ORDERING ON A SEMISIMPLE LIE GROUP AND CHARACTER VALUES

BY

LAURENT CLOZEL

1. Introduction

We first recall some results of Kostant in [1]. Let G be a connected, semisimple, real Lie group, g its Lie algebra. Let \widehat{G} be the set of all equivalence classes of irreducible finite-dimensional representations of G. Let $g = \mathfrak{k} \oplus \mathfrak{k} \oplus \mathfrak{k} \oplus \mathfrak{k} \oplus \mathfrak{k}$ the associated decomposition of G. An element h of G is called *hyperbolic* if $h = \exp(x)$, with $x \in g$ such that ad (x) is \mathbb{R} -diagonalizable. In this case, one shows that h is conjugate in Gto an element of A; or, equivalently, x is conjugate under the action of Ad Gto an element of G.

The ordering between hyperbolic elements is defined in the following manner: Let $W = W(\mathfrak{g}, \mathfrak{a})$ be the Weyl group. For $x \in \mathfrak{a}$, let $\mathfrak{a}(x)$ be the convex hull of the orbit of x under W. Then $x \leq y$ $(x, y \in \mathfrak{a})$ iff $x \in \mathfrak{a}(y)$. This ordering is transported, by using the exponential isomorphism, to A and then to the set of all hyperbolic elements: let h, k be hyperbolic, respectively conjugate to the elements a and b of A; then we set b iff $a \leq b$. (For the consistency of this definition see [1].)

For $\lambda \in \widehat{G}$, let π_{λ} be a representation of the class λ : we define the (non-normalized) character χ_{λ} on G by $\chi_{\lambda}(x) = \operatorname{Tr}(\pi_{\lambda}(x))$. Then the following theorem holds (Kostant [1, part 6, Theorem 6.1].

Theorem. Let f, g be two hyperbolic elements of G, $f \leq g$. Then for all $\lambda \in \hat{G}$, $\chi_{\lambda}(f) \leq \chi_{\lambda}(g)$.

We shall prove the following converse, in the case where g is a normal real form of its complexification g_c , i.e., when $a_c = a + ia$ is a Cartan subalgebra of g_c (see [2, p. 6]).

THEOREM. Let G be a real semisimple connected Lie group; assume that g is a normal real form of g_c . Let $f, g \in G$ be two hyperbolic elements. If $\chi_{\lambda}(f) \leq \chi_{\lambda}(g)$ for all $\lambda \in \hat{G}$, then $f \leq g$.

We shall use a sequence of lemmas. Let a_+ be the adherence of the fundamental Weyl chamber in a. Using the properties of conjugacy, we see that it is enough to consider the case $f = \exp(x)$, $g = \exp(y)$, for x, y in a_+ . In fact we first contend that x and y are in the Weyl chamber $(a_+)^0$, interior of a_+ .

We define a preorder relation on a, denoted \ll , by $x \ll y$ $(x, y \in a)$ iff for all $\lambda \in \widehat{G}$, χ_{λ} (exp (x)) $\leq \chi_{\lambda}$ (exp (y)).

Using the Killing duality, denoted \langle , \rangle , we identify a with its (real) dual; we can identify an element λ of \hat{G} with the associated representation of g, and this one to its highest weight, considered as being in \mathfrak{a} —thus in fact $\lambda \in \mathfrak{a}_+$.

LEMMA 1. Let $x \in (\mathfrak{a}_+)^0$, $\lambda \in \widehat{G}$. Then $\chi_{\lambda}(\exp(tx)) \sim_{t \to +\infty} \exp(t\langle \lambda, x \rangle)$ (the equivalence is between two functions of t).

Proof. Let $\{\alpha_i, i = 1, ..., r\}$ be the simple roots in α ; let Π_{λ} be the set of weights of the representation λ . Then

$$\chi_{\lambda} (\exp (tx)) = \exp (t\langle \lambda, x \rangle) + \sum_{\rho \in \Pi \lambda, \rho \neq \lambda} m_{\lambda, \rho} \exp (t\langle \rho, x \rangle)$$

for certain integers $m_{\lambda, \rho}$. If $\rho \in \Pi_{\lambda}$, $\rho \neq \lambda$, we know that $\rho = \lambda - \sum_{i=1}^{r} n_i \alpha_i$, with the integers n_i not all zero. But by definition of the Weyl chamber, $\langle \alpha_i, x \rangle > 0$ for all $x \in (\alpha_+)^0$, $i = 1, \ldots, r$. Thus it is clear that $\langle \rho, x \rangle < \langle \lambda, x \rangle$ for all $\rho \in \Pi_{\lambda}$, $\rho \neq \lambda$; the comparison of the exponentials then proves Lemma 1.

Now we use Weyl's formula giving the formula for χ_{λ} :

$$\chi_{\lambda} (\exp (x)) = \frac{\sum_{\sigma \in W} \det (\sigma) \exp \langle \sigma(\lambda + \rho), x \rangle}{\sum_{\sigma \in W} \det (\sigma) \exp \langle \sigma(\rho), x \rangle}$$

with $\rho = \frac{1}{2} \sum_{\alpha>0} \alpha = \sum_{i=1}^{r} \lambda_i$, λ_i the fundamental dominant weights. We know that the denominator D(x) is given by

$$D(x) = \sum_{\sigma \in W} \det(\sigma) \exp \langle \sigma(\rho), x \rangle = \prod_{\alpha > 0} \left(e^{\langle \alpha/2, x \rangle} - e^{-\langle \alpha/2, x \rangle} \right)$$

from which we deduce that for all $x \in (\mathfrak{a}_+)^0$, D(x) > 0, and the quotient in Weyl's formula makes sense. (For these results see [3, pp. 138–139].)

LEMMA 2. Let $x, y \in (\mathfrak{a}_+)^0$, such that $x \ll y$, Then $nx \ll ny$, for all $n \in \mathbb{N}$ such that $(n-1)\rho \in \widehat{G}$.

Proof. By Weyl's formula and the hypothesis on x and y,

(*)
$$\frac{\sum \det (\sigma) \exp \langle \sigma(\lambda + \rho), x \rangle}{\sum \det (\sigma) \exp \langle \sigma(\rho), x \rangle} \le \frac{\sum \det (\sigma) \exp \langle \sigma(\lambda + \rho), y \rangle}{\sum \det (\sigma) \exp \langle \sigma(\rho), y \rangle}$$

for all $\lambda \in \hat{G}$.

Let $n \in \mathbb{N}$ be such that $(n-1)\rho \in \widehat{G}$, whence $n\lambda + (n-1)\rho \in \widehat{G}$. Replacing λ by $(n\lambda + (n-1)\rho)$ in (*), we get

(**)
$$\frac{\sum \det (\sigma) \exp \langle \sigma(\lambda + \rho), nx \rangle}{\sum \det (\sigma) \exp \langle \sigma(\rho), x \rangle} \le \frac{\sum \det (\sigma) \exp \langle \sigma(\lambda + \rho), ny \rangle}{\sum \det (\sigma) \exp \langle \sigma(\rho), y \rangle}$$

for all $\lambda \in \widehat{G}$,

whence finally, rearranging,

$$\chi_{\lambda}(\exp(nx)) \le C(n, x, y)\chi_{\lambda}(\exp(ny))$$
 for all $\lambda \in \hat{G}$,

with

$$C(n, x, y) = \frac{\sum \det(\sigma) \exp\langle \sigma(\rho), x \rangle}{\sum \det(\sigma) \exp\langle \sigma(\rho), nx \rangle} \cdot \frac{\sum \det(\sigma) \exp\langle \sigma(\rho), ny \rangle}{\sum \det(\sigma) \exp\langle \sigma(\rho), ny \rangle}$$

(thus C does not depend on λ).

We want to prove that in fact χ_{λ} (exp (nx)) $\leq \chi_{\lambda}$ (exp (ny)). This is clear because of the following lemma (it is here that we use the non-normalization of the characters).

LEMMA 3. Let $f, g \in G$. If there exists a constant C > 0 such that $\chi_{\lambda}(f) \le C\chi_{\lambda}(g)$ for all $\lambda \in \widehat{G}$ then $\chi_{\lambda}(f) \le \chi_{\lambda}(g)$ for all $\lambda \in \widehat{G}$. (C can be taken equal to 1.)

Proof. Evident because of the complete reducibility and of the formula $\chi_{\lambda} \cdot \chi_{\mu} = \chi_{\lambda \otimes \mu}$ (consider $\chi_{\otimes m_{\lambda}}$, $m \to \infty$).

The Lemma 2 is so completely proved.

COROLLARY OF LEMMA 2. Let $x, y \in (\mathfrak{a}_+)^0$. Then $\exp(x) \ll \exp(y)$ implies $\exp(x) \leq \exp(y)$.

Proof. Let α_{ρ} be the cone generated by the simple roots in α . Then it is easy to see that $x \in \alpha$ is in α_{ρ} if and only if $\langle \lambda_i, x \rangle \geq 0$ for all i = 1, ..., r. Moreover [1, Lemma 3.3, p. 429], an element x of α_+ is in $\alpha(y)$ if and only if $y - x \in \alpha_{\rho}$. Let $\{\lambda_i, i = 1, ..., r\}$ be the fundamental weights. We know that there exists $K \in \mathbb{N}$ such that $K\lambda_i \in \widehat{G}$ for all i. Let $\mu_i = K\lambda_i$, and $J \subset \mathbb{N}$ be the set of integers defined by Lemma 2. (J is infinite.)

For all $n \in J$, $nx \ll ny$ by Lemma 2, whence χ_{μ_i} (exp (nx)) $\leq \chi_{\mu_i}$ (exp (ny)). But, if we let $n \to \infty$ in J, we have by Lemma 1,

$$\chi_{\mu_i} (\exp (nx)) \sim \exp (n\langle \mu_i, x \rangle), \qquad \chi_{\mu_i} (\exp (ny)) \sim \exp (n\langle \mu_i, y \rangle)$$

as functions of n, whence $\langle \mu_i, x \rangle \leq \langle \mu_i, y \rangle$; therefore $\langle \lambda_i, y - x \rangle \geq 0$ for all i, i.e., $y - x \in \mathfrak{a}_{\rho}$. So $x \in \mathfrak{a}(y)$, whence $\exp(x) \leq \exp(y)$, which proves the corollary.

By conjugation, we see that the theorem is proved for all the regular elements of a; we conclude by using the evident continuity of the order \leq .

REFERENCES

- B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup., 4e série, t.6 (1973), pp. 413-455.
- G. WARNER, Harmonic analysis on semi-simple Lie groups, Springer-Verlag, New York, 1972.
- 3. J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972.

École Normale Superieure Paris