt) = (v, £). The contragredient 
representation V' ç V* of G is on the subspace of linear forms 
£ which are fixed by some open subgroup K£ in G. This is a 
(smooth and admissible) representation of G, and the restriction 
of ( , ) gives a nondegenerate pairing V x V' —• C which is 
G-invariant. The representation V' is irreducible if and only if 
V is, and the canonical map V -• V" is an isomorphism. For a 
sketch of the proof of these claims, see [C, 1.5]. 

Let H be a closed subgroup of G such that H \ G carries a 
G-invariant measure. We say that (G, H) is a Gelfand pair if the 
following condition is satisfied 

(4.1) For every irreducible representation F of G we 
have dim Hom^ F , C) • dimHom^F', C) < 1. 

In all the cases we will consider, 

dimHom^(V, C) = dimHom^(F/, C), 

so condition (4.1) reduces to the usual condition (1.2). However, 
I have not been able to establish the equality in the general case, 
and condition (4.1) is the one that arises most naturally. It can be 
restated as 

(4.1)' For every irreducible representation V of G the 
space Hom^xi /(F 0 F ' , C ) of H x //-invariant 
linear forms has dimension < 1. 

Indeed, the definition (4.1) was motivated by the following gen­
eralization of Gelfand's lemma, due to Gelfand and Kazhdan 
[Ge-K]. Recall that the space 5(G)* of distributions on G is the 
linear dual of the vector space S(G) of locally constant functions 
with compact support. The group G x G acts on S(G)*, via right 
and left translation of functions in S(G). 

Proposition 4.2. Assume that i is an anti-involution of G, which 
stabilizes H and acts trivially on the subspace of H-bi-invariant 
distributions in S(G)*. Then (G, H) is a Gelfand pair. 
Proof (cf. [P, Lemma 4.2]). Let V be an irreducible representation 
of G and let £ : V -> C and m : V' -• C be nonzero, //-invariant 
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linear forms. These give surjective G-linear maps Ft : S(G) -> V' 
and Fm : S(G) -> V" = V, defined by 

W ) ( ^ ) = f f(8)*(gv)dg 
JG 

Fm(f)(v') = f f(8)m(gvf)dg 
JG 

for ƒ € S(G). Since F' and V are irreducible, the linear map 
F£ is determined, up to scalars, by its kernel, and similarly Fm is 
determined, up to scalars, by its kernel. 

We compose with the (/-invariant pairing ( , ) : V x V' -> C 
to obtain a linear map 

B:S(G)®S(G) vVtoV9 • C. 

Thus B may be viewed as a distribution on G x G which is right 
invariant under H x H and left invariant under G (embedded 
diagonally). We have the formula: B(fx, f2) = m(Fi(fl * f2)), 
where fx * /2 is the convolution product in S(G). 

For ƒ G S(G) we define /(g) = f(i(g~1)). Since the dis­
tribution ƒ i—• m{Ft(f)) is if-bi-invariant, our hypotheses 
imply it is fixed by i. Thus m(Fe(f)) = m(Fe(f)). Now take 
ƒ = /j * /2 ; since i is an anti-involution we have ƒ = ^ * / j . 
Hence 2?(/j, /2) = B(f2, /j) ; and in particular, the left kernel of 
B (which is the kernel of Fm ) determines the right kernel of B 
(which is the kernel of F£). Therefore m determines the kernel 
of Ft, and hence £ up to scaling. Since m was arbitrary, dim 
Hom^F , C) = 1. Similarly dim Hom^(K', C) = 1. 

When the subgroup H of G is compact, there are many sim­
plifications. For example, one can show / acts trivially on i/-bi-
invariant distributions if and only if it acts trivially on H \ G/H. 
We also have the following. 

Proposition 4.3, Assume that (G, H) is a Gelfand pair, with H 
compact. Let V be an irreducible representation of G. Then 

(a) dimHom/f(F,C) = dimF i f 

(b) dimHom//(K, C) = dimMon!^^, C) < 1. 
(c) If t : V -+ C is any H-invariant linear form, then £ lies 

in V'. 

Proof, (a) The projector p(v) = fH(hv)dh from V to VH allows 
one to identify Hom^(F, C) with the dual of VH. 
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(b) Assume Hom / /(F, C) ^ 0 and let vH be a nonzero vec­
tor in VH. Then t'H = (vH, •) : V' —• C is nonzero and H-
invariant, so Hom /f(F', C) ^ 0. Since (G9 H) is a Gelfand pair 
we must have dim Hom i /(F, C) = dimHom^F', C) = 1. Re­
versing the roles of V and F' shows that Hom/f(F, C) = 0 im­
plies that Hom^(F/, C) = 0, so the dimensions are always equal. 

(c) Assume £ is nonzero. By part (b) the space (Vf)H has 
dimension 1. Let v'H be a basis vector. Then £ is a multiple of 
the linear form (, v'H) : V -> C, so lies in V'. 

Proposition 4.4. /ƒ if w compact and open in G, then H is a 
Gelfand subgroup if and only if the Hecke algebra L(H \ G/H) of 
locally constant, compactly supported, bi- H-invariant functions on 
G is commutative under convolution. 
Proof. The functor V \—• VH establishes an equivalence of cat­
egories between representations F of G which are generated by 
VH and representations of the algebra L(H\G/H) [C, 1.3]. This 
algebra is commutative if and only if its irreducible representations 
all have dimension 1. 

If H is co-compact in G, we have the (smooth, admissible) 
representation L(H\G) of G by right translation on the functions 
ƒ on H \ G which are invariant by some open compact subgroup 
Kf. We have the following analog of Frobenius reciprocity 

(4.5) Hom(?(K, L{H\G)) = Hom/f(K, C). 

In particular, the hypothesis that L(H \ G) is multiplicity-free 
implies that (G, H) is a Gelfand pair. This condition arises fre­
quently in the theory of automorphic forms. 

We should check that our definitions in this section are com­
patible with those in §1, in the case when G is both compact 
and totally disconnected (i.e., G is profinite). Then H is neces­
sarily both open and compact. Any irreducible representation V 
of G is finite dimensional; hence V has a unique unitary struc­
ture and all linear maps from F to a Hubert space are contin­
uous. Hence conditions (1.2), (1.3), (1.4), (4.1), (4.3), and (4.4) 
are all equivalent. Furthermore, Proposition 4.2 is equivalent to 
Lemma 2.1. 

Since our notions are equivalent, we can consider locally com­
pact groups G of the type Gc x Gd where Gc is compact and 
Gd is totally disconnected. An irreducible representation of G 
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will be one of the form V = Vc <8> Vd, where Vc is a finite di­
mensional irreducible representation of Gc and ^ an irreducible 
smooth admissible representation of Gd. A closed subgroup H 
of G is Gelfand iff* condition (4.1) holds for all irreducible V, 
with V' = Vc* ® Kj = F/ 0 Fj. 

Proposition 4.6. The group G is a Gelfand subgroup of G x G, 
under the diagonal embedding. The irreducible representations of 
GxG with a G-invariant linear form are those of the type V®V'. 
Proof. This is clear, as a G-invariant form on V <g> W gives an 
isomorphism of V with W' (the unique smooth submodule in 
W* ). Note that, in this case, the contragredient of V <s> V' is 
V' <8> V, and that any G-invariant form is a multiple of ( , ) . 

5. EXAMPLES IN THE DISCONNECTED CASE 

In this section we give some examples which arise in number 
theory; this material will be pursued further in §§10-11, 

Let F be a nonarchimedean local field, with ring of integers A 
and finite residue field of characteristic p. If F has characteristic 
zero, it is a finite extension of the field Qp of /?-adic numbers; if 
F has characteristic p, it is a finite extension of the field F ((f)) 
of finite-tailed Laurent series over Fp . 

Let G be a connected, reductive algebraic group over F. Then 
the group G = G(F) of F-rational points is locally compact and 
totally disconnected [Sp, §4]. In fact, G is compact if and only 
if G is F-anisotropic (i.e., G has no F-rational characters or 
cocharacters). We apply this to the algebraic group G = PGL2 

and its tori below. 

Proposition 5.1. Let G = PGL2(F) = GL2(F)/F*. 
(a) H = PGL2(A) is a compact open subgroup of G, and (G, H) 

is a Gelfand pair. The Hecke algebra L(H \ G/H) is isomorphic 
to the polynomial ring C[T]. 

(b) If K is a separable quadratic F-algebra, then H = K*/F* 
embeds as a closed subgroup of G, which is compact if and only if 
K is afield. Furthermore, (H x G, H) is a Gelfand pair. 

(c) G is a Gelfand subgroup of GxGxG. 
Proof, (a) The group G acts 2-point transitively on the vertices 
of the tree associated to lattices in F2 and H = PGL2(̂ 4) is the 
stabilizer of the vertex corresponding to the lattice A2 [S, Chapter 
II, §1]. Thus (G, H) is Gelfand; the Hecke algebra is determined 
in [S, p. 73]. 
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(b) This is proved using Proposition 4.2 and the anti-involution 
i(h, g) = (h,ag~1a~l). 

(c) This is proved using Proposition 4.2 and the anti-involution 
Kei > g2 > S3) = tei"1 > Si1 > ^T1) • S e e tp> Chapter 4] for details. 

Now assume that E is a global field with no complex places. If 
E has characteristic zero it is a finite, totally real, extension of Q ; 
if E has characteristic p it is a finite extension of the field F (f) 
of rational functions over Fp . Let G be a connected, reductive 
algebraic group over E and let EA denote the ring of adèles of 
E. In the function field case, G = G(EA) is locally compact and 
totally disconnected [Sp, §4]. In the numberfield case, we assume 
that G[E®R) is compact. Then G = G(EA) is the direct product 
of a compact group G^ = G(E ® R) with a totally disconnected 
group Gr = G(E 0 Z). In particular, the results in §4 apply to the 
locally compact group G. 

The group G(E) = ƒ is a discrete subgroup of G, and G/I is 
compact when G is anisotropic over E [Sp, §4]. 

Let D be a quaternion division algebra over E which is ram­
ified at all real places (i.e., D <8>E R is a division algebra for all 
maps E -> R). Let G be the algebraic group over E with points 
G(F) = (D®F)*/F* in any £-algebra F. If DA = D®EA, then 
G = G(A) =D*JE*A. 
Proposition 5.2. Let G = D*JE*A. (a) The subgroup H = D*/E* 
is discrete and co-compact in G, and (G, H) is a Gelfandpair. 

(b) If K is a separable quadratic field extension of E which is 
contained in D, then H — KA/EA is a compact subgroup of G 
and (H x G, H) is a Gelfand pair. 

(c) G is a Gelfand subgroup of G x G x G. 
Proof, (a) This is equivalent to the important theorem that any 
irreducible representation V of G occurs at most once in the 
space L(H \ G) of automorphic forms (multiplicity one for inner 
forms of PGL2)[J-L]. 

(b) and (c) follow from the local theorems (Propositions 3.1 and 
5.1), as V decomposes uniquely as a restricted tensor product of 
representation of the local groups D* /E* . 

6. SPHERICAL FUNCTIONS AND DISTRIBUTIONS 
We assume throughout this section that G is a locally compact 

group, which is the product of a compact group and a totally dis­
connected group, that H is a Gelfand subgroup of G in the sense 
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of §§1 and 4, and that V is an irreducible representation of G 
with Hom^F , C) ^ 0 and HomH(F', C) ^ 0. We let £H and 
l'H be a basis of these one-dimensional spaces. 

If H is compact, by (4.3) there is a unique //-invariant vector 
vH in V with lH(vH) = 1. We define the spherical function F 
of V by the formula 

(6.1) F(g) = tH(gvH) = g-ltH(vH). 

Clearly F is bi- //-invariant and satisfies F(e) = 1. If there is a 
G-invariant unitary structure (|) on V (which is always the case 
when G is compact), the linear form £ff is given by £H(w) = 
(w\vH)/(vH\vH). Hence 

when V is unitary; in this case, the function F also satisfies 
- l (6.3) F(g-l) = F(g) and \F(g)\ < 1. 

When / / is noncompact, there is no spherical function F as­
sociated to V, but we can define a spherical distribution A on G 
which is //-bi-invariant. Let ƒ be an element in the space S(G) 
of locally constant, compactly supported functions on G. The 
linear form 

(6.4) v'f= f f(g)g-l£Hdg 
J G 

on V then belongs to V'. We define the spherical distribution A 
by 

(6.5) A(/) = 4(^). 
Then A is clearly //-bi-invariant. It depends, up to a nonzero 
scalar, on the choice of basis elements £H and t'H, as well as the 
choice of Haar measure on G used to define the integral (6.4). 

If H is compact, we may take t!H = (vH, •). In this case we 
find 

A(/) = f f(g)F(g)dg 
JG 

where F is the spherical function defined in (6.1). Even when 
H is noncompact, the distribution A is frequently represented 
by a locally Ll-function F on G which is real analytic or locally 
constant outside of some specified singular set. For a discussion of 
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how spherical functions may be used to recover the representation 
V, and to do "Fourier analysis" on the function space 

Ll(H\G/H), 

see [G-V]. 

7. SOME CLASSICAL EXAMPLES OF SPHERICAL FUNCTIONS 

Let (G, H) be a Gelfand pair. The determination of the irre­
ducible representations V of G which have an if-invariant linear 
form, and the calculation of their spherical functions (or distribu­
tions) is a central problem in representation theory. One of the 
first examples studied was the compact group G = S03 and its 
Gelfand subgroup H = S02. In this case there is an irreducible 
representation Vt of G for every integer £ > 0. This represen­
tation is self-dual, and is uniquely determined by its dimension, 
which is equal to 2£ + 1, We have dim V£

H = 1 for all £ . Finally, 
the spherical function F£ of Vt is given by the formula 

(7.1) Fe(g) = P£(cos<pg), 

where P£(t) is the ^th Legendre polynomial and cp is the Euler 
angle of the point g(0, 0, 1) on the 2-sphere X in R3. Proofs 
of all these claims can be found in [D, Chapter 2]. 

Next, consider the Gelfand pair (G, H) = (H x H, H). The 
irreducible representations of G with an //-fixed linear form are 
precisely those of the form V <s> V1, where V is an irreducible 
representation of H. In this case £ff = ( , ) is the canonical 
bilinear form on V xV' \ the associated spherical distribution A 
on G which is H-bi-invariant can be identified with a distribution 
X on H which is invariant under conjugation. If H is compact, 
we may take 

where et is a basis for V and e^ is the dual basis of V'. We 
then have the formula 

SO 

(7.2) ^ W = _L__Trace(A|K). 
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When H is not compact there are generally no //-fixed vectors in 
V ® V1, and the distribution x is not represented by a spherical 
function on all of H. However, when if is a semisimple p-
adic Lie group, Harish-Chandra proved that the distribution x is 
represented by a locally constant function on the set of regular 
elements in H. 

8. CORRELATION CONSTANTS 

In this section, we assume G has two Gelfand subgroups H and 
ƒ, and V is an irreducible representation of G with Hom/f(F,C), 
Hom / /(F /, C), Hom7(F, C), and Hom7(F', C) all of dimension 
1. We let lH, t'H, £j, and t\ be bases of these vector spaces. 

If H and I are both compact, then t'H and ^ correspond to 
vectors vH and t;7 in V which are fixed by H and / , respec­
tively. We define the correlation constant 

If V has a G-invariant unitary structure (|), which is always true 
when G is compact, we have the formula: 

c = (ViK) (VH\VI) 
(VH\VH) (VjlVj) • 

In this case 0 < c < 1 ; if V = F* is defined over R, c is the 
square of the cosine of the angle 6 between the lines fixed by H 
and I: 

(8.3) 

If we only assume that the subgroup H is compact, we cannot 
define c precisely. But since lH e V' corresponds to a fixed vector 
^ in F , one can ask if the value 

(8.4) li(t„)^i(vH) 

is nonzero in C. If this is the case, we say that the subgroups H 
and I are correlated with respect to V ; this is equivalent to the 
condition that c ^ 0 when both H and / are compact. 
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In fact, we can test for correlation under the weaker hypothesis 
that 

/g 5x The quotient H/H n J is compact and has an H-
invariant measure. 

In the case when (8.5) holds, we say the subgroups are correlated 
with respect to V if and only if 

The linear forms AvH(£j) = $HiHf)I(hlj) dh and 
(8.6) AvH(£j) = fH/HnI{htj) dh are nonzero in 

Hom /f(F, C) and Hom /f(F /, C), respectively. 

Equivalently, we say H and I are correlated in V if and only if 

The linear form AvHxH(£j ® l\) is nonzero in 
( • } H o m ^ F s K ' . C ) . 

This is clearly equivalent to condition (8.4) when H is compact, 
as we can test if a form is nonzero in YiomHxH(V ® V', C) by 
evaluation on the vector vH®tH. 

The following example of correlation is quite useful. Let I 
be a Gelfand subgroup of G and let V be an irreducible rep­
resentation of G with Hom7(F, C) and Hom7(F', C) both of 
dimension one. We consider I2 and G as two Gelfand subgroups 
of G2, and want to know if they are correlated with respect to the 
representation V 0 V1. When G is compact, a simple calculation 
shows that 

c ( F 0 F ' ; G , / 2 ) = l/dim V. 

Similarly, these subgroups are correlated under the weaker hypoth­
esis that 7 is compact: indeed, tG{Vji) = (vJ9 tj) ^ 0. If / is 
co-compact in G, they are correlated if and only if the linear form 

(8.8) AvG(£j 0 tr) = f (gij ® gij) dg 
JG/I 

is a nonzero multiple of ( , ) in HomG(F <g> V', C). This is 
certainly the case when V is a unitary representation of G. 

9. AN EXAMPLE. RACAH'S FORMULA 
FOR THE CORRELATION CONSTANT 

Let G = SO\ and consider the two Gelfand subgroups H = 
SO\ and / = S03 in G. The irreducible representations V of 
G have the form Vi'^Vi%Vi , where Vt is the unique irreducible 
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representation of S03 of dimension 2-£+l. Every V has a unique 
line fixed by H ; it has a line fixed by / if and only if £t < £• + £k 

for all i ^ j 7̂  k. This follows from the self-duality of Vt and 
the Clebsch-Gordan formula 
(9.1) vix ® vh = ve^2 e v£i+i^ e . . . e v^. 
We henceforth assume this is the case, so the integers (£{, £2, £3) 
form the sides of a (possibly degenerate) Euclidean triangle. 

(9.2) 

We now wish to calculate the correlation coefficient 
c = c(V;H,I) 

defined in (8.1). A painful comparison with the physics literature 
[B-L, 3.12] shows that c is given by the square of a Wigner 3 - j 
symbol: 

When £x+£2+£3 is odd, it is not difficult to show c = 0. When 
£x + £2 + £3 = 2n is even, we may solve the equations 

(9.4) 
h == n2 + n3 > 
£2 = n{ +/f3, 

uniquely for integers «,. > 0 with nx + n2 + n3 = n. Then Racah's 
formula [B-L, 3.194] for c is given by 

(2ni\(2n2\(2n3\ 
/ n n . _ V nt A w2 A w3 J 
{ } (2« + i)(2„") 
In particular, c is always a rational number. 

One can obtain all the (squares of the) Wigner 3 - j symbols 
as correlation constants for the subgroups H = SO\ and / = 
S02 x S03 in G = (SO, x 503)3 . 

10. LOCAL PAIRS AND e-FACTORS 

We now consider some of the arithmetic Gelfand pairs intro­
duced in §5. Our first task is to determine which irreducible 
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representations VofG have a nonzero H -invariant linear form. 
This will turn out to have a surprising connection with local e-
factors. 

Let F be a nonarchimedean local field, with ring of integers 
A. 

Proposition 10.1. Let H = PGL2(F) and let G = H2. The irre­
ducible representation V = VX®V2 of G has a nonzero H-invariant 
linear form, which is unique up to scaling, if and only if V2 ~ V[. 
Proof. This is true for any pair H <-+ HxH. We note that all rep­
resentations of PGL2(F) are isomorphic to their contragredients, 
so we have 

(10.2) Hom^Kj <g> V2, C) ? 0 iff ^ - Vr 

We now consider irreducible representations V = Vx <8> V2 ® V3 

of the group G = H3 = PGL2(F)3. We will assume that all Vx 

are infinite dimensional; otherwise dim Vt = 1 and we are re­
duced to (10.1). Associated to any such representation, we have 
its Langlands' parameter (p = (<px, (p2, ç>3), which is a homomor-
phism from the Weil-Deligne group ^ of F to the L-group 
^ ( C ) = SL2(C)3. The triple tensor product of the three stan­
dard representations of SL2(C) gives an 8-dimensional symplec-
tic representation r of LG(C), and hence the composition a = 
T o cp : W'F —• Sp8(C) gives a symplectic representation of the 
Weil-Deligne group associated to V. We define the local e-factor 
[Ta]: 

(10.3) e(V) = e(afv,dx)9 

where ^ is a nontrivial additive character of F and dx is the 
unique Haar measure on F which is self-dual with respect to 
Fourier transform using the duality (x\y) = y/(xy). Then e(V) 
is independent of the choice of i// and satisfies e(V)2 = 1. 

Proposition 10.4 (Prasad [P]). Let H = PGL2(F) and let G = H\ 
The irreducible representation V = Vx ® V2 <g> V3 of G is self dual 
(V ~ V9). It has a nonzero H-invariant linear form, which is 
unique up to scaling, if and only if e(V) = +1. 

When e(V) = - 1 , the Langlands parameters (pt cannot be re­
ducible and hence each representation Vi lies in the discrete series 
for PGL2(F). By a theorem of Jacquet and Langlands, V. corre­
sponds to a unique irreducible representation W. of the compact 
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form D*/F* of PGL2(F) (where D is the unique quaternion 
division algebra with center F ). More generally, given an irre­
ducible representation W = Wl<g>W2<8)lV3 of (D*/F*)3, we define 
e(W) = e(V) = ±1 where V = V{ <g> V2 <8> V3 is the corresponding 
product of discrete series representations for PGL2(F). 

Proposition 10.5 (Prasad). Let F be a local field and D a quater­
nion division algebra over F. Let H = D*/F* and let G = H3. 
The irreducible representation W - Wx ® W2 0 W3 of G is 
self-dual. It has a nonzero H-invariant linear form, which is unique 
up to scaling, if and only if e(W) = - 1 . 

There are similar results for the Gelfand pair (HxG, H) where 
H = K*/F* is the torus in G = PGL2(F) defined by a separable 
quadratic extension K. Associated to an irreducible representa­
tion V = xx ® V2 of H x G with V2 infinite dimensional, we 
have the Langlands parameter cp = (<pl9 q>2)9 where <px = X\ is 
a homomorphism from W'K to GL x (C) and (p2 is a homomor-
phism from W'F to SL2(C). The tensor product of <p2 with the 
representation induced from tp{ gives a 4-dimensional symplectic 
representation a = Ind^1<S)^2 : W*F —• Sp4(C) associated to V. 
Indeed, Ind cpx is an orthogonal representation, with determinant 
equal to the quadratic character coK ,F associated to the extension 
K. We define 

(10.6) e(F) = e(<j, yt,dx) 

as above; again, this depends only on V and satisfies e(V)2 = 1. 
The dual representation V' of V is equal to / j " 1 0 ^ ; since 
I n d ^ j = Ind^pj"1 we have e(V') = e(V). 

Proposition 10.7 (Waldspurger [W], Tunnell [T]). Let H = K*/F* 
and G = PGL2(F). The irreducible representation V = X\ ® V2 of 
HxG has a nonzero H-invariant linear form, which is unique up 
to scaling, if and only if e(V) = coK/F(-l). 

If e(V) = —<DKIF(—\) the representation V2 is in the discrete 
series and the algebra K is a field. The irreducible representation 
W = X\ ® W2 of H x (D*/F*) has a nonzero H-invariant linear 
form, which is unique up to scaling. 

Actually, the full statement in Proposition 10.7 has not been 
verified in the case when the residual characteristic of F is 2 and 
when V2 is a super-cuspidal representation. This would be a good 
exercise on exotic representations. 
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We now give some results on adèlic groups, which are fairly 
simple corollaries of the above local propositions. Let E be a 
global field with no complex places, and let D be a quaternion 
division algebra over E which is ramified at every archimedean 
place. For each place p of E we define S(D ) = 1 if D = D®E 
is a 2 x 2 matrix algebra over E and ô(D ) = -1 if D is a 
division algebra over E . 

We recall the group D^/E± defined in §5. An irreducible rep­
resentation V of this adèlic group decomposes uniquely as a re­
stricted tensor product over the places p of E : 

(10.8) V~®Vp 

where F is an irreducible representation of the local group D*/E* 
p p p 

(which, by our hypotheses, is either compact or totally discon­
nected). Any collection of local representations V can be com­
bined to give a global representation V, provided almost all of 
the Vp are unramified ( = have a vector fixed by PGL2(^p) ). We 
assume that each F is infinite dimensional. 

p 

Proposition 10.9. Let H = D*JE*k and let G = H3. The irre­
ducible representation V = Vx <g> V2 <8> V3 of G is self-dual It has a 
nonzero H-invariant linear form, which is unique up to scaling, if 
and only if for all places p of E we have e(V) = S(D ). 

In other words, a global linear form exists if and only if H -
invariant forms exist on V for all completions p. One proves 
this by taking the restricted product of local forms, using the result 
that, in the unramified case, £H is nontrivial on the vector fixed 
byPGL 2 (^) 3 [P,Gr-P]. 

Note 10.10. There are always an even number of places p which 
are ramified in D (i.e., where S(D ) = -1 ). Hence a necessary 
condition on the existence of a global //-invariant linear form is 
that 

(10.11) e{V) = l[e(Vp) = +l. 
p 

The analogous result for tori is the following. Let K be a sep­
arable quadratic field extension of E which embeds as a subfield 
of D. 

Proposition 10.12. Let H = AT*/£* and G = D*JE*A. The ir­
reducible representation V = Xi®V2 of H x G has a nonzero 
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H-invariant linear form, which is unique up to scaling, if and only 
if for all places p of E we have eJV) = œK /F (-1) • SAD). 

Again we assume that all local components of V2 are infinite 
dimensional. A necessary condition for the existence of an H-
invariant linear form is that 

e(V) = Uep(V) = +l &sl[cop(-l) = l 
P P 

by global classfield theory. 

11. AUTOMORPHIC CORRELATION 

Recall the adelic group D*A/E^ defined in the last section, where 
E is a global field and D a quaternion division algebra over E 
which is ramified at each Archimedean place. An irreducible rep­
resentation V of this group is called automorphic if there is a 
nonzero, D*/E* -invariant linear form £ : V -* C. Since we have 
seen that (D*A/EA, D*/E*) is a Gelfand pair, £ is unique up to 
scaling. Giving £ is equivalent, by Frobenius reciprocity (4.5), to 
giving an injection of G-modules from V into the space of au­
tomorphic forms L(D*A/EAD*). Indeed, we map v e V to the 
automorphic form fv(g) = g£(v) = i(g~lv) [J-L]. 

The irreducible representations of the adèlic groups G studied 
in (10.9) and (10.12) have invariant linear forms for the adèlic 
subgroup H if and only if invariant linear forms exist locally for 
Hp> for all places p of £ . To obtain global results, we will 
consider the correlation of the adèlic subgroup H with a discrete 
subgroup 7 in an automorphic representation V. This gives a 
candidate Avff(£j) for a nontrivial //-invariant form, and the 
nonvanishing of this average often has a surprising connection to 
the behavior of the L-function of V in the center of its critical 
strip. 

First, let G = (DA/EA)2, and consider the two Gelfand sub­
groups H = Dl/El (embedded diagonally) and / = (D*/E*)2. 
The latter subgroup is discrete and co-compact in G. The irre­
ducible representations V of G with H and /-invariant linear 
forms are precisely those of the form W ® W', where W is an 
automorphic representation of Dl/El. 

Proposition 11.1. We have AvH{£j) ^ 0 in Hom^(K, C). 
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Proof. Since W ~W* is self-dual, we may define V over R. We 
have the formula 

(11.2) AvH(£I)(v^w) = f fv(h)fjh)dh. 
Jol/K** 

The integral on the right is actually a finite sum, as fv and fw are 
invariant under an open compact subgroup of D*A. Taking v = w 
and using the fact that fv(h)2 > 0, we see that AvH(£j)(v<8>v) > 0 
with equality for v = 0. In particular, AvH(£j) ^ 0. 

Next, consider the case when G = (Dl/Elf, H = DU El 
and 7 = (D*/E*)3. The irreducible representations V of G with 
H- and /-invariant linear forms are those of the type Vx <g> V2 <g> 
F3, with all ^ automorphic and satisfying the local conditions of 
Proposition 10.9. Again Hnl = D*/E* is co-compact in H, so 
we may consider the form AvH(£j) defined by (8.6). 

Recall the 8-dimensional symplectic representation r of the L-
groupSL2(C)3 discussed preceding (10.3). Associated to V and 
r, we may define the Langlands L-function 

L(V,s) = l[Lp(<p,r,s) 
p 

by an Euler product which converges for Re (s) large. Using a 
method initiated by Garrett [G], Piatetski-Shapiro and Rallis [PS-
R] have shown that L(V, s) has a meromorphic continuation to 
the entire s-plane, with only a finite number of poles. This func­
tion satisfies a functional equation (as yet very imprecisely stated, 
but see [Gr-K] for a special case) when s is replaced by 1 - s, 
and is regular at s = \ . 

Proposition 11.3 (Harris-Kudla [H-K]). We have AvH(lt) # 0 in 
Hom^(F, C) if and only if the central critical value L{V ,\) is 
nonzero. 

This beautiful result was conjectured by Jacquet. To translate 
into the language of his conjecture and the proof, we note that 

(11.4) AvH(iI)(vl9v29v3) = f fx(h)f2(h)f3(h)dh. 

Finally we consider the tori in 2)^. Let K be a separable 
quadratic field extension of E which embeds as a subfield of D. 
Let G = Kl/El xD*A/El, and consider the two Gelfand subgroups 
H = Kl/El (embedded diagonally) and I = K*/E* x D*/E*. 
The irreducible representations V of G with H- and /-invariant 
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linear forms are those of the type x ® W > where ^ is a Hecke 
character of K, W is an automorphic representation of D*A, and 
F satisfies the local conditions of Proposition 10.12. The contra-
gredient V1 of V is given by )CX %W, and we may consider the 
linear forms AvH(£j) and AvH(£j) defined in (8.6). 

Recall the 4-dimensional symplectic representation r of the L-
group 02(C) x SL2(C) defined preceding (10.6). Associated to 
V and r we may define the Langlands L-function L(V, s) = 
Ilp£p(P> r> 5) = L(V' ,s) by a convergent Euler product. By 
Rankin's method, as extended by Jacquet [J], this function has a 
meromorphic continuation to the s-plane, satisfies a precise func­
tional equation when s is replaced by 1 - s, and is regular at 
* = * • 

Proposition 11.5 (Waldspurger [W]). WehaveAvH{£j) andAvH{£\) 
nonzero if and only if the central critical value L(V, \) = L(V', \) 
is nonzero. 

To translate to the language of the proof, we note that 

(11.6) AVjjU^l^v) = f X(h)fv(h)dh 
JK*JEIK* 

with a similar formula (with x replaced by x"1 ) holding for 

In certain of the above cases, one can be much more precise. 
For example, assume the representation V oi G considered has 
a vector fixed by a maximal compact open subgroup K. Then 
dim VK = dim V K = 1 ; let vK and v'K be bases of this space. 
One can show easily that the linear form AvG(£j <g> i'j) is always 
nonzero on %<S>%, and that the linear form AVH(£J)(S>AVH(£J) is 
nonzero if and only if it takes a nonzero value on vK <g> vK [Gr-P]. 
Thus the ratio 

(11.7) c = c{v) = c{y) =
 A y M ^ ^ 

is well defined, and is zero if and only if L(V, ^) = 0. Note that 
c depends only on V. 

As a specific example, assume E = Q and D is the quaternion 
division algebra ramified at {oo, p}. Let V = Vx <g> V2 <g> V3 be 
an automorphic representation of (D*A/El)3 which is unramified 
locally for all primes t ^ p , oo, and is one-dimensional locally 
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at both oo and p. Then each representation Vt corresponds to 
a real-valued function X((e) on the set of supersingular elliptic 
curves e (mod p ), which is well defined up to a scaling [M-0]. 
Let w(e) = #(Aut(e)/ ± 1) ; then 

(Zw(e)X(e)*2(e)X3(e))2 

c(V) = 
Ew(e)X{(e)2Ew(e)X2(e)2Ew(e)X3(e)2 

where the sums are taken over the finite set of supersingular elliptic 
curves e (mod p). For the specific relation between c{V) and 
L(V9 ±), see [Gr-K]. 

Finally, we note that the notion of automorphic correlation has 
been studied in a more general setting by Jacquet [J2-J5]. Let 
G be a reductive group defined over a global field E, and let 
H_ be a reductive subgroup such that (G, H) forms an algebraic 
Gelfand pair. Put H = H(AE), G = G(AE), and / = G(E). 
Jacquet calls an irreducible automorphic representation V of G 
"distinguished" if there is a vector ƒ e V ç L(G/I) such that 
IH(E )iH{E)fWl)dh is nonzero. When I and H are both Gelfand 
subgroups of G and H/H n ƒ is compact, this is equivalent to 
the condition that AvH(£r) ^ 0. In general, one must distinguish 
between V and its isomorphism class, and there may be conver­
gence questions involved in evaluation of the integral. A natural 
method which Jacquet has introduced to study the distinguished 
components in the residual spectrum is the relative trace formula 
[J5]; he finds that the distinction of automorphic representations 
is often related to questions of Langlands' functorality. 

BIBLIOGRAPHY 

[B] J. N. Bernstein, P-invariant distributions on GL n and the classification 
of unitary representations of GL n , Lecture Notes in Math., vol. 1041, 
Springer-Verlag, Berlin and New York, 1983. 

[B-L] L. C. Biedenharn and J-D. Louck, Angular momentum in quantum physics, 
Encyclopedia Math. Appl., vol. 8, 1981. 

[Bo] N. Bourbaki, Groupes et algebres de Lie, Chapitres VH-VIII, Hermann, 
Paris, 1975. 

[C] P. Cartier, Representations of p-adic groups, Proc. Sympos. Pure Math., 
vol. 33, Amer. Math. Soc, Providence, RI, 1979, pp. 111-155. 

[Di] P. Diaconis, Group representations in probability and statistics, Lecture 
Notes 11, Institute of Mathematical Statistics, Hayward, CA, 1988. 

[D] J. Dieudonné, Special functions and linear representations of Lie groups, 
CBMS Regional Conf. Ser., vol. 42, 1980. 



300 BENEDICT H. GROSS 

[G] P. Garrett, Decomposition ofEisenstein series: Rankin triple products, Ann. 
of Math. (2) 125 (1987), 209-235. 

[G-V] R. Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions 
on real reductive groups, Ergeb. Math. Grenzgeb. vol. 101, Springer-Verlag, 
Berlin and New York, 1980. 

[Ge] I. M. Gelfand, Spherical functions on symmetric spaces, Dokl. Akad. Nauk 
SSSR70(1950), 5-8. 

[Ge-K] I. M. Gelfand and D. A. Kazhdan, Representations ofGL n(K), Lie Groups 
and Their Representations, Halstead Press, 1975. 

[Gr-K] B. H. Gross and S. Kudla, Heights and the central critical values of triple 
product L-functions, preprint, 1990. 

[Gr-P] B. H. Gross and D. Prasad, Test vectors for linear forms, Preprint, 1990. 
[H] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Aca­

demic Press, New York, 1978. 
[H-K] M. Harris and S. Kudla, The central critical value of a triple product L-

functions, preprint, 1989. 
[Jl] H. Jacquet, Automorphic forms onGL2, Lecture Notes in Math., vol. 278, 

Springer-Verlag, Berlin and New York, 1972. 
[J2] , Sur un résultat de Waldspurger, Ann. Sci. École Norm. Sup. (Pisa) 

19(1986), 185-229. 
[J3] , Sur un résultat de Waldspurger. II, Compositio Math. 63 (1987), 

315-389. 
[J4] , On the nonvanishing of some L-functions, Proc. Indian Acad. Sci. 97 

(1987), 117-155. 
[J5] H. Jacquet and K. F. Lai, A relative trace formula, Compositio. Math. 54 

(1985), 243-310. 
[J-L] H. Jacquet and R. P. Langlands, Automorphic forms on GL2, Lecture 

Notes in Math., vol. 114, Springer-Verlag, Berlin and New York, 1970. 
[K-V] B. Kimelfield and E. Vinberg, Homogeneous domains in flag manifolds 

and spherical subgroups ofsemisimple Lie groups, J. Funct. Anal. Appl. 12 
(1978), 168-174. 

[K] M. Krâmer, Sphàrische Untergruppen in Kompakten zusammenhangenden 
Lie Gruppen, Compositio. Math. 38 (1979), 129-153. 

[L] S. Lang, SL2(R), Addison-Wesley, Reading, MA, 1975. 
[M] G. Mackey, Multiplicity free representations of finite groups, Pacific J. Math. 

8 (1958), 503-510. 
[M-O] J-F. Mestre and J. Oesterlé, Elliptic curves of prime conductor (in prepara­

tion). 
[PS-R] I. Piatetski-Shapiro and S. Rallis, Rankin triple L-functions, Compositio 

Math. 64(1987), 31-115. 
[P] D. Prasad, Trilinear forms for GL2 of a local field and e-factors, Compo­

sitio Math., vol. 75, no. 1, 1990, pp. 1-46. 
[S] J.-P. Serre, Trees, Springer-Verlag, Berlin and New York, 1980. 
[Sp] T. A. Springer, Reductive groups, Automorphic Forms, Representations, 

and L-functions, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc, 
Providence, RI, 1979, pp. 3-27. 

[Ta] J. T. Tate, Number theoretic background, Proc. Sympos. Pure Math., vol. 
33, Amer. Math. Soc, Providence, RI, 1979, pp. 3-26. 



SOME APPLICATIONS OF GELFAND PAIRS TO NUMBER THEORY 301 

[T] J. Tunnell, Local (.-factors and characters ofGL2, Amer. J. Math. 105 
(1983), 1277-1308. 

[V] M.-F. Vigneras, Arithmétique des algebres de quaternions, Lecture Notes in 
Math., vol. 800, Springer-Verlag, Berlin and New York, 1980. 

[W] J.-L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en 
leur centre de symétrie, Compositio Math. 54 (1985), 173-242. 

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MAS­
SACHUSETTS 02138 

E-mail address: gross@zariski.harvard.edu 

mailto:gross@zariski.harvard.edu



