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An important fact in the finite dimensional theory of Lie groups is that every
closed subgroup of a Lie group is itself a Lie group. However, this is not always
the case in infinite dimensions. In fact, it is known that there exists a nontrivial
arcwise connected closed subgroup of a commutative Banach Lie group which
does not contain any one-parameter subgroups (and hence cannot be a Banach
Lie group).

In this note we show that algebraic subgroups of infinite dimensional general
linear groups are Banach Lie groups and we give a sharp estimate on the size
of the neighborhood of the identity which is covered by the exponential map.
This estimate depends on the degree of the defining polynomial equations for the
algebraic group. We obtain better estimates in many cases for the group of all
bounded linear transformations leaving given multilinear mappings invariant
and commuting with other given multilinear mappings, where the given map-
pings have bounded degree. We also show that the group of isometries of a
complex Banach space X is a Lie group when the open unit ball ofX is a homog-
eneous domain and that this does not hold without at least some restriction on
the Banach space X.

Throughout, A denotes a real Banach algebra with identity e and G(A)
denotes the group of all invertible elements of A with the induced topology. A
sub-semigroup of G(A) is a subset G of G(A) such that e e G and xy G when-
ever x, y G.

DEFINITION. A subgroup (resp. sub-scmigroup) G of G(A) is called algebraic
of degree _<n if there is a set Q of vector-valued continuous polynomials on
A x A with degree _<n such that

G (x G(A):p(x, x-x) 0 for all p e Q}.

Clearly any finite product and any intersection of algebraic groups (or semi-
groups) of degree _<n is algebraic of degree _<n. Note thatthedefinitionincludes
the case where the defining equations for G are polynomial equations in x only.
By the Hahn-Banach theorem, the polynomials in the definition can always be
chosen to be complex valued.
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THEOREM 1. If G is an al#ebraic subgroup of G(A) ofde#ree <_ n, then the set

y (yA:exp(ty)GforalltR)

is a closed Lie subalyebra of A with the commutator product, and the principal
determination oflog is a homeomorphism of the neighborhood ofe in G consisting
of all those x G satisfying

(1) a(x)
_

{z C: larg z[ < z/n}

onto a neighborhood ofO in . Thus G is a Banach Lie group in the norm topology
and is its Banach Lie algebra.

COROLLARY 1. IfG is an algebraic subgroup of G(A) ofdegree <_n and x G
satisfies (1), then x exp y and exp (ty) Gfor all R, where y log x. In
particular, each x G satisfying (1) lies in a norm-continuous, one-parameter
subgroup of G.

Here, as throughout, the function log has its principal determination. If A
is not a complex Banach algebra, then a(x) is by definition the spectrum of x
in the complexification of A. Hence in particular, Theorem and its corollary
apply when (1) is replaced by

(2) lie xll < sin (n/n), n > 1.

Notice that if G is the (not necessarily algebraic) group of all x G(A) with

Ilxll IIx- and A is complex, then iy is the set of all Hermitian elements
of A. (See 1-2, Section 5].) Also if A is the Banach algebra L(X) of all bounded
linear transformations on a Banach space X, then G(A) GL(X), the general
linear group of X.

Example 1. The group G {zC\{0}:Im(zn) 0} is algebraic of
degree n and y R. Thus the domain in (1) and the constant in (2) are largest
possible.

Example 2. Let 1 be the Banach algebra of all complex sequences with the
sup norm. For each positive integer n, let Gn {x e G(/): x(n) 1} and
put G Gn. Then G, is algebraic of degree <n and the group G is totally
disconnected and not discrete, so G is not a Lie group. Thus intersections of
algebraic groups with no restriction on the degree are not necessarily Lie groups.
In particular, groups given by holomorphic equations are not in general Lie
groups.

Proofof Theorem 1. Clearly y is closed since G is closed in G(A). It follows
from classical exponential formulae [3, p. 200] that x + y and Ix, y] xy
yx are in y whenever x and y are in y. (The formulae referred to can be estab-
lished by straightforward Banach algebra techniques for the case we consider.)
Thus y is a closed Lie subalgebra of A.
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By passing to the complexification of A and applying the functional calculus
(see [12, Chapter 1] and [-7, Chapter 5]), we have that log is a bianalytic map
of the open set U of all x G(A) satisfying (1) onto the open set V of all y e ,4

satisfying

a(y)
___

{z C" Jim z[ < n/n},

and exp log-1. Clearly exp maps g c V into G c U. Thus the proof of
Theorem reduces to showing that log maps G c U into g, and this follows
from"

LEMMA 1. Let x G(A) satisfy (1) and suppose p" A x A --. C is a poly-
nomial of degree <_n with p(xk, x-k) 0, k 0, 1, 2, Then y log x
satisfies p (exp (ty), exp (-ty)) 0 for all t R.

Proof. Let B be the Banach algebra A x A with, say, the max norm and
putu (x,x-1) andv (y, -y). ThenuG(B),v logu, andp(uk) 0
for k 0, 1, 2, Hence it suffices to show that p (exp tv)= 0 for all
t R. Now by [14, Section 4], p extends to a holomorphic polynomial on the
complexification E of B and it can be verified directly that an(v) {z C"
IIm z[ < n/n}. Since p is continuous on E, there is a number M > 0 with
Ip(w)l _< M max {1, Ilwll) for all w E. Consequently,

f(2) p (exp 2v)

is an entire function of exponential type and, by the spectral mapping theorem,

lim sup (l/t) log ]f(_.+ it)] <_ lim sup (n/k) log+ [[exp

___
ikv)[[

_< n log+ [exp (+_ iv)[ < re,

where [, denotes the spectral radius. Also f(k)= 0 for all nonnegative
integers k, so f-= 0 by Carlson’s uniqueness theorem [1, p. 153]. Thus
p (exp tv) 0 for all e R, as desired.

PROPOSITION 1. ]f G is an algebraic sub-semigroup of G(A), then x-1 Gfor
all x G satisfying (1). Moreover, the identity component ofG is a group.

COROLLARY 2. Let M be a closed real subspace ofa Banach space Xand let o
be a bounded linear transformation on X such that (M)

_
M and tr(cz) does not

intersect the interval (-, 0]. Then (M) M.

Proof. The first part of Proposition 1 is immediate from Lemma 1 with
-1. To prove the second part, let U= {xG’x-IG} and putr

sin (g/n) or r according as n > or n 1. If x e U, then U contains all
y e G satisfying [[x YI[ < r/l[x- by the first part. If y is the closure of U
in G, then by the continuity of the map x x- on G(A), there is an x e U
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with IIx-11 IIx yll < r, so y e U by what we have just shown. Hence U is
both an open and closed subset of G containing e, so U contains the identity
component of G.
To deduce the corollary, take A L(X) and let Q be the set of all poly-

nomials p" A - C of the form p(fl) g’(fl(x)), where x M and is a bounded
real-linear functional on Xwith re(M) 0. Then by the Hahn-Banach theorem,
the semigroup G {fl G(A)" fl(M)

_
M} is algebraic of degree _< 1. Thus

by hypothesis and Proposition 1, - G.

Alternate proof of Theorem 1. To simplify matters, we consider only the
case where A is a complex Banach algebra and the defining relations for G are
holomorphic polynomials in x. One can deduce the theorem from this case
using the techniques of the first proof.

Let P be the complex Banach space of all complex-valued holomorphic poly-
nomials on A ofdegree < n and define maps : G(A) ---} GL(P) and rk: A L(P)
by

p(wx), Z p(w)(wx),

where x, w A and p P. Since is an analytic group homomorphism, by
elementary Lie theory [3, p. 200-1, b is a Lie homomorphism and exp
expotk. Let Q {pP:p(G) 0} and note that Q is a closed complex
subspace of P. Since G is algebraic of degree <n,

x e G (x)Q
_
Q

for all x G(A), and therefore,

(3) y e .*. r(y)Q Q

for all y A. In particular, # is a closed Lie subalgebra of A.
Let x G satisfy (1) and put y log x. As in the first proof, it suffices to

show that y e g. Let Pk be the space of all complex-valued homogeneous
polynomials of degree k on A, i.e., p Pk if and only if there is a continuous
symmetric k-linear map F: Ak C such that

p(w) F(w,..., w) for all w e A.

(The map F is uniquely determined by p.) Then P Po ) P,, each Pk
is an invariant subspace for b(y), and b(y) is given by

F(w,..., w) kF(wy, w,..., w)

on P. Since a(y)
_

{z e C: IIm zl < n/n}, it follows that a(b(y)) {z e C:
Jim z[ < n}. Then since (x) exp (y), by the functional calculus and the
spectral mapping theorem,

b(y) log (x) and a(q(x))
___

{z e C: [arg z[ < n}.
By Runge’s theorem, log is a uniform limit of polynomials on a((x)), so b(y)
is a limit of polynomials in (x). Hence dp(y)Q

_
Q since (x)Q Q, and

therefore y e g.
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Note that the first part of the above proof holds when A is any real Banach
algebra and Q is any closed subspace of complex-valued polynomials on A of
degree _<n such that Q contains the polynomial w p(wx)whenever both Q
contains p and x e G. Thus by (3), the Lie algebra of

is given by
G {xG(A):p(x) 0forallpQ}

g {y A: Dp(e)y 0 for allp e Q}.

A number of interesting examples of algebraic groups of degree <n are
included under the following"

PROPOSITION 2. Let X and Y be real Banach spaces and let F be a continuous
n-linear map on X with values in Y. Let m 0 or m 1, and suppose Y X
when m 1. Then the set G of all GL(X) satisfying

(4) F(xl,. x,) omF(xl, x.) for all xx,. x. X,

is a Banach Lie group whose Banaeh Lie algebra is the set g of all 6 L(X)
satisfying

(5) F(axl, x2,..., x.) +... + F(x,,..., x,_a, fix,) maF(x,,..., (x.)

for all xx,..., x, X, and 9 is as in Theorem 1. Also if = G and

(6) a(e)
_

{zC:largzl < 2n/(n + m)}, n + m # 1,

then 6 log is in g.
Here m and m6 denote the identity and zero transformations on Y, respectively,

when m O.

Clearly, any group which is an intersection of groups of the above type with
n _< N is a Banach Lie group with Banach Lie algebra equal to the intersection
of the corresponding Banach Lie algebras, and (6) holds with n replaced by N.
Note that the group G of Proposition 2 is algebraic of degree <_(n + m)/2

when n + m is even and algebraic of degree _<(n + m + 1)/2 when n + m is
odd. However, in the second case (unlike the first) this is not enough to obtain
Proposition 2 directly from Theorem 1.

Example 3. If A is a not necessarily associative Banach algebra (e.g., a
Banach Lie algebra or a Banach Jordan algebra), then Proposition 2 applies with
n 2andre ltothegroup

G {p GL(A): p(xy) p(x)p(y) for all x, y A }

of all automorphisms of A and

g {6 L(A): 6(xy) (6x)y + x(6y) for all x, y A}

is the Lie algebra of all derivations of A. This contains results given in [4, p.
314], [9, p. 420], and [15]. An example given in [10, p. 269] shows that the
constant 2zt/3 in (6) is largest possible.



LINEAR ALGEBRAIC GROUPS IN INFINITE DIMENSIONS 671

Example 4. If H is a complex Hilbert space and J e L(H), then Proposition
2 applies with n 2 and m 0 to the group

G {A GL(H):A’JA J}
and

g {B L(H): a’J + JB 0},

where z may be either the adjoint map or a transpose map. Clearly this example
includes the infinite dimensional unitary, orthogonal, and symplectic groups.
(See [5, 11.4].)

Example 5. If is a J*-algebra [61, then Proposition 2 applies with n 3
and m 1 to the group

G {p GL(9): p(AB*A) p(A)p(B)*p(A) for all A, B e }

of all J*-isomorphisms and

O {6 L(9): 6(AB*A) 6(A)B*A + Af(B)*A + AB*6(A) for all A, B 9.I}.

It is known that G is the group of all isometrics of 9 onto itself and hence it/is
the space of all Hermitian operators on 9I. For further results for the ease where
9 is a C*-algebra, see [8] and [13].

Proof of Proposition 2. Our proof will be independent of Lemma 1. By
eomplexification, we may assume that X and Y are complex Banaeh spaces and
that all linear and multilinear mappings mentioned are complex linear in each
variable. Obviously, 9 as defined above is a closed Lie subalgebra of L(X). We
first show that 9 is as in Theorem 1. Suppose 6 L(X) and exp (t6) G for all
t e R. Replacing by exp (t6) in (4) and differentiating at 0, we see that 6
satisfies (5) so 6 e 9. Now suppose 6 t/, and let W be the Banaeh space of all
continuous n-linear mappings F’ on X with values in Y. Define Bo,..., B, e
L(W) by

Bo(F’)(x,..., x,) m6F’(xa,..., x,),

B(F’)(x,. x,) F’(xt,. x_x, 6x, x_t,. x,), < k <_ n,

and put B B +... + B, Bo. Then B(F) 0 and Bo,..., B, commute,
so

(exp Ba)’" .(exp B,)F (exp Bo) (exp B)F (exp 6)F,

which shows that exp 6 G. Hence exp (t6) G for all t R since t/is a linear
space.
A slight extension of the argument given in [3, p. 209], proves the last asser-

tion of the proposition. Thus, as before, G is a Banach Lie group with Banach
Lie algebra O.

THEOREM 2. Let Xbe a complex Banaeh space andsuppose the open unit ball B
ofX is homogeneous (i.e., the group G ofbiholomorphic mappings ofB acts tran-
sitively on B). Then the group K of all invertible linear isometrics of X is an
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alttebraic subgroup of GL(X) of degree < 2. In particular, K is a Banach Lie
group and every K with III- roll < /2 lies in a norm-continuous, one-
parameter subgroup of K.

Proof Let denote the complex Banach space of all polynomial vector
fields of degree <2 on X. The elements of are written in the form h(z)(O/Oz)
where h: X X is a polynomial of degree < 2. In [11] it has been shown that
the set p of all complete holomorphic vector fields on B is a closed real-linear
subspace of and that p is a Banach Lie algebra in the induced topology.
Furthermore, p admits (as a topological vector space) a direct sum decom-
position of the form

=p,
where

{2(z)(O/dz): L(X) and exp (t2) K for all R}
and

{(a qa(Z))(O/OZ)" a X}.

Here a qa is a certain continuous, injective, conjugate-linear mapping from X
into the Banach space of all homogeneous quadratic mappings of X into X.
For every GL(X), define a map Ad() GL() by

h(z)(/Oz) --, h(- z)(/z).
Then fi is Ad ()-invariant for every K, i.e., uN N, and therefore G
NK, where N is the subgroup of G generated by exp (/). On the other hand, if
z GL(X) and Ad ()/ p, then K since

(B) G(0) czN(0) N(0) N(0) B.
Therefore,

K (o GL(X)" Ad ()# #}
( GL(X)" qa(Zz) oq,-ta(z) for all a, z X},

and K is algebraic of degree <_2. Every K with III 11 < /2 satisfies
Re tr() > 0 and therefore lies on a norm-continuous, one-parameter subgroup
of K by Corollary 1.

Example 6. We construct a complex Banach space X such that the group G
of invertible isometries of X is not a Lie group in the norm topology. Thus
some restriction on the Banach space X in Theorem 2 is necessary.
Given a positive integer n > 1, let E ,__ En, k, where

En, k {(, COS krc/n, 2 sin krc/n)" IAI 1, A C),

and let Kn be the convex hull of E,. Then K, is a closed, bounded, balanced
convex subset of C2 with nonempty interior, so K, is the closed unit ball of C2

with respect to some norm. Call this normed space X,. Note that E, is the set
of extreme points of the closed unit ball of X, and that E,x,..., E,, are the
components of E,.
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Let X >< n= 2 Xn and give X the sup norm. For each n, define a continuous
mapfn: G - Xn byf() Zrn(a(e)), where n is the projection of X onto the nth
coordinate and e is the constant sequence in X with each term el (1, 0). Let
E be the set of extreme points of the closed unit ball of X and note that x e E
if and only if z,,x En for all n. Then f(G)

_
E. since (E)

_
E and e E.

Hence if is in the identity component of G, it follows that fn() E.. for all
n since el En..
Now given a positive integer n > 1, let

cos -sin

sin COS
n

and define a map on X by ({Xk}) {Yk}, where Yk Xk for k q: n and
y, Vxn. Then G since both and V-1 map Kn into itself. However,
f,() ve E,, so is not in the identity component of G. Thus we have
obtained a sequence of elements of G which converge to the identity but which
are not in the identity component of G, so G cannot be a Lie group.

The example mentioned in the introduction can be found in the lecture notes"
K. H. Hofmann, Theorie directe des groupes de Lie I-IV, Seminaire Dubreil
(1973/74), p. 2-08. The authors would like to thank John Duncan fbr some
comments which led us to Lemma 1. See his paper with M. J. Crabb, Some
inequalities for norm unitaries in Banach algebras, to appear in Proc. Edinburgh
Math. Soc.
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