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A GEOMETRIC CONSTRUCTION OF GENERALIZED
YOUDEN DESIGNS FOR v A POWER
OF A PRIME

By ESTHER SEIDEN AND CHING-JUNG WU!
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A new method of construction of generalized Youden designs for v =
sm, s a power of a prime is'introduced here. This generalizes the construc-
tion of Ruiz and Seiden which could be applied only to even powers of a
prime. The number of experimental units required to carry out the design
in the corresponding cases is the same. However, the present method can
be used for construction of designs which could not be constructed previ-
ously even in the case of even powers. Moreover the present method
presents a unified construction for even and odd powers of primes.

For a fixed value of a prime it is noticed here that one can construct
an infinite number of designs. This provides the experimenter with a choice
of designs which may prove very useful in applications.

A simpler method of construction is also presented. The price one has
to pay for the simplicity is that more experimental units are required for
carrying out the design.

1. Introduction. Statisticians were engaged in construction of new designs
at a very early stage of the development of the theory of mathematical statistics.
They were motivated by the desire to help the experimenters lay out their
experiments in such a fashion that the differences between any two varieties
under consideration should be estimated with the same precision. The statis-
ticians also provided the experimenters with easily understood techniques of
analyzing and interpreting the results of the designs constructed. The reward
of the statisticians was that the problems of the experimenters were stimulating
and their solutions were interesting per se in addition to their usefulness for
applications. However, because of the limitations of the human mind the stat-
isticians had to disappoint the experimenters occasionally by telling them, for
example, that the construction of the design requires the number of treatments
to be a power of a prime or that the parameters of the designs have to satisfy
certain relations and cannot be varied independently.

In the later stage of the development when many designs were already known
and tabulated Abraham Wald (1943) formulated a criterion of optimality and
showed that the commonly used Latin square designs are in fact optimal. Kiefer
since 1958 has continued and generalized this work. He formulated several
criteria of optimality, investigated the relationships among them and then

Received September 1976; revised April 1977.
1 Research supported by NSF Grant No. MCS76-07193.
AMS 1970 subject classifications. Primary 62K05; Secondary 05B0S.
Key words and phrases. Latin square designs, BBD, Youden designs GYD, finite fields, PG(m, s),
EG(m, s5), optimal designs.
452

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. IINGIE ®

www.jstor.org



GENERALIZED YOUDEN DESIGNS 453

formulated a criterion of universal optimality. He showed that Latin square
designs and Youden designs, if regular, are universally optimal.

While formulating the optimality proofs Kiefer was led to the concept of
balanced block designs (BBD) which generalized BIBD, and then via this to
generalized Youden designs (GYD). His published work on optimality criteria
exhibited some examples of GYD to illustrate the theory. A 1975 paper of
Kiefer includes the results of long term investigations of various methods of
construction of GYD. The construction is named “patchwork” because it makes
use of various combinations of known designs to obtain GYD.

Inspired and stimulated by Kiefer, Ruiz and Seiden (1974) used a geometric
method to construct GYD for v an even power of a prime.

At that time the authors were not familiar with Kiefer’s work on the theory
of construction of GYD. The aim was to use some geometric methods for con-
struction of new GYD. The motivation for the present work was to find a
method of construction which does not require m to be even.

The reader familiar with Kiefer’s theory on “patchwork” (1975) will have
no difficulty in identifying the propositions of Kiefer’s paper of which the de-
scribed constructions can be considered as realizations.

We are presenting here a construction of GYD for v = s™, sa power of a
prime and m any integer > 2. We also show that for fixed s and m there are
infinite number of GYD because one can vary independently the number of
rows and columns of the designs by using independent multiples of s. For
s = 2, m = 2 the construction reduces to Kiefer’s (1975) construction.

2. Construction. First we define the GYD as formulated by Kiefer (1975).

In the block design setting with v varieties and b blocks of size k a design is a
k X b array with blocks as columns and n;; denotes the number of appearances
of variety i in block j. Letr, = 3}, n,; and 4, = ¥, n;;n,, denote the number
of occurrences of variety i and the number of times varieties i and 4 occur in
the same block.

DeFINITION 1. A BBD is a design with all r, and 2, equal for i < A,
|n;; — k/v] < 1 for all i and j.

DEFINITION 2. A b, X b, array of the symbols 1,2, ..., visa GYD if itisa
BBD when each of {rows} and {columns} is considered as blocks.

Clearly the parameters of GYD are not independent and some necessary con-
ditions for construction were stated by Ruiz and Seiden (1974) and Kiefer (1975).

To start the construction we split the s(s™ — 1)/(s — 1)(m — 1) flatsin EG(m, s)
into m sets as follows: Let G, be the sets of (m — 1) flats satisfying the equations

alxl-i-azxg—l—'”+ap_1xp_1-|-xp:a p=1,...,m

where x; denotes the ith coordinate in EG(m,s)and a,a,,i=1, ..., p belong
to GF(s).
Keeping the a,’s fixed and letting “a” assume all values in GF(s) we obtain a
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parallel pencil of s flats. Hence each set G, comprises s? flats and the totality
of them accounts for all s(s™ — 1)/(s — 1) flats of EG(m, s).

Let @y, ), - - -, a,_, be the s elements of GF(s) in an arbitrarily defined order.
This order will be used to order the s™ points of EG(m, s) as follows: Consider
two distinct points 4 = {a,, a,, - - -, a,} and B = {b,, b,, - --, b,}. Suppose that
the first coordinate in which they differ is the ith coordinate.

A < B (A precedes B) if and only if a, < b,.

We are ready now to describe the construction and shall do it in three steps.

Step l. p=1,2,3,..-,m— 1.

Letl,i=1,2,3,...,s77% be pencils in G,, and L, be s X s™~' matrix with
the flats in /; as its rows. Note that the order of the flats in L, is arbitrary.

We define T, = (L,, L,, - - -, L,,-1)’ and § = ({ 5) where I is the identity ma-
trix of size s™!' — 1. It is clear that T, is a s* X s™ ' matrix. Let T* =
(Lyy Ly&2y LE», oo, Lp o §WP 70T TH% = (T %, T, %68, ... T *&m =97,

Since T,** is a s™~! X s™ ! matrix and the point on the (n 4 wus)th position
of any flat in any pencil /;, where 1 < n <5, 0 < u < s™* — 1, is on the flat
X, = a,_;, the elements of the (n — us)th column of T ** form the flat x,, = «a,_,.

Let E = (? ;) where [/ is of size (s — 1) and » a s™~! X s™~! matrix which has
E as its diagonal elements.

Consider the matrix D, = (T **, T **y, - .., T ,**p*~)".  Multiplying T **
on the right by » gives a permutation of each row in which each s-tuple within
the (us + 1)thand (u + 1)sth columns is permuted cyclically,0 < & < s™* — 1.
Moreover since the (n + us)th column of T, ** is the flat x,, = «,_,, each column
of D, is therefore a permutation of all s™ points of EG(m, s).

Note that each flat in G, as a row of T,** has been repeated s™~*~' times in
T,**, and thus each flat in G, as a row of D, has been repeated s™~? times in D,.

STEP 2. p=m.

There are s™! pencils /; in G,,, i =1,2,3,...,s™% Let L, be s X s™!
matrix with the flats in /; as its rows and & be defined as in Step 1.

Consider the following matrix:

Dm = (Ll’ sz, Lsfﬁ, cee, Lam_lg(gmﬂ_l))T .

It follows that each column of D,, is a permutation of s™ points in EG(m, s).

Interchange the coordinates using the permutations (x;, x,,_;,) and order the
points as before using the new coordinates.

Let G’ be the set of s?(m — 1) flats in terms of the new coordinates. Thus
G =Xp pi1+ 4, Xp_pis+ -+ +aX, =a,a,a,e GF(s). Repeat Steps 1 and
2 using G,”’s instead of G,’s.

NoTATION. Let every variety occur m, or m, + 1 in each row and n, or n, + 1
times in each column of the design.

Let every two distinct varieties occur together 2, times in each row and 4,
times in the same column.
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With this notation the above construction yields the following main results.
THEOREM 1. There exist GYD with parameters v = s™, m =2, b =
(s + 1)s™(s™ — 1)/(s — 1), by = (t,5 + 1)s™'(s™ — 1)/(s — 1), where 1, 1, =
0,1,2,3, .... The other parameters are
r=(t;s + 1)(t,s + 1)s™2(s™ — 1)*/(s — 1)?
m, = (s + 1)(™ = 1f(s — 1) + 4
n,= (t,s + )(s™ ' — /(s — 1) + ¢,
A=[(ts + D™ = D)(s — 1) + 4](t,s + 1)s™3(s™ — 1)/(s — 1)
X [(65 + D™ = Dis — 1) + 1]+ (s + ™2™ = 1)f(s — 1)
Ay = [(tys + )™ — D)/(s — 1) + ](t,s + 1)s™(s™ — 1)/(s — 1)
X [(tys + 1)(s™ — 1)/(s — 1) + 1] + (s + 1)s™*(s™ 7 — 1)/(s — 1) .
Proor. For the sake of convenience, for a matrix M and a positive integer
n, the matrix

n
PP —
is denoted M,
Let
A(i,tz) = [DiT][(tng)ai—z] R i=2,3 ..., m—1,
Al = [(Di')T][ftpﬂ).i—z] , i=2,3 ..., m—1,
A= [[DlT][t-Z] [DmT]Wz”l)‘m_z] A(m—l,tz) A(m—z,tz) e A(2,t2)]
and

A" = [[(Dy)"]d [D,/7 ]ttt 0em Afm—l,tl) Aim—ﬂ,tﬂ T Afz,tl)] :

Then the desired GYD is
o=[T 4]
AT (L)pa

wherea = (f, + (™' = 1)/(s = 1) + 5™ L, 8= (t, + 1)(s™ ' = D)/(s — 1) +
1,s™'and (L),* is a X a matrix with each entry a Latin square of order s™.

It follows from the above construction that each flat in EG(m, s) appears
(t;s + 1)s™? times as columns in the upper part from row 1 to row s™! of G.
Similarly each flat appears (¢,5 + 1)s™~* times as rows in the left-hand part from
column 1 to column s™~! of G. Moreover D,, D/, i =1,2,3, ..., m — 1, m, are
all arranged in such a way that each column is a permutation of s™ points. Since
the number of flats in EG(m, s )which contains a prescribed point (pair of points)
are all the same for any two points (pairs of points) in EG(m, s), therefore G
must be a GYD.

NoTATION. The remainder of the division of an integer a by b will be written
as a,.

REMARK 1. For s = m = 2, Theorem 1 asserts the existence of GYD stated
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by Kiefer (1975) in Example 4.1.1. We wish to add at this point that b, =
6(2j, — 1) and b, = 6(2j, — 1) are the only possibilities for b;, b, when v = 4.
For v = 4 if the GYD is nonregular b,,, and b,,, are either 1, 2 or 3. Ruiz
and Seiden (1974) stated that for GYD

(1) vrey = bibyyy, byt = rbacy)
(i) rop(bawy — /(v — 1) and rg, (b, — 1)/(v — 1)

must be integers.

It follows from (i) that r,, , cannot be an integer unless b,,, and b, are equal
to 2 and from (ii) 7, and r,,,, must be divisible by 3. Hence b, and b, must be
multiplies of 6.

We shall illustrate the construction stated in Theorem 1 by the following
example.

ExAMPLE 1.

s=2, m=13, tlzt,:().
v=s"=2%=28. b=28, k=28, r=98, m. =3, n =3
A= A, = 342,
Let
0=(0,0,0), 1=(0,0,1), 2=(0,1,0), 3=(0,1,1), 4=(1,0,0)
5=(,0,1), 6=(1,1,0), 7=(1,1,1).
G x, =0, x1:1
G, =0, x,=1; x,+x,=0, x+x,=1
G: x,=0, x,=1; x,+x=0, x,+x=1; x+x+x=0,
x+x+x=1; xx,+x=0, x,+x,=1.

Then
01 4 5
01 2 3 2 3 6 7
=4 5 6 7° Ti=4 1 6 7
2 3 45
01 45
01 2 3 2 3 6 7
f J— X — T okk —
Tr=4 56 70 D'=T""=¢ 7 01
4 5 2 3
01 2 3
4 5 6 17
Kk —
T™=5 30 1’
6 7 4 5
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01 4 5 0 2 4 6
2 3 6 7 1 3 5 7
6 7 0 1 3470
4 5 2 3 2 5 6 1
D=y o5 40 D=5 ¢ 0 3
3217 6 4 7 1 2
76 1 0 70 2 5
5 4 3 2 6 1 3 4

Gl': X3=0, x3:1

G: x,2=0, x,=1; x4+x=0, x,4+x,=1,

G/: x,=0, x,=1; x,+x,=0, x,+x,=1; x+x,+x=0,
X+ x,+x,=1; x,+x,=0, x,4x,=1.

0 4 1 5 0 415
2 6 3 7 2 6 3 7
’ Ik — Pkk —
= 0 4 3 7° L =1 = 370 4
2 6 1 5 1 5 2 6
0 4 1 5 0 21 3
2 6 3 7 4 6 5 17
3 7 0 4 6 1 70
1 5 2 6 2 5 3 4
’ ’
by = 4 0 5 1° by = 5 3006
-6 2 7 3 1 7 4 2
7 3 40 7 0 2 5
51 6 2 3 4 6 1
02 6 41 3 75
1 375026 4
— Tl —
Aan = [Dy] = 4 6 0 2 5 7 1 3
571 3 46 0 2
0 231 46 735
4 6 75 0 2 31
’ — T
Awo =D =1 3 02 57 46
57 46 1 3 0 2
A = [[D"]MA4,,] A" = [[DfT]P[ Al 0]]
G = Tl**D3'TD3'TD2'T
D, (L)
D; where L isa Latin square of order 8 x 8
D,.
ProrosiTION 1. Each of the D, of matricesp =1, .--,m — 1 and D,, defined

in Steps 1 and 2 of the construction can be used to construct Latin squares of order
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s™ which can be split into s groups of s™~* columns in such a way that every row in
each group is a flat in EG(m, s) construction:
Lp':[Dp’va""’”‘—IDp] le""’m_l
L,=|D,,ED,, ---,E*~'D,].
Here 7'D,, i =0, --., s — 1 means that the matrices T,**7?, j =0, .-.,5 — 1
forming the matrix D, are premultiplied by »'. Similarily the matrices L &9,
j=1, ..., 5™ are premultiplied by E*, i = 0, ..., s

We shall presently use the construction which led to Theorem 1 and Proposition
1 to establish the existence of two more classes of GYD.

First we define m new matrices M,, p =1, ..., m — 1 and M,, obtained from
L, and L, respectively by deleting the columns of D, and D,, respectively. These
matrices have the form M,, M,,. Let

M, =[»D,, ---,»'D,], p=12,...,m—1.
M, = [ED,, ---, E*D,].

It is easy to see that each row of M, and M,, is a complement of a (m — 1)
flat in EG(m, s) with respect to the whole space EG(m, s). Hence the M matrices
are of order s™ X (s™ — s™~'). Moreover from the definition of the D matrices
it follows that each complement will be repeated s™~? times in M,.

Let U, be the matrix obtained from M, by deleting the first s™~* rows. Then
Uyisa (s™ — s™ ') X (s™ — s™ ') matrix in which the complement of each flat
of G, is repeated (s — 1)s™~? times in the corresponding row. Analogously to
Step 3 we construct the M/ matricesg =1, ..., m.

We now state the following theorem.

THEOREM 2. There exists GYD with parameters v = s™, m = 2,
b=1t(s— s (s™ — /(s —1), k= (t;s — 1)s™(s™ — 1)/(s — 1),
where t;, t, =1,2,3, ....

CoNsTRUCTION. The desired GYD is
G — [Ul B’ ]
Br (L)ﬁa
where

B = [[M7]tta=1) [ M, T |(tar=Da™ =2 [ MZ_ JUctas=0s™=31 [ M,T]itas-10)
B — [[MIIT][tl—l] [MmrT][<:1e—1um—2] [M:nT_l]Wv—l)@"“al e [M2/T][t1._1]]
a=(Hs— 1) 245" o s+ )+ — 1
B=(s—DE" 2+ s34 oo 54+ 1) 4+4—1.
Combining the construction of Theorem 1 and Theorem 2 we get
THEOREM 3. There exists GYD with parameters v = s™, m =2, b, =
(ts — s 1(s™ — 1)/(s = 1)
by = (s + 1)(s™ — 1)s™Y(s — 1), t,=1,2,3...,4=0,1,2,3,....
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PrOOF. Let T, = [Ty**(pT**) (PT**) - - - (p**T,*%)].
The following design G is a desired design:

¢= [wﬁv <f>]

A" = [(DY) [ [(Dy) 100 AL, (s — 1) - Aly(fs — 1)
B — [MIT][°2] [MmT][(t23+l)sm"2] [M;_l][(t23+l)x"”—3] .
[MpT][(t23+1)a?’“2] . [MzT]m“s“)]

where

where
a=[ns ="+ s 4 o )+ 41
B=1[ts+ D™+ s34+ oo 54+ 1)+ 1,
Aly() = (DT, i=2,3,-...m—1.
Therefore

A:i)(tls — 1) — [(DiI)T][(tis—l)si—Z] , i=2,3, ... m—1.

3. Discussion of other possibilities of construction of GYD. For v = s™, s
a power of a prime it is easy to construct designs which satisfy Proposition
6 of Kiefer’s (1975) paper. To facilitate the reading of the paper we quote
Proposition 6.

ProrosITION 6 (Kiefer, 1975). Assume v |c,c,. Suppose (i) there are BBD’s B, =
(v, by, ¢;_;) with v|b, — ¢, and (ii) there are c, blocks Of B,, whose union contains
each variety exactly t times, and such that (iii) the ¢, X c, array formed with these
blocks as columns has rows which are blocks of B,. Then there is a b, X b, GYD.
Moreover, (iii) is satisfied if (ii) is satisfied and (iv) B, is composed of all the blocks
of at least ¢, BBD’s; and (ii) and (iii) are satisfied if, in addition to (iv), B, is com-
posed of all the blocks of at least ¢, BBD’s.

The s™~* column (s* rows) of the chosen pencils belong to a BIB design found
byall k (all (m — k)) dimensional flats in EG(m, s). The number of blocks in these
BIB designs is respectively s™*p(m — 1,k — 1, s)and s*p(m — 1, m — k — 1, 5)
where o(m — 1,k — 1,5) and ¢o(m — 1, m — k — 1, 5) denote the numbers of
(k — 1) dimensional flats and (m — k — 1) dimensional flats in the PG(m — 1, 5)
respectively. It remains to be shown that one can choose two numbers, say, x
and y such that [xp(m — 1,k — 1,s5) — 1]and [yp(m — 1,m — k — 1,5) — 1]
are divisible by s* and sm—k respectively. However, it is clear that this can
always be achieved since ¢(N, [, 5) and s are relatively prime for any integers
N > I. Filling the empty space with a suitable number of Latin squares of order
s™ will complete the construction. Clearly one has to arrange the points in the
flats to get BBD’s in both directions but this can be easily carried out either
using known theorems on systems of distinct representatives or making use of
the permutations which were applied for the constructions in this paper.
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We wish to remark however that the price which has to be paid for the sim-
plicity of construction is that the number of experirriental units required will in-
crease considerably. Using this method fors=2,m =3 withk =2andm —k =1
we would get a GYD with the 28 x 42 units while Example 1 required 28 x 28

units.

In conclusion we wish to remark that the constructions described here yield
the same result as obtained by Ruiz and Seiden (1974) for v = s*™ when s™ is
replaced by s. Clearly the method described here has the advantage that it is
not limited to even powers. It should be mentioned however that applying the
method described here to s’ will result in a larger design if we do not make
the substitution to which the method of Ruiz and Seiden could be applied.

The two constructions yield for v = s’ different GYD’s with the same pa-
rameters. This raises again the question whether one should search for additional
optimality criteria to distinguish designs which are undistinguishable by the
present criteria although their structure seems to be essentially different.

Acknowledgment. We wish to thank the referee for pointing out a mistake in
the first version of the discussion of other Possibilities of construction of GYD.

REFERENCES

KIEFER, J. (1958). On the nonrandomized optimality and randomized nonoptimality of sym-
metrical designs. Ann. Math. Statist. 29 675-699.

KIEFER, J. (1959). Optimum experimental designs. J. Roy. Statist. Soc. Ser. B 21 272-319.

KIEFER, J. (1970). Optimum experimental designs. Proc. Internat. Congress Math. 3 249-254.
Gauthiers-Villars, Paris.

KIEFER, J. (1971). The role of symmetry and approximation in exact design optimality. In
Statistical Decision Theory and Related Topics 109-118. Academic Press, New York.

KIEFER, J. (1975). Balanced block designs and generalized Youden designs, 1. Construction
(patchwork). Ann. Statist. 3 109-118.

KIEFER, J. (1975a) Construction and optimality of generalized Youden designs. In A4 Survey
of Statistical Design and Linear Models (J. N. Srivastava, ed.) 333-353. North-Holland,
Amsterdam.

Ruiz, F. and SeIDEN, E. (1974). On construction of some families of generalized Youden de-
sign. Ann. Statist. 2 503-519.

WALD, A. (1943). On the efficient design of statistical investigations. Ann. Math. Statist. 14
134-140.

DEPARTMENT OF STATISTICS AND PROBABILITY
MicHIGAN STATE UNIVERSITY
EAsT LANSING, MICHIGAN 48824



