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1. Introduction

The purpose of this note is to study the behavior of complete spaces under
various kinds of maps. We first do this for open maps, where we give new
proofs for some known results, and then extend these results to tri-quotient
maps, an interesting new concept which is introduced and studied in this paper.
As an application of our results, we generalize a recent theorem of J. P. R.
Christensen [7] on compact-covering images of complete separable metric
spaces.2

The most familiar completeness properties are complete metrizability and
(ech-completeness,3 and it is these concepts which will mainly concern us in this
introduction. In the body of the paper, however, we shall mostly work with
sieve-completeness, a particularly well-behaved property which was recently
introduced in [5] by J. Chaber, M. M. (oban, and K. Nagami (see Definition
2.1). Every (ech-complete space is sieve-complete, and it was shown in [5]
that the two concepts are equivalent in the presence of paracompactness. The
proof of that equivalence in [5] was, however, quite indirect (see Remarks
8.1, 8.2, 8.3), and our first task will be to give a simple, direct proof of this
result (see Theorem 3.2). That permits us to prove our basic mapping theorems
for sieve-complete spaces, where they are particularly simple, and to indicate
in this introduction some consequences of these results for (ech-complete
spaces and completely metrizable spaces.

Received March 15, 1976.
All maps in this paper are continuous surjections. No separation properties are assumed

unless indicated; however, regular spaces are T1 and paracompact spaces are Hausdorff.
2 1 would like to take this opportunity to thank Eric van Douwen for numerous helpful

conversations and suggestions during the summer of 1975. In particular, this paper was
originally motivated by his question of whether Christensen’s theorem could be generalized
to the result stated in Corollary 1.5, and it was he who distilled the concept of a tri-quotient
map out of the author’s original proof of that result.

A completely regular space is ech-complete if it is a Ga in one (equivalently, in all) of its
Hausdorff compactifications. By a result of E. (2ech ([16] or [8, p. 190, Theorem 11]), a
metrizable space is completely metrizable (i.e., metrizable by a complete metric) if and only if
it is ech-complete.

* Sieve-complete spaces are called monotonically Cech-complete in [5]. It follows from
[5, Lemma 1.1 and Proposition 2.10] that a regular space is sieve-complete if and only if it is a
2,-space in the sense of H. H. Wicke [28]. However, sieve-complete spaces seem to be much
easier to work with than 2b-spaces (even when the two are equivalent), and--unlike 2b-spaces--
many results about them are true without assuming any separation properties at all (see, for
example, Proposition 4.2 and Theorem 6.3).
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We begin by considering open maps. It follows almost immediately from the
definitions that such maps preserve sieve-completeness (see Proposition 4.2),
and we thus immediately obtain the following theorem of B. Pasynkov [23,
Corollary 10(a)]. 6

THEOREM 1.1 (B. Pasynkov). If f: X Y & an open map from a ech-
complete space X onto a paraeompaet space Y, then Y is also eeh-complete.

COROLLARY 1.2 (F. Hausdorff [12]). If f: X - Y is an open map from a
completely metrizable space X onto a metrizable space Y, then Y is also com-
pletely metrizable.

Let us now extend the above results to a larger class of maps. For that pur-
pose we introduce tri-quotient maps (see Definition 6.1), a new concept which
seems to have just the right properties for dealing with completeness. It follows
from the definition that all open maps and all perfect maps are tri-quotient (see
Theorem 6.5(a), (b)), and that tri-quotient maps are bi-quotient in the sense of
[17]. Less obviously, all compact-covering s-maps7 with first-countable Haus-
dorf range are tri-quotient (see Theorem 6.5(e)). Finally, just as for open maps
(though less trivially), tri-quotient maps preserve sieve-completeness (Theorem
6.3). We thus obtain the following generalizations ofTheorem 1.1 and Corollary
1.2.

THEOREM 1.3. Iff: X Y is a tri-quotient map from a ech-complete space
X onto a paracompact space Y, then Y is also ech-complete.

COROLLARY 1.4. Iff: X - Y is a tri-quotient map from a completely metriz-
able space X onto a metrizable space Y, then Y is also completely metrizable.

An interesting consequence of Corollary 1.4 and Theorem 6.5(e) is the follow-
ing generalization of a result of J. P. R. Christensen [7].

COROLLARY 1.5. Iff: X - Y is a compact-covering s-mapfrom a completely
metrizable space X onto a metrizable space Y, then is also completely
metrizable.7a

This theorem, which is here derived from Theorem 3.2, was used in [5] as a step in the
proof of Theorem 3.2. (See Remark 8.3.)

6 This theorem was also announced, independently, by J. M. Worrell, Jr. [29] and H. H.
Wicke [27].

A map f: X Y is compact-covering if every compact K c y is the image of some com-
pact C c X; it is an s-map if every f- l(y) has a countable base.

7, Added in proof Corollary 1.5 was also obtained, independently, by A. V. Ostrovskfi’,
On compact-covering mappings, Dokl. Akad. Nauk. SSSR, vol. 227 (1976), pp. 1297-1300

Soviet Math. Dokl., vol. 17 (1976), pp. 606-610.
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For separable X, Corollary 1.5 was proved by Christensen in ]-7, Corollary 1
to Theorem 1], thereby confirming a conjecture of A. H. Stone and the author
in [21, 3.7].
We now introduce another concept. Call a mapf: X Y inductively perfect

if there is an X’ c X such that f(X’) Y andf X’ is perfect. If X is Haus-
dorff this X’ must be closed in X; see, for instance, [18, Corollary 1.5]. Induc-
tively tri-quotient maps, which can be defined analogously, coincide with tri-
quotient maps (Lemma 6.4); hence every inductively perfect map is tri-quotient.
The following result (which follows from Theorem 6.6) provides a partial
converse.

THEOREM 1.6. A map f: X Y from a ech-complete space X onto a para-
compact space Y is tri-quotient if and only if it is inductively perfect, s

Since perfect maps are compact-covering, so are inductively perfect maps,
and we obtain the following corollary.

COROLLARY 1.7. Every tri-quotient map f: X Y from a ech-complete
space X onto a Hausdorff space Y is compact-covering.9

Since (ech-completeness is inherited by closed subsets [-8, p. 144, Theorem 3]
and preserved by perfect maps [25], [8, p. 167, Y], Theorem 1.6 provides an
alternative approach to Theorem 1.3. Since perfect maps preserve metrizability
[22], ]-24], Theorem 1.6 implies that Corollary 1.4 remains true if the hypo-
thesis on Y is weakened from being metrizable to being paracompact. An
analogous refinement of Corollary 1.5 will be given in Theorem 6.7; see also
Remark 5.3.
So far, the results about open maps and completeness which we have con-

sidered have all generalized to tri-quotient maps. It is not known, however,
whether that remains true for the following result, which refines Theorem 1.6
in case X is metrizable andf open.

THEOREM 1.8 [13, Corollary 1..2]. Iff: X Y is an open mapfrom a metric
space X onto a paracompact space Y, and if every f-l(y) is complete (for the
given metric on X), then f is inductively perfect and thus compact-covering.

Question 1.9. Does Theorem 1.8 remain true if "open" is weakened to "tri-
quotient"? (I don’t know the answer even when Y is metrizable.)

The paper is arranged as follows. Sieves and sieve-complete spaces are intro-
duced in Section 2, Section 3 proves the theorem relating sieve-complete spaces
to (ech-complete spaces, and Section 4 proves that sieve-completeness is pre-
served by open maps. In Section 5 we prove a lemma on compact-covering

For the special case of open maps, the nontrivial ("only if") part of Theorem 1.6 was
obtained by Pasynkov in [23, Theorem 8]. That is how Pasynkov proved the result stated in
our Theorem 1.1.

For open maps f, Corollary 1.7 was obtained by A. V. Arhangel’ski in [4, Theorem 1.2].
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maps. Section 6 introduces and studies tri-quotient maps, especially as they
relate to complete spaces, while Section 7 proves that tri-quotient maps are
preserved by composition and finite products. Section 8 contains additional
remarks and results on sieve-complete spaces. Section 9 is devoted to examples.

2. Sieves and sieve-complete spaces

Recall that a filter base " clusters at x in X if x for all F ’. Two
collections of sets - and qz mesh [19, p. 99] if every F " intersects every

The following definition is essentially taken from [5, p. 108]. (It should be
remarked that the sieves introduced here are not the same as those commonly
used in the theory of analytic sets.)

DEFINITION 2.1. A sieve on a space X is a sequence of open covers1

(U: a 6 An)nN ofX (with disjoint An), together with functions rn: A,+ - An,
such that, for all n and a 6 An, U (Ua: fl rc-l(a)). A n-chain for such
a sieve is a sequence (an) such that an e An and zrn(an+ 1) an for all n. The sieve
is complete if, for every n-chain (an), every filter base " on X which meshes with

(U.: n 6 N) clusters in X. 11 A space X with a complete sieve is called sieve-
complete. 12

We now establish four lemmas about sieves. Lemma 2.2 will be used in the
proof of Theorem 3.2, Lemma 2.3 in the proof of Theorem 6.3, and Lemmas
2.1-2.3 in the proof of Theorem 6.7. Lemma 2.4 will only be used in Remark.
8.12, and is included here mainly for the sake of completeness.

Let us call a sieve ({U: a An}, t,) locally finite if the indexed family
{ U,: a An} is locally finite for all n.

LEMMA 2.2. If ({U" a An}, cn) is a sieve on a paracompact space X, then
there is a locally finite sieve ({V," a e An}, rn) on X such that c U, for all a.

Proof Let {V,’a e A1} be any locally finite open cover of X such that, c U, for allaA1. Suppose we have {V,’aAk} fork <_ n, and let us
define {Va"/3 An+l}. For each a An, {Ua" fl rt-l(a)} covers the para-
compact space ,, so there is a locally finite, relatively open cover

(w" t ;
of , such that Wa = Ua for all fl 7r-l(a); let Va Wa c V, for all fl t-l(a).
Then {Va’fl An+l} has all the required properties, and that completes the
proof.

1o We allow U 0, and also Ua U# for distinct ,// A,.
1 Equivalently, if every ultrafilter on X which contains {Ua,: n e N} converges in X. Or

equivalently, if every filter base on X, such that each U% contains some F , clusters in X.
= In [5, Definition 2.10, a complete sieve is called an (mc)-sieve, and a sieve-complete space

is called monotonically Cech-complete.
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For our next lemma, let us call a sieve ({U.’ An}, n)finitely additive if
every collection {U.’ An}, as well as every collection of the form
{ Ua" fl r-1()} with A., is closed under finite unions.

LEMMA 2.3.
sieve.

Every sieve-complete space X has a finitely additive, complete

Proof. Let ({U." e A.}, n.) be a complete sieve on X. For each n, let
&. {B c A." Bfinite, B 0}, and for every B .let Un (J{U.’B}.
Define p." .+1 --+ . by p.(B) {n.()" B}. It is easy to check that
({Un" B e .}, p.) is a finitely additive sieve on X. Let us show that it is
complete.

Suppose (B.) is a p-chain, and that is a filter base on X which meshes with
{U.’n N}. Let C. be the set of all B. such that U intersects every
F -. Then C. is finite, C. # 0, and re.+ 1(C.+ 1) C C. for all n. By K6nig’s
Infinity Lemma (i.e., lim inv (C., n.) # 0 if each C. is finite, C. # 0), there
exists a n-chain (.) with a. C. for all n. Clearly meshes with { U.." n N},
so - clusters in X. That completes the proof.

According to [5], a sieve ({U" A.}, n.) on X is a strong sieve if U = U
whenever A. and fl n-(a). The following lemma is obtained in [5] as
part of a more extensive result I-5, Lemma 1.1]; for the sake of completeness,
we include a short proof.

LEMMA 2.4. Every regular, sieve-complete space has a strong complete sieve.

Proof Let ({U." a e A.}, 7r.) be a complete sieve on X. It will suffice to
define a strong sieve

({v," (, ) A. x A.}, . .)

on X (where b." A.+I --* A.) such that always V.,a c U., since such a sieve
will automatically be complete.

Let A1 be any nonempty set, and let V., U. for all (a, 2)e A1 x A1.
Suppose now that everything has been defined up to n. Pick a set M so that
card M exp (card X), let A.+I A. x M, and define b." A.+I A. by
b.(2, t)= 2; then, for each (a, 2) A. x A. and each fle -1(), let
{Va,,u)"/ M} be an indexing of the collection of all open V c Ua such
that = V., 4. This construction has all the required properties.

Our last lemma follows from [5, Proposition 2.10], and is easily verified.

LEMMA 2.5. Thefollowing properties of a strong sieve ({U." a A.}, re.) on a
space X are equivalent.

(a) ({U." a A.}, rr.) is a complete sieve.

(b) If (.) is a n-chain, if U. # 0 for all n, and if C (.U.., then C is

nonempty, closed, and compact, and every open V C contains some U...
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3. (ech-complete and sieve-complete spaces

We begin by recalling a result of Z. Frolik [11] and A. V. Arhangel’ski] I-2]
(see [8, p. 143, Theorem 2]).

LEMMA 3.1. The following properties of a completely regular space X are
equivalent.

(a) X is ech-complete.
(b) There is a sequence ("U.) of open covers of X such that, if is a filter

base on X and ifeach "t/’. has an element V. which contains some F. ., then gT

dusters in X.

The following result was obtained, rather indirectly, in [4] (see Remark 8.3).
It should be compared to Lemma 3.1.

THEOREM 3.2.
equivalent. 13

The following properties of a paracompact space X are

(a) .X is ech-complete.
(b) X is sieve-complete.

Proof (a) (b). Let (/’.) be as in 3.1(b). We shall construct our sieve by
induction on n. For n 1, let { U." A } be the collection of all open subsets
of Y which are subsets of some V e 1. Suppose we have everything up to and
including n. For each A., let { Ua" fl A.+ 1()} be the collection of all open
subsets of U. which are also subsets of some V .+ 1. We may suppose that
the index sets A.+ a(), with A., are disjoint from each other and from all Ak

with k < n. Let A.+I O{A.+I()" A.}, and define re." A.+I A. by
n.(fl) if/3 A.+ (). It is clear that this defines a sieve on X. To see that it
is complete, suppose (.) is a n-chain and - a filter base on X which meshes
with {U..’nN}. Let -’ {Fc U..’Fe-,nN}. Then ’ is also a
filter base on X, and it satisfies the hypothesis of 3.1(b). Hence -’--and thus
also ---clusters in X.

(b) (a). We will show that X is a Go in any Hausdorff space X* containing
it as a dense subset. By Lemma 2.2, there is a locally finite, complete sieve
({U=" A.}, re.) on X. Let W. be the set of all x X* at which {U=" A.}
is locally finite. Then each W. is open in X*. We will show that X 1. W..

Clearly X c W. for all n. It remains to show that, if x [. W., then x X.
Let B. { A." x .}. Then B. is finite, B. - 0, and n.(B.+ 1) c B. for
all n. By K6nig’s Infinity Lemma (i.e., lim inv (B., n.) - 0 if each B. is finite,
B. 0), there is a z-chain (.) with . B. for all n. Now let

{U X: U a neighborhood of x in X*}.

1 Paracompactness is not needed for (a), = (b).



722 E. MICHAEL

Then " is a filter base on Xwhich meshes with {U,.: n N}, so o- clusters in X.
But clearly x is the only cluster point of- in X*, so x X. That completes the
proof.

4. Open images of sieve-complete spaces

Our first result is a lemma which is valid for all (not only open) maps, and
which will also be used in the proof of Theorem 6.4.

LEMMA 4.1. Suppose that f: X --+ Y is a map, and that ({U: A,}, n,) is
a complete sieve on X. Then any sieve ({V,: A,}, n,) on Y such that
V, c f(U,) for all is also complete.

Proof Let {,} be a n-chain and a filter base on Y meshing with
{ V,.: n N}. Then f- () meshes with { U,.: n N }, so f- () clusters at
some x X, and hence clusters at f(x) in Y. That completes the proof.

PROPOSITION 4.2.
isY.

Iff: X Y is an open map, and ifX is sieve-complete, so

Proof If ({U,: e A,}, n,) is a complete sieve on X, then

({f(U,): ot A.}, =.)

is a sieve on Y (sincefis open), and this sieve is complete by Lcmma 4.1.

5. A lemma on compact-covering maps

The following lemma is based on the main idea of Christensen’s proof of
[7, Theorem 1]. We use c3 to denote boundary.

LEMMA 5.1. Suppose f: X Y is compact-covering, with Y Hausdorff and
first-countable. Let y Y, and let (U,) be an increasing sequence of open subsets
of X which cover Of-l(y) such that U c f-(y) # O. Then there is an open
neighborhood V of y in Y and an n N such that every compact K V is the
image of some compact C c U,. (Hence, if X’= U, c f-a(V), the map
f X" X’ V is again compact-covering.)

Proof Case 1. Of-X(y) 0. In this case, simply take V {y} and
n=l.

Case 2. Of-a(y) # O. Let X- Intf-l(y), and f=fl. Then
j: Y is also compact-covering, and the U. coverf-(y). It will now suffice
to prove our lemma withfreplaced by f; equivalently, we need only show that
our lemma is true if the U. are assumed to cover all off-l(y).
Suppose it is not. Let (V,) be a decreasing base for the neighborhoods of

y in Y. Then for each n there is a compact K, V. which is not the image of
any compact C c U,. Let K {y} w Uo= K,. Then K is compact, so K
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f(C) for some compact C c X. Let g f C. Since g-(y) is compact, there
is an m such that g-l(y) c Urn. NOW g: C K is a closed map, and Um c C
is a neighborhood ofg- l(y) in C, so there is an n > m for which g- (V,) Urn.
Let C, #-l(K,). Then C. is compact, f(C,,)= K,, and C #-l(V)
U c U.. This contradicts the assumption that K. is not the image of any
compact subset of U,, and that completes the proof.

We conclude this section with two remarks on Lemma 5.1.

(5.2) Lemma 5.1 is analogous to a result of A. H. Stone [24, p. 694, Lemma
1]. In that result, Stone only assumes thatfis a quotient map (which--since Y
is Hausdorff and first-countable--is weaker than being compact-covering), and
concludes only that f(U,) V. He cannot conclude that f]X’:X’ V is
again a quotient map, so his result, unlike Lemma 5.1, cannot be applied induc-
tively. Stone’s lemma was applied in [17, Proposition 3.3(d)] to show that
certain quotient maps are bi-quotient, while Lemma 5.1 will be applied in
Theorem 6.5(e) to show that certain compact-covering maps are tri-quotient.
(See also footnote 17.)

(5.3) Lemma 5.1 remains true (with essentially the same proof) if, in both
the assumption and conclusion, "compact-covering" is weakened to" Every
countable, compact subset of the range is the image of some compact (or even
merely countably compact) subset of the domain. Consequently, "compact-
covering" can also be weakened in this way in Theorem 6.5(e) and Corollary 1.5.

6. Tri-quotient maps

DEFINITION 6.1. A map f: X Y is tri-quotient if one can assign to each
open U in X an open U* in Y such that"

(a) U* = f(U).
(b) X*= Y.
(c) U c V implies U* = V*.
(d) If y U* and is a cover off-a(y) c U by open subsets of X, then

there is a finite - = such that y ( ’)*.

We call U U* a tri-quotiency assignment, or t-assignment, forf
Recall that a mapf: X Y is hi-quotient [17] if, whenever y Y and W" is a

cover off-l(y) by open subsets of X, then there is a finite - = "/U such that
y Intf(3 ’). Clearly every tri-quotient map is bi-quotient, but Example 9.3
and Theorem 6.3 imply that the converse is false (even for maps between
separable metric spaces).

LEMMA 6.2. Suppose f: X Y is a tri-quotient map with t-assignment
U U*. If ({U=: A.}, x,) is a finitely additive sieve (see Section 2) on X,
then ({ U*" A.}, z.) is a sieve on Y.
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Proof. Let us first show that (U*" A,} covers Y for each n. Let y Y.
Then y X* by 6.1(b). Also {U: A,} covers f-l(y) and is preserved by
finite unions, so y U* for some A. by 6.1(d). Hence Y a.U*. In
exactly the same way one shows that, if A, then U* c {U*" fl rt-1()};
the reverse inclusion follows from 6.1(c). That completes the proof.

THEOREM 6.3.
complete.

Every tri-quotient imaye of a sieve-complete space is sieve-

Proof This follows from Lemmas 6.2, 2.3, and 4.1.

It should be remarked that Theorem 6.3 is false for bi-quotient maps; see
Example 9.3.
The following lemma is used in the proofs of Theorems 6.5(c) and 6.6. We

call a map f: X - Y inductively tri-quotient if there is an X’ X such that
f(X’) Y andf X’ is tri-quotient.

LEMMA 6.4.
quotient.

A map f: X --, Y is tri-quotient ifand only if it is inductively tri-

Proof To prove the nontrivial part, suppose that, for some X’ = X,
f(X’) Y, and f X’ is tri-quotient. If U U* is a t-assignment for fiX’,
then it is easily checked that U (U c X’)* is a t-assignment for f. Hence f
is tri-quotient, and the proof is complete.

THEOREM 6.5. Let f: X Y be a map. Then .each of the following implies
thatf is tri-quotient.

(a) f is open.
(b) f is perfect.
(c) f is dosed, X is paraeompaet, and Y is first-countable.4
(d) f is compact-covering, and Y is locally compact and Hausdorff.
(e) f is compact-covering, x5 each Of-X(y) is LindelOf, X is regular,6 and Y

is first-countable and Hausdorff. 7

Proof. For parts (a), (b), and (d), we shall merely describe t-assignments for
f, omitting the routine verifications that they satisfy Definition 6.1.

(a) Let U* f(U).
(b) LetU* r-f(X- U).
(c) By [,_15, Proof of Corollary 1.2],fis inductively perfect, sofis tri-quotient

by (b) and Lemma 6.4.

x4 It can be shown (with the aid of [19, Theorem 9.9 and Lemma 9.1]) that "first-countable"
can be weakened to "countably bi-k" (see footnote 18).
5 This can be slightly weakened. See Remark 5.3.
16 The assumption that X is regular can be omitted if each f-l(y) is hereditarily Lindel6f.
17 This result should be compared to [17, Proposition 3.3(a)], which asserts that every

quotient map f: X Y, with each f- l(y) Lindel6f and Y first-countable Hausdorff, must be
bi-quotient.
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(d) Let U* O{Int (f(C))’C c U, C compact}.
(e) Let 5 be the collection of all S c X such that f(S) is open in Y, f[ S

(regarded as a map onto f(S)) is compact-covering, and s(fl S)-X(Y) is
Lindel6f for all y Y. For each open U X, let

U* O{f(S)" S 5e, S c U}.

The only requirement of Definition 6.1 which is not obviously satisfied is 6.1(d).
To check 6.1(d), suppose that y U* and that / is a cover of f-l(y) c U
by open subsets of X. Pick S5 such that S Uand yf(S), and let
g f IS. Then g-l(y) is covered by . Since X is regular and sg-l(Y) is
Lindel6f, Osg-l(y) is covered by countably many open subsets V1, V2, of X
such that each V is a subset of some W "// and V1 c g-l(y) = 0. Let
U, ’_ Vi. Now apply Lemma 5.1 to g, obtaining an X’ S such that
X’ U, for some n, f(X’) is open in Y, y f(X’), and f[ X’ is compact-
covering. Let S’ X’ c f-l(f(X’)). Then S’ for some finite
S’ , and y f(S’). Hence y (-)*, and that is all we had to show.

THEOREM 6.6. The following are equivalent for any map f: X Y from a
regular sieve-complete space X onto a paracompact space Y.

(a) f is inductively perfect.
(b) f is tri-quotient.

Proof. (a) (b). This follows (without any conditions on X and Y).from
Theorem 6.5(b) and Lemma 6.4.

(b) (a). Since X is regular, it has a strong, complete sieve

({u" A.), .)

by Lcmma 2.4. Now define the finitely additive, complete sieve

({u. B .},p.)

on Z as in the first paragraph of the proof of Lemma 2.3; it is clear that this is
also a strong sieve.

Let U U* be a t-assignment forf. Then ((U" B }, p) is a sieve on
Y by Lemma 6.2. By Lemma 2.2, there is a locally finite sieve

((w- n}, P.)

on Y such that W U for all B e , and all n.
Fix y e Y. For each n, let B.(y) U{B e N.’y e Wn}. Then B.(y)

for all n, and (B.(y)) is a p-chain. Also f-l(y) c U.() 0 for all n, for if
B e N. is chosen so that y e W, then B B.(y), hence U c U.(), and
therefore

YeWB c U f(UB) f(
Let

n=l
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Since ((UB: B &,}, p,) is complete, it is easy to see (as in Lemma 2.5) that
C is nonempty and compact.

Define X’ (J{Cr:y Y}. Clearly f(X’) Y. Let g =fiX’. Then
g-(y) Cy is compact for all y Y. To show that g is closed, suppose
A c X’ is closed and y g(A))-, and let us show that y g(A).

Let (y) be the collection of all neighborhoods of y in Y, and let

ar {A c a-(V): V e (y)}.

Then " is a filter base on X. For each n, let

V,, Y O (WB B e N,, y q Wn}.

Then V, e "F’(y). If y’ V,, then B,,(y’) = B,,(y), so g-X(y,) = Ua.(y.) =
Un.(y). Hence g-a(V,) = U.(y), so UB.(y) contains an element of ’. By com-
pleteness, - clusters at some x X. But then x A; also g(x) for every
V /(y), so g(x) y. Hence y g(A).
That completes the proof.

We conclude this section with a generalization of Corollary 1.5 whose proof
uses several of the preceding results.

THEOREM 6.7. Suppose f: X Y is a compact-covering s-map, with X com-
pletely metrizable and Y paracompact. Then the following are equivalent.

(a) is completely metrizable.
(b) Y is metrizable.
(c) Y is a countably bi-k-space,xa

(d) f is bi-quotient.
(e) f is tri-quotient.
(f) f is inductively perfect.

Proof. (a) (b) (c). Clear.
(c) = (d). Sincef is compact-covering and Y is a Hausdorff k-space, fis a

quotient map by [16, Lemma 11.2-1. By [19, Theorem 9.8 and Lemma 9.1-1, a
quotient s-map from a metrizable space onto a Hausdorff countably bi-k-space
is bi-quotient.

(d) (e). It is easily checked that a bi-quotient s-image of a metrizable space
(more generally, of a space with point-countable base) is first-countable.9

Hencef is tri-quotient by Theorem 6.5(e).
(e) (f). By Theorem 6.6.
(f) (a). This is true because perfect images preserve metrizability [22],

[24] and (ech-completeness [25], [8, p. 167, Y].

is Countably bi-k-spaces, which were introduced in [19, Definition 4.E.1], include all first-
countable spaces, all locally compact spaces, and (by (8.11) in Section 8) all regular sieve-
complete spaces. Every Hausdorff countably bi-k-space is a k-space.

19 V. V. Filippov [10] has shown that such an image actually has a point-countable base,
but we do not need that deeper result here.
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7. Operations preserving trioquotient maps

In this section, it is shown that triquotient maps are preserved by composition
and by binaryhence finiteproducts. I don’t know whether they are preserved
by infinite products.2

THEOREM 7.1. Supposef: X Y and g: Y - Z are maps.

(a) Iffand 9 are tri-quotient, so is g f
(b) If# f is tri-quotient, so is g.

Proof(a) Leth =gof Let U Us and V V be t-assignments for
fand g, respectively. For each open U in X, define Uh (US), and let us show
that U Uh is a t-assignment for h.

It will suffice to verify condition 6.1(d). Suppose, therefore, that z Uh,
and that C is a cover of h-a(z) c U by open subsets of X. Let E g-X(z) c
Us. If y E, then y U" and q coversf-l(y) U, so y (O’r)s for some
finite ’r c#. Let Vy (U-v)s. Then {Vy:yE} is a cover of E=
g-l(z) c Us by open subsets of Y, and z (US), so there is a finite F c E
such that z(O{Vv:yF}). Let - U{y:yF}. Then " =,- is finite and (by 6.1(c) forf)

z (O{(O-,)s: y F})" = ((O..)s)" (O.)’.
That establishes 6.1 (d).

(b) Let h f. Suppose U U is a t-assignment for h, and let us show
that V (f-X(V))h must be a t-assignment for .
We need only check 6.1(d). So suppose that z V and that "/U is a cover of

-a(z) c V by open subsets of Y. Then z (f-(V))h and f-x("/U) is a cover
of h-X(z) by open subsets of X, so there is a finite " such that z
(Uf-l(-))h. But then

z (f- (UoJ))

and that completes the proof.

It should be remarked that, in Theorem 7.1(b), nothing can be concluded
aboutf. (For example, fcould be arbitrary and g a constant map.)

THEOREM 7.2. Iff: X Y and g: X’ Y’ are tri-quotient, so is

fxg:Xx X’ Y x Y’.

Proof. Let h f x g. Let U Us and U’ (U’) be t-assignments for
fand g, respectively, and let us define a t-assignment W - W for h.

20 B/-quotient maps are preserved by arbitrary products, as are open maps, perfect maps,
and thus also inductively perfect maps. This last result and Theorem 6.6 imply that any
product of tri-quotient maps f: X= Y=, with each X regular sieve-complete and each Y=
paracompact, must be tri-quotient.
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Let @ be the family of all finite collections of open rectangles in X x X’.
For each - {Uj x U}= in @, define the open set G(’) in Y x Y’ by

j=l j=l

For all open W in X X’, let

(*) wh U o, U w }.

It will now suffice to verify condition 6.1(d).
Suppose(y, y’) W, and (.9 (S, x S;: a A}isacoverofh-l(y, y’) c W

by basic open subsets of X x X’. Choose " (Uy x U}= in (I) such that

U- w and (y, y’) s G(-). Then (9 also covers h-a(y, y’) c (U-). Note
that h- l(y, y,) f-1(y) x g- l(y,).

Let U U=luJ. Fix xf-l(y) c u. Pickj(x) <_ n so that x Uy(),
and let A(x) (aA:xS}. Then (S;:aA(x)} is a cover ofg-(y)
U() by open subsets of X’, and y’ (U()), so there is a finite F(x) A(x)
such that y’ (V’(x)) where V’(x) U(s;: a F(x)}. Let V(x)
r(s,: a F(x)}; then V(x) is an open neighborhood of x in X.
Now (V(x): x f-l(y) c U} is a cover off-l(y) c U by open subsets of

X, and y Uf, so there is a finite subset (xl,..., Xm} off-l(y) C U such that
y (U.7’=lV(x,))f. Let F UT’=aF(x3, let {S x S,: a F}, and let
P U. Then is a finite subcollection of (9, and we will complete the proof
by showing that (y, y’) P.

Let g {V(x3 x V’(x3}7’= 1. Then g (I) and (y, y’) G(g). Now

V(x,) x V’(xi) c U{s, x S;:ar(x,)}

for all <_ m, so Ug = P. Hence (y, y’) P by (*), and that completes the
proof.

8. Miscellaneous results and remarks on sieve-complete spaces

(8.1) [5, Theorem 3.7]. A regular space is sieve-complete if and only if it is
an open image of a paracompact (ech-complete space.

(8.2). As observed in [5], the "only if" part of (8.1) follows from the
analogous result for 2-spaces obtained by H. H. Wicke in [27, Theorem 4.5],
together with the equivalence, in regular spaces, of sieve-completeness and the
2b condition (see footnote 4). (It can also be proved directly.) The "if" part of
(8.1) follows from Proposition 4.2.

(8.3). As indicated in [5, Corollary 3.8-1, Theorem 3.2 follows from (8.1)
and the theorem of Pasynkov stated in our Theorem 1.1.

(8.4). Analogously to (8.1), one can prove: A topological space is sieve-
complete if and only if it is an open image of a space satisfying condition 3.1(a).

(8.5). A countable product of sieve-complete spaces is sieve-complete.
(Outline of proof: Let X I-I= x be such a product. For each i, let
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({U,: A,,i}, n,,i),n be a complete sieve on Xi. Let A, I-I7=1 A,,i.
Define n,: A,+ A, by

.(,..., .+ ) (., (),..., .,.(.)).

For (l,..., ,) A,, define U, X by

U U, x X
i=1 i=n+l

One can now show (using the first part of footnote 11) that (( U,:
is a complete sieve on X.)

(8.6) (E. van Douwen). Remark (8.5) can be extended as follows: A non-
empty product X I-lz n Xx is sieve-complete if and only if every Xx is sieve-
complete and Xz is compact for all but countably many 2. (Proof of "only if":
Suppose X is sieve-complete, with complete sieve ({U,: a A,}, n,). Then each
X is sieve-complete by Proposition 4.2. Now let (a,) be any n-chain such that
U,, - 0 for all n. Then there is a countable A’ c A such that pz(U,.)
for all 2 A’ and all n (where pz" X Xz is the projection). But then Xz is
compact if 2 A’, for if- is a filter base in Xz for such a 2, thenp- 1() meshes
with {U,,: n N}, hence p; 1(-) clusters in X, so " clusters in Xz.)

(8.7) [-5, Theorem 3.4 and Proposition 3.6]. Iff: X Y is a perfect map,
then X is sieve-complete if and only if Y is sieve-complete. (Proof: For "only
if," this follows from Theorems 6.3 and 6.5(b) For "if," it is easy to check that,
if ({U: A,}, 7r,) is a complete sieve on Y, then (f-(U): A,}, n,) is a
complete sieve on X.)

(8.8). Sieve-completeness is inherited by closed subsets (trivially), and, in
regular spaces, by G0-subsets (less trivially; see [-5, Proposition 2.13]). This
latter result, once established, immediately implies Theorem 3.2(a) (b).

(8.9) [5, Proposition 2.2]. A space X is sieve-complete if and only if every
point has a sieve-complete open neighborhood. (Use 4.2.) If X is regular, the
neighborhoods need not be open. (Use 8.8.)

(8.10). Every regular, sieve-complete space is a Baire space (i.e., the inter-
section of countably many dense open sets is dense).

(8.11) I-5, Proposition 4.4]. Every regular, sieve-complete space X is of
countable type (i.e., every compact C c X is contained in a compact K c X of
countable character in X; see [3, Definition 3.7]).

(8.12). Analogously to a complete sieve, one can define a eountably complete
sieve by restricting the filter base - in Definition 2.1 to be countable (equival-
ently, by requiring that, if (,) is a n-chain and x, U, for all n, then the
sequence (x,) clusters in X). A space with a countably complete sieve is called
countably sieve-complete.2a Results 2.3-2.4, 4.1-4.2, 6.3, and 8.7-8.10 in this

2 In regular spaces, this is equivalent to being a 2c-space in the sense of H. H. Wicke [28].
Compare footnote 4.



730 E. MICHAEL

paper remain valid, with the same proofs, for countably complete sieves and
countably sieve-complete spaces. Lemma 2.5 also remains valid, provided
"compact" is changed to "countably compact." This last result implies that a
paracompact space is countably sieve-complete if and only if it is sieve-complete,
and hence that Theorem 3.2 remains valid with "sieve-complete" weakened to
"countably sieve-complete." Every countably compact space is countably
sieve-complete, but not necessarily sieve-complete.

9. Examples

Our first example explains the significance of the paracompactness assumption
in several of our theorems. (That Theorem 1.1 is false without this assumption
also follows from earlier examples of M. E. Estill (= M. E. Rudin) [93 (see also
[1, 3.2.3]), and of H. H. Wicke [26] (where Y is collectionwise normal).)

Example 9.1. An open, compact-covering map f: X - Y, with eachf-l(y)
finite, X completely metrizable, and Y a metacompact, completely regular space
which is not (ech-complete.

Proof. In [5], Example 2.9 constructs a metacompact, completely regular
space Y which is locally completely metrizable but not ech-complete. Let q/"

be a point-finite open cover of Y by completely metrizable subsets. Let X be the
topological sum (V: V q/}, and let f: X Y be the natural map. Clearly
X is completely metrizable, and each f-(y) is finite. Moreover, any map ob-
tained in this way from an open cover of a Hausdorff space Y is easily seen to be
compact-covering. Hence f: X Y has all the required properties.

Our next example explains the significance of the first-countability assumption
in Theorem 6.5(c) and (e) (and thus also .in Lemma 5.1), and of the assumption
in Theorem 6.7(c) that Y be countably bi-k. I am grateful to E. van Douwen
for calling this example to my attention.

Example 9.2. A closed, compact-covering map f: X Y, with X complete
separable metric and Y paracompact but not (ech-complete.

Proof. Such an example is given in [1, Example 2.4.2.-I

The following example shows that Theorem 6.3 is false for bi-quotient maps,
and hence that not all bi-quotient maps are tri-quotient.

Example 9.3. The rationals (which are not completely metrizable) are a bi-
quotient image of the irrationals (which are completely metrizable).

Proof. This was proved in [21, Corollary 1.2 and observation on p. 631].

Example 9.4. A nonmetrizable, first-countable, paracompact space Y which
is a bi-quotient s-image of a completely metrizable space X.
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Proof Let Y be the reals with the irrationals made discrete (see [14, p. 375]).
As observed in [14], this Y is (hereditarily) paracompact. Clearly Y is first-
countable, but Y is not metrizable since the rationals are a closed, non-G,
subset. That Y is a hi-quotient s-image of a completely metrizable space was
proved in [20, Remarks 2 and 3]. That completes the proof.

The previous two examples help to explain the significance of the compact-
covering assumption in Theorem 6.7" Without this assumption, Example 9.4
shows that (c) and (d) need not imply (b), while Example 9.3 shows that (b)
need not imply (a). It should be remarked that the space X in Example 9.4
cannot be chosen separable, since every bi-quotient image of a second-countable
space is second-countable [17, Proposition 3.4].
Our next example explains the need for the requirement in Corollary 1.5 and

Theorem 6.7 thatfbe an s-map, and for the requirement in Theorem 6.5 that Y
be locally compact.

Example 9.5. (a) If Y is a metrizable space, then Y is a compact-covering
image of a completely metrizable space X.

(b) If Y is the rationals, then Y is a compact-covering, bi-quotient image of
a completely metrizable space X.

Proof. (a) Let X be the topological sum of the compact subsets of Y, with
the obvious map f: X Y.

(b) By (a) and Example 9.3, there are mapsfl:X1 Y andf2:X2 --* Y,
with X1 and X2 completely metrizable, such thatf is compact-covering and f2
is bi-quotient. Then the sumf f2: X @ X2 --* Y is compact-covering and
bi-quotient. That completes the proof.

Our last two examples show why the assumption that X is sieve-complete
cannot be omitted from Theorem 6.6(b) - (a), even whenf is open (and hence
tri-quotient by Theorem 6.5(a)).

Example 9.6. An open map f: X Y, with X and Y separable metric,
which is not compact-covering (and hence not inductively perfect).

Proof. Such a map was constructed in I-13, Example 4.1].

Example 9.7 (E. van Douwen). An open map f: X Y, with X and Y
separable metric, which is compact-covering but not inductively perfect.

Proof Let Y be a subset of I= [0,1] such that cardY c but every
compact subset of Y is countable. Let P Y x /, and let zr: P Y be the
projection onto the first coordinate. Let (K: < c} enumerate all compact
subsets of Y, and let {F: < c} enumerate all those closed subsets of P which
n maps onto Y.
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Since each K is countable, we can inductively pick y Y for t < c such that
y a< (Ka w (ya}), and then pick t I such that (y, t) F. Let X
e ((y, t): < c}, and letf niX.
Our construction implies that the y are distinct, so X is obtained from P by

removing at most one point from each n-l(y). Hence f is open.
To see that fiN compact-covering, let K Y be compact. Then K K for

some < c. PicktI- (t’fl < }. ThenK x {t } is a compact subset of
Xandf(K (t}) K.

It remains to show that f is not inductively perfect: Suppose there were an
X’ c X such that f(X’) Y and fiX’ is perfect. Since rt: P - Y is a con-
tinuous extension off IX’, the set X’ must be closed in P (see, for instance,
1-18, Corollary 1.5]), so X’ F for some . But that is impossible, since, by
our construction, F X for all . The proof is now complete.
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