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MINIMAX ESTIMATION OF LOCATION PARAMETERS FOR
SPHERICALLY SYMMETRIC UNIMODAL DISTRIBUTIONS
UNDER QUADRATIC LOSS

By ANN R. CoHEN BRANDWEIN! AND
WiLLIAM E. STRAWDERMAN?

Baruch College and Rutgers University

Families of minimax estimators are found for the location parameter
of a p-variate (p = 3) spherically symmetric unimodal distribution with
respect to general quadratic loss. The estimators of James and Stein,
Baranchik, Bock and Strawderman are all considered for this general
problem. Specifically, when the loss is general quadratic loss given by
L(3,0) = (6 — 0)D(d — 0) where D is a known p x p positive definite
matrix, one main result, for one observation, X, on a multivariate s.s.u.
distribution about 4, presents a class of minimax estimators whose risks
dominate the risk of X, provided p = 3 and trace D = 2d; where d_ is the
maximum eigenvalue of D. This class is given by dq,-(X)= (1 —
a(r(11X112)/11X11%)) X where 0 = r(+) < 1, (|| X||?) is nondecreasing, (|| X|[2)/|| X1[*
is nonincreasing, and 0 < a < (eo/ Eo(|| X||-2))((trace D/dL) — 2), where ¢y =
2p/((p + 2)(p — 2)) when p = 4 and ¢y =~ .96 when p = 3.

1. Introduction. When sampling from a p-dimensional spherically symmetric
unimodal (s.s.u.) distribution about an unknown parameter #, with invariant
loss L(d, ), the usual estimator of # is the best invariant procedure. For p = 3
it has long been known that the best invariant procedure is inadmissible with
respect to a large class of loss functions (Brown [8]). However, except in cer-
tain cases explicit estimators which are better have not been found. In this
paper we will present explicit minimax estimators which are better than the best
invariant procedure when the loss is one of the following:

Quadratic (sum of squared errors) loss
(1.1) L(0,0) =0 — 0 = 7., (0, — 0,)*
where 0 = [0,,0,, --+,0,] and 6 =1[6,,60, ---,6,];
or
General quadratic loss
L(0,0) = (6 — 0)YD(6 — )
(1.2) where D isaknown p X p positive definite

symmetric matrix.
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The best known spherically symmetric unimodal distribution about @ is the p-
variate normal distribution with mean vector § and covariance matrix the identity
(MVN (6, I)). Stein [15] in 1955 investigated the question of the admissibility
of the best invariant procedure, X, when sampling from a MVN (@, I) distribu-
tion with respect to quadratic loss (1.1). The admissibility of X for the univariate
normal distribution had been shown [5, 9, 10] some time prior to the publication
of Stein’s celebrated work and Stein’s objective had been to prove the admissi-
bility of X for p = 2; his results showed, however, that X is admissible for p = 2
and inadmissible for p > 3. Furthermore, in 1961 James and Stein [11] proved
the inadmissibility of X was not exclusive to the case of quadratic loss but was
true for any loss function L(d, ) = F(||0 — 6||) where F has a bounded deriva-
tive, is continuously differentiable and concave. In [1}] James and Stein stated
that these results not only apply to the normal distribution but are true for other
location parameter family distributions when certain fourth moment conditions
are satisfied. One might infer as well from this work that the inadmissibility
of the best invariant procedure when p > 3 could be generalized to a larger class
of distributions.

Brown [7, 8], in 1965 and 1966 respectively, considered the general location
parameter estimation problem and proved that under mild assumptions about
the loss function, the best invariant procedure is admissible in one and two
dimensions and inadmissible in three or more dimensions.

The work of Stein and Brown suggests a new problem, namely that of finding
explicit estimators which are better than the best invariant procedure when
sampling from a location parameter family. Heretofore, such estimators have
only been found for the normal and certain s.s.u. nonnormal distributions.

In their 1961 paper, James and Stein presented, in addition to the admissibility
results stated, explicit estimators for the mean vector of a MVN (4, /) distribu-
tion which are better than X, where X is one observation on the distribution.
They considered estimators of the form

(1.3) 8,(X) = (I — a|X|)X

and showed that for p = 3 and 0 < a < 2(p — 2) = 2/E(||X]|"?) estimators of
the form (1.3) are minimax with respect to the loss given by (1.1). These esti-
mators are at least as good as the best invariant procedure X which is known to
be minimax. In addition, when 0 < a < 2/Ey(||X]|™?), 0, is in fact better than X.

In 1964, Baranchik [2] found a class of minimax estimators for # which
includes the James—-Stein class, when X is one observation on a MVN (0, I)
distribution and the loss is given by (1.1). He proved that 6,(X) = (1 — (p —
2)(r(|X]1*/2)/IX]f))X is minimax provided p = 3, r(||X]*/2) is a nondecreasing func-
tion of ||X]|and 0 < r(+) < 2.

After this, until 1974, explicit estimators which were better than the best
invariant procedure were only available for the mean vector of a multivariate
normal distribution. Then, in 1974, Strawderman [16] and in 1975, Berger [3]
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found minimax estimators which are better than the best invariant procedure
when sampling from certain s.s.u. distributions about §. Strawderman’s paper
treats the problem of estimating the location parameter § when X isa p X 1
random vector with a density, a variance mixture of normals (with respect to
Lebesgue measure) of the form

{ (270%)72 exp(—(|X — 0]F/20%) dG(0)

where G(.) is a known cdf on (0, o). Although this class is not the whole class
of s.s.u. location parameter families it does contain ‘“thick” tailed as well as
“thin” tailed distributions by a suitable choice of G(.). He proved that when
p =3, 0, (X)=( — a(x(|X|P)/IIX|F)X, is minimax provided r(||X|) is non-
decreasing, r(||X|)/||X|} is nonincreasing, 0 < a < 2/E(]|X||"*) and the loss is the
sum of squared errors (1.1). As in previous cases, the.minimaxity of these esti-
mators was proven by showing they are at least as good or better than X.

P. K. Bhattacharya [4] and later Bock [6] considered estimation problems for
the MVN (@, I) distribution when the loss is general quadratic loss (1.2). In
particular, Bock in 1975 extended the results of James and Stein and Baranchik
to this case. Provided trace D > 2d;, where d, = maximum eigenvalue of D,
she was able to find explicit minimax estimators of the mean vector 6.

When X is one observation from.a p-dimensional spherically symmetric uni-
modal distribution about # we produce analogous results to those of James and
Stein, Baranchik, Strawderman and Bock.

We begin with one observation X on a p-dimensional uniform distribution
over a sphere, (|X — 6| < R?), with known radius R.

DEeFINITION 1.1. A p X 1 random vector X is said to have a p-dimensional
spherical uniform distribution with location parameter (X ~ U{||X — 6| < R?%})
if the density of X with respect to Lebesgue measure is

fix) = e(R)I(x, R)
. - where S=((x,R):|lx — 6 <R’», R isknown,
(1.4) Ix,R)=1 if "(x,R)eS ‘ ‘
=0 if (x,R)gS$S
and
¢(R) = 1/§ I(x, R) dx .

By first considering the estimators of James and Stein given by (1.3) and later
those of Baranchik and Bock, we explicitly find classes of minimax estimators
with respect to losses (1.1) and (1.2).

As in previous works, we show that the risk of the best invariant procedure
X (which is minimax) is dominated by the risks of these new procedures. In
addition, all estimators in our classes of minimax estimators except X are better
than X.
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We, like Strawderman [16], broaden this problem by extending it to that of
estimating the location parameter when the distribution under consideration has
a density which is a “mixture” of uniforms, i.e., X is one observation on a dis-
tribution which has a density (with respect to Lebesgue measure) of the form

9(lx — ) = § e(R)ls(x, R) dF(R)
where ¢(R), S and Iy(x, R) are defined by (1.4) and F(.) is a known cdf on (0, o).
We find explicit minimax estimators which are better than X when p > 3.

Specifically, for p > 4 we prove that with respect to loss (1.1), 9, (X) =
(I — a(r(|XIM)/IIX]")X is better than X for 0 < a < (2p/(p + 2))/Ey(|X]|"*) when
the distribution is a “mixture” of spherical uniforms, provided 0 < r(-) < 1,
r(|X|]") is nondecreasing and r(||X|*)/||X|? is nonincreasing. When p = 3, the
results are slightly different from those we obtain for p = 4. However, mini-
max estimators of the form given for p > 4 exist when p = 3 by adjusting the
constant a (the upper limit on a).

A p x 1 random vector X is said to have a s.s.u. distribution about ¢ if the
density g of X with respect to Lebesgue measure is a nonincreasing function of
|X — 6]|. It is well known that such a density can be written as a “mixture” of
uniform distributions. Hence, by mixing normals Strawderman obtains explicit
minimax estimators for some s.s.u. distributions about ¢ and we, by mixing
uniforms, obtain explicit minimax estimators for all s.s.u. distributions about 6.

We close this introduction by presenting an ordered outline of this paper.
Section 2 contains results analogous to those of James and Stein and Baranchik
for the spherical uniform distribution when the loss is (1.1). Section 3 is an
extension of these results to one observation on a s.s.u. distribution about 6.
An extension of the results of Sections 2 and 3 for general quadratic loss (1.2)
is given in Section 4. In Section 5, we make some statements about the case of
multiple observations as well as the usefulness and benefits of using the improved
estimators. Lastly, Section 6 is an appendix containing integral expressions as
well as other facts used throughout this paper.

2. Minimax estimators of the location parameter of a p-dimensional spheri-
cal uniform distribution with respect to quadratic loss. We consider the prob-
lem of estimating the location parameter § of a p-dimentional (p = 3) spherical
uniform distribution. For the problem of estimating the location parameter ¢
from X = [X, X,, ---, X,] ~ U{|X — 6 < R*} (see Definition 1.1), X is the
best invariant procedure with respect to quadratic loss (1.1) and is therefore a
minimax estimator of §. This follows from the results of Kiefer [13]. In this sec-
tion, we will find classes of minimax estimators which are better than X when
the loss is the sum of squared errors (1.1) and p = 3.

2.1. Minimax estimators for dimension p = 4. Consider X = [X,, X,, - - -, X7,
where X is one observation on a spherical uniform distribution with location
parameter 6. When the loss is (1.1), we will prove that d,(X) given by

(2.1.1) 04(X) = (1 — (a/IXIF))X
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is a minimax estimator of # when 0 < a < 2¢,R?, where

(2.1.2) G=(p—-2)/p+2 when p >4
= .125 when p=3.

When p > 4 the results proved differ somewhat from those for p = 3. Hence,
only dimensions p > 4 are considered in this section and dimension p = 3 will
be dealt with in Section 2.2.

Clearly ¢,(X) will be minimax, with respect to quadratic loss (1.1), if the risk
of ,(X), R(d,(X), 0), dominates (is less than or equal to for all §) the risk,
R(X, 6), of the best invariant procedure X.

In order to prove this, it will be shown that, for all 4,

(2.1.3)  R(X, 0) — R(3.(X), ) = EglX — O — Egl(1 — al|X]|-)X — 4|
= aky[2 — 2(0"X)||X[|”* — allX[|"]
is nonnegative.

Many of the calculations required to obtain expressions for the difference in
risks have been deferred to the appendix in Section 6 to enable a smoother pres-
entation of the proofs in this section.

It is straightforward to use (2.1.3) and Lemma 6.1.2, to obtain the following
expressions for the difference in risks:

R(X, 6) — R(d,(X), 6)
(2.1.4) = a[2 — 2E (161X )IIX1") — aEjou((IX117)]
= a[2 — E2|I6lI(X; + (61X + lI6l) + Y1)
— aBy((X, + [10)* + 11Y1P)~]
where [|Y|! = || X|} — X* = Y7, X’ and E,,, is the expected value when 6 =
(e, 0,0, ---,0]. As(2.1.4) indicates, the difference in risks only depends on

||6]|. Substituting in (2.1.4), the expressions for the expected values given by
(6.1.6) and (6.1.7), we obtain the following:

D(a, |6l |
(2.1.5) = (R(X, 0) — R(d,(X), 0))/JaM
_ 4 i (R* — y)*~P7[R* — 3||0|PR* + 4|6|*(R* — y")] dy
=1 g i01(y)
_ 20 i (R* — y*)*~"2[R* — ||6|'R* + 2||6|"(R* — y*)] dy
(r—2) dy 01())
where
(2.1.6) dpo(y) = (R — [|0]")" + 4lI0]'(R* — ¥*)
and

2.1.7) M= [.f; R R (R — yo)o-vi dy]-l .
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Clearly, R(X, 6) — R(6,(X), 8) = 0if 0 < a < b(|6|[) where

2 (R = )2 VAR — I6PR + 4[6IF(R — )*)] &y
0

§
_ (=1 dron())
(2'1'8) b(”ﬁ“) - 1 ® (R2 — y2)(P—3)/2[R4 — ||0I|I|2k2 + 2||0||2(R2 _ y2)] dy *
(p—2) ’ ‘ dp jion(y) ‘

With respect to the density

, Goion(y) = (R — y) 202 dg 0 (Y)I(§F ((Rz _‘yz)(p_l)/z/dn,llou()’)) dy)
(2.1.9) for 0<y=<R
=0 elsewhere

(this is the density given by (6.2.1) when g = (p ,_‘1)/.2),
@.110) ooy = Ao = D[ R = IR & (K= ],

(p — 1) LR — [IIPR)E (R* — Y*)7* + 2[0IF
Using (2.1.9), (2.1.10) and (6.1.1) we easily obtain the following:
(2.1.11) 50) = (2(p — /PR
(21.12) b(R) = (2(p — 2'Ip(p — 1)K’
and
(2.1.13) lim,, .. 6(181) = (2(p — D/(p + )R’

Note that when p > 4, 5(0) > b(R) = lim,, .. b([|6|[). It will be shown in Theo-
rem 2.1.1 that lim,,,_., 5(|6||), in fact, is less than or equal to &(||f]]) for all ||f].
Note also, limyy, .. 6(lfl)) = (2(p — 2)/(p + 2))R* = (2p/(p + 2))(E(IX])) as
stated in Lemma 6.1.1.

THEOREM 2.1.1. If X is one observation on a p-dimensional family of the form
(1.4), then 5,(X) given by (2.1.1) is minimax provided0 < a < 2(p —2)/(p +2))R?,
p = 4 and the loss is sum of squared errors (1.1). Furthermore, 6,(X) is actually
better than X for 0 < a < (2p/(p + 2))(1/Ey(||X][7*))-

Proor. Clearly by (2.1.4) and (2.1.5)
R(X, 6) — R(3,(X), 6) = aMD(a, [ll}) = aMD((2(p — 2)/(p + 2)), |6l
provided
0=<a<p—2)/(p+2)R = 2p/(p+ 2)/E(X]T)) -

To prove 8,(X) is minimax-we will show D((2(p — 2)/(p + 2))R |6]) = O.
To do this, consider the following 3 cases: ||f|* < R?, R* < |6} < (p/4)R® and
(pIAR < |16

Case 1. [0F < R~



MINIMAX ESTIMATION OF LOCATION PARAMETERS 383

With respect to the density given by (2.1.9), using D as defined in (2.1.5),
Di((2(p — 2)/(p + 2))R, 1161]) _
(2.1.14) = D(2(p = 2)/(p + )R G/ (R — )P~ dr 01 (1)) dy
= (4/(p — DR — JOIPR® + 40IPE,jp(R* — Y?)]
— (4R[(p + (R — [|IPR*)E;(R* — Y*)7* 4 2{/0IF] -
By Lemma 6.2.1, when |0} < R, g, ,,(y) has monotone likelihood ratio
(MLR) nondecreasing in y. By Lehmann [14], page 74, this implies E, (R* —
YY) 2 Ef(R — Y*) = ((p — 1)/p)R and  Ej(R — Y*)7 < E(R* — V)" =
((p — 2)/(p — 3))R~*. Therefore,
Dy((2(p — 2)/(p + 2))R, 161]) .
Z (4/(p — DR — 3|I6I°R* + 40IPR*((p — 1)/p)]
— (4/(p + 2)RUR — [I6I)(p — 2)/(p — 3)) + 2|6IF]
= @8(p = 9/(p(p — 1)(p + 2)(p — HR[pR* — 361 2 0,
when p > 4. Hence, D((2(p — 2)/(p + 2))R% ||0]]) = 0.

Case 2. R <||0F < (p/HR.

(Note that when p = 4, this case is vacuous.)

When R* < ||| < (p/4)R*, by Lemma 6.2.1, g, ,,(y) given by (2.1.9) has
MLR nonincreasing in y. Therefore, E,, (R*—Y?) = E(R*—Y?) = ((p—1)/p)R®
and E, (R — Y*)~! = lim,_. E ) (R* — Y?)7' =:(p/(p — 1))R7>. Hence, for
101F = (P/HR, :

Dy((2(p — 2)/(p + )R, [161]) = (4/(p — D)IR* — 3H0II2R2 + 4(p — DIp)IOIFR]
— (4R[(p + 2)(p/(p — DYR — [101F) +- 2{101P]
= BR/(p(p — 1)(p + 2)[PR* — 40F] 2 0.
Clearly, by (2.1.14), D((2(p — 2)/(p + 2))R%, ||0])) = O.

Case 3. ||0]F = (p/4)R%.

In order to show that D((2(p — 2)/(p + 2))R’, ||f]]) = 0, when ||6|® > (p/4)R?,
we first obtain a new expression for D((2(p — 2)/(p + 2))R?, ||6]|). By applying
(6.1.3) to (2.1.5), simple calculations lead to
D((2(p — 2)/(p + )R |10]])

= (1/(p(p = 1(p + I + 4p — )R — p(p + 2)|I0IF] §&* (R* — y*) >~ dy

+ (61 — RYpL(p — HR + (p + DIOP] §5 (R — )7 [dr 101(7)) dY] -
Hence, clearly by Lemma 6.1.5, :
D(2(p — 2)/(p + 2)R |6])
= (3 (R = y)»=2"dyl(p(p — 1)(p + 2)(P* + 4p — 8)R — p(p + 2)II(9II2
+ (el — RYp[(p — DR + (p + 2)IFIA(I61], R)1,]
= (1 (R = )27 dy[(p(p — 1)(P + 2))D(2p — 2)/(p + )R |101])
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where [A([0]], R)], = (1/(I6IF(R* + [I6IF))) iz (—1)'a(R/|6F)', @y = 1, and a, =
[(p =20+ 1)/(p+2(t:—1)a,_ fori=1,2,.... .

Notice that Dy((2(p — 2)/(p + 2))R% 16]]) o< D(2(p — 2)/(p + 2))R, ||f]). By
the definition of [A(||0]|, R)],,

I6IFDL((2(P — 2)/(p + 2)R, [16])
= OIF[=p(p +2) + p(p + 2)] + IBIPR(P* + 4p — 8) — p(p + 2)a, — 6p]
+ Rp(p + 2)a, + 6pa, — p(p — 4)] + p(p — 4) Liz, (—1)""'a R¥+jg)-*
+6p it (= 1) 7a RGO+ + p(p + 2) Fiins (—1)'a, R¥6]|-2++
= (PRJIIOIF) Zizo (—1)'e(R/|IEIF)’
where
¢ =(p—4ay, —6a,, — (p+ 2)a,,
= [B( + 1)(7" = 3p + 2)/((p + 20 + 2))(p + 2(i + 1)))]a;,
i=0,1,2,...
and so,
€ = [((F+ 2)(p = 20 4+ I + (P + 2( + 3)))]e,
for i=0,1,2,....

Note, if p is an even number, then a,,,, and thus ¢;, iszerofori > (p — 4)/2.
For pevenandi < (p — 6)/2, c; is positive. When p=4j 4 Iforj=1,2, ...
then (—1)‘a,,,, and hence (—1)’c,, is positive for i > (p — 5)/2 and ¢, is positive
fori < (p — 7)/2. Similarly, if p = 4j 4 3forj = 1,2, ... then (—1)%, is nega-
tive for i = (p — 5)/2 and ¢, positive for i < (p — 7)/2. So,

(2-L15) ewn| = [((F + 2)(p — 20 + 3N + 1)(p + 2(i + 3)))]lcl
when i< (p — 6)/2

and

2.1.16) - ewn] = [((F + 2)(20 + 3) — PPN + 1)(p + 2(i + 3)))]le.]
when = (p — 5)/2.

Note too, that from (2.1.15) and (2.1.16)
(2.1.17) el < (p/4)e] for i< (p— 6)/2 and
[€isa] < ey for i=(p—195)2.
For p an even number,
Zin (= 1) e(ROI)" = 2257 (—1)e|(RY|6]F)" -
By (2.1.17), |¢;44] < (p/4)|c;| and since
(RO < 4p>  (R/IOIPers] < e
implying
iz (= 1)’ RYIOI) = Zize™* (= 1)le,|(R¥I6IF) = 0 .
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Forp=4j+1,j=1,2,...
iz (= 1)ie(RNIOF) = Ziz™ (= 1)fled (R/IO1F)" -
This sum is nonnegative for the same reasons as in the case when p is even. In
addition, for p = 4j + 3, j =1, 2, - .. by similar reasoning,
Siz (~)'eRYAPY 2 0.
So,
Do (= D'e(R|I6I)°
= L p-na (= 1) e RY|IOP)
= [e-nal(R/IOIF)* "7 — L p-nya [l (RO1F)*
Z [¢ponal (RNOIF) P77 — e pmssal Zizip-sia (REOIF)
= [Co-nal (RO — [¢cpmnal (RUNIOIF) = (IOI/ (I01F — R?))
= leonal(R[IOIF)>=""[1 — ((p — 3)/((p — 5)(2p — D)R/(I0]F — R))] -
The last three statements follow from (2.1.17) and (2.1.15).
Since |0 > (p/4)R?, R*/(]|6]F — R*) < 4/(p — 4), and so, since p = 7,
(P — (P — 5)2p — V)R — BY)
S 4p —I(p— 52— (P —4)
= @)(p—3)/2p—-1)
<1

iz (= 1)eR|I6IP) 2 O -
Clearly, D((2(p — 2)/(p + )R [I6]) = O, if
o (= Dic(R*)|0|F)* is nonnegative.

implying

Combining these 3 cases, R(X, ) — R(3,(X), #) = 0 for all § when 0 < a <
(2(p — 2)/(p + 2))R* and so J,(X) is at least as good as X for these a’s. How-
ever, when 0 < a < (2(p — 2)/(p + 2))R?

R(X, 0) — R(9,(X), 0) = a[2 — aE(j|X||"*)] by (2.1.4)
= a[2 — (ap/((p — 2)R?))] by Lemma 6.1.1
Z a[2 — 2p/(p + 2)]
=4da/(p+2)>0,
implying d,(X) is better than X. This completes the proof of Theorem 2.1.1. []

2.2. Minimax estimators for p = 3. We saw in Section 2.1 that with respect to
quadratic loss (1.1), R(X, 6) — R(9,(X), ) is nonnegative, provided 0 < a < 5(||0||)
where b(]|0]|) is defined by (2.1.8). For p = 3, by (2.1.11)—(2.1.13), 5(0) = (3)R?,
b(R) = ($)R*and lim,, _.. b(|0])) = (2)R*. Hence, the best possible result would
be to show d,(X) is minimax for 0 < a < (R?*/3). It will become clear that this
is not true. ' ‘
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Clearly, by (2.1.5) and (2.1.6), when p = 3
(2.2.1)  D(a,[l6l) = 2 §¢* ((R* — ")/ dron( V)R — 30IFR* + 4||6IF(R* — y*)] dy
— 2a ¢ (1/dg,jou(PIR* — [I0IPR* + 2||0IF(R* — y*)] dy .
However, applying (6.1.3) and
V& (dron(9)) dy = (HIOI(R® + [161F))~ log (R + [BI)/(R — [i61]))* to (2.2.1)
we get
(222)  D(a[6) = (RIBR + @R — 6] — 24)
X [1+ ((R* — [6]F)/4|6]|R) log ((R + [|61))/(R — [16))1] -
Therefore, when ||f]| = R
D(R[3, |16

= (R3] R + G — 36 [ 1+ (& — lppyioiR) zz., B

= ((lorF — Rysio | —3Rlpl + o — &) zs-, BRI

= (4RO — RYSI0D) Z7-s (G5 — 5 ) (RN 2 0.

When ||6]| < R,

D(RY3, [16])) = ((R* — [|6]F)/6]l6]) [3R||0|| + (R = 30F) X3 %‘J

_ 2 2 - n+1 n
= (R = RIS 1 — Zon (o) Ry

= (2R — [I0IF)R/3)D(R*/[3, [|6]]) -

When k >4, 33k (n + 1)/(2n + 1)(2n — 1) = 1, indicating that D,(R?/3,
l) <0, when R* —¢ < |Iff < R*, for some ¢ > 0. Clearly, this implies
D(R}/3,|6|)) < O for the same ||f|'s. Hence, since there exists a [|f]| such that
R(X, 0) — R(d,(X), 8) = aMD(a, ||f]) < 0 when a = R*/3, 3,(X) is not minimax
for all a satisfying 0 < a < R*/3. '

By a simple inequality,

1
DR, 1) = 1 = s (o ) Qi1 Ry
SR = 1 = Z5 (1 g —y) (6B
= 1 — (20P3R) — (D=1 — (I6IF/R*) + (R*/(R* — |16]F))]
0 when 0 < [|0]] < ((25 — (205)t)/14)tR .
Since ((25 — (205)%)/14)t > .85, we conclude that

(2.2.3)  D(RY3,|) =0 when 0<|f<.85R and |/f|=R.

[\Y%

For several values of ||f|| between .85R and R, we calculate b()|f||) given by
(2.1.8) when R = 1. Our findings are summarized in Table 2.1.1.
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TABLE 2.2.1
Evaluation of b(]|0]))
(given by (2.1.8) when R = 1)

(1611 b()161)
.85 .3751
90 . .3493
.95 .3293
.96 , .3268
.97 ‘ .3252
.98 .3248
.99 .3264
1.00 .3333

From Table 2.2.1 we see that b(||6]) is in fact < } when the ||| is close to 1.

In Theorem 2.2.1, we will prove d,(X) is minimax for 0 < a < (.75)/Ey(||X]|"*) =
R%/4. However, since the smallest value of 5(||f])) we compute is .3248, it seems
almost certain that d,(X) is minimax for a larger class of a’s, namely, 9,(X) is
minimax for 0 < a < b,/3R?* = (b,)/E,(||X]|~*) where b, ~ .96. This is also stated
in Theorem 2.2.1. ' ' ‘

THEOREM 2.2.1. If X has a 3-dimensional spherical uniform distribution then 9,(X)
given by (2.2.1) is better than X provided 0 < a < R[4 = (.75)/E\(||X]|~?) and the
loss is given by (1.1). (It seems almost certain’that 8,(X ) is minimax for 0 < a <

32R* = (:96)/E(IXII")-)

ProorF. When 0 < ||f]| < .85Rand ||f]| = R, we have already shown, by (2.2.3),
R(X, ) — R(3,(X), 0) = aMD(a, [|0])) = aMD(R/4, ||0lf) = aMD(R’/3, ||6]}) = O.
We now show D(R¥/4,]/6]|) = O when .85R < ||6]| < R. From (2.2.2), '

D(R*[4, ]|6]])
= (RI[R + G — 2/[6]) |
X [1 4 ((R* — [l6]F)/4]16][R) log (R + [I61)/(R — [|61))’]]

= (R/3) [ (R + @& — 200pyer) [ 1eF + (& — o) £z QIR

Note,
lofe -+ (& — o) T, LIRS
< (2R — |[6P)OIF/R?) + ((R* — [I61F)/3)[ —1 — (I6IF/R) + (R*/(R* — [16])]
= (IOIF/3R)3R* — [6]) - '
Therefore,

D(R’[4, [16)) = (R/3)[R* + (B)R)(R* — 2/l )(3R* — [|6])]
= (I/6R)[5R* — T7||0]FR* + 2||6|] = O .

Hence, we have proven that R(9,(X), #) < R(X, 0)foralld when 0 < a < (R¥/4).
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To show d,(X) is actually better than X when 0 < a < (R?/4), we prove the risk
of X at @ = 0 is strictly greter than the risk of J,(X) at § = 0,
R(X, 0) — R(3,(X), 0) = a[2 — (3a/R*)] 2 a[2 — (§)] = (3)a > 0.
This completes the proof. []
2.3. A larger class of minimax estimators when p = 3. We now consider a new
class of estimators for the location parameter § when X has a p-dimensional

spherical uniform distribution. The estimators are of the form considered by
Baranchik [2] and are given by

(2.3.1) O, (X) = (1 — a(r(|IXIP)/IIX]))X -

I (| X|P) is nondecreasing, 0 < r(+) < 1, and 0 <'a < (2b,)/E,(||X||*) where
(2.3.2) by=p/(p+2) when p>4
- =375 when p=3

then we will prove 9, ,(X) given by (2.3.1) is minimax.

When r(+) = 1, this result coincides with those given in Theorems 2.1.1 and
2.2.1. Hence, we have a larger class of minimax estimators.

THEOREM 2.3.1. If X = [X,, X,, - - -, X,]' has a p-dimensional spherical uniform
distribution about 0, then the risk of o, (X), where 0, (X) is defined by (2.3.1),
dominates (is less than or equal to) the risk of X with respect to quadratic loss (1.1),
provided r(||X|[*) is nondecreasing, and 0 < a < (2b,)/E(||X||"*), where b, is defined
by (2.3.2).

ProoF. Note that (26,)/E (|| X|-?) = 2¢,R* when p = 3 where ¢, = (p—2)/(p+2)
when p > 4 and ¢, = .125 when p = 3 as given by (2.1.2). Since 0 < r(+) < 1
and 0 < a < (26,)/E((||X]I*) = 2¢, R,

R(X, 0) — R(3,,.(X), 0) = ak,[r(IX|F)2X"(X — O)IX]|* — ar*(IX|P)IX]I~"]
= 2aE,[r(IXIP)[X"(X — O)IX|I* — < RAIX]I7]]
= 2aE,,[r(IXIF)[1 — 161X:{1X]I"* — < RAIX][*]] -
Note that the difference in risks depends only on 6 = [||4||, 0, 0, ---, 0]. We will
show
Eyo[r(IXIP)T — 161X X]|7* — <o RAIX]*]] = O
We first consider ||0|f = (1 — 2¢,)R%.

Case 1. ||0|F = (1 — 2¢c,)R*.

Lemma 6.2.2 states for each fixed ||f|| satisfying ||f|F = (1 — 2¢,)R?,
E ;i [(160]1 X, + ¢, R*)||X]||7*|||X|]"] is nonincreasing in || X|. Since r(||X]?) is a non-
decreasing function,

Eyou[r(IXIF)T — (IOIX, + <o RAIX]I]]
= Eyg[r(IXIF)L — Ejon((1611X: + e RIXT* [1XTP)]]
Z (B (IXINIRAX, 0) — R(Opeyml X)), 0))/4¢,R]
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where, of course, d,, za(X) = (1 — (2¢,R*/||X|))X. This is nonnegative for all ¢
since d,, z» is better than X (Theorems 2.1.1 and 2.2.1).

Since 1 — 2¢y = (6 — p)/(p + 2) when p = 4 and | — 2¢, = .75 when p = 3,
the proof of the theorem is complete for all ||| when p > 6, for ||| = ((6 —
P)/(p + 2))R* when p = 4, 5 and when ||f| = .75R* when p = 3.

CasE 2. ||f)P < .75R* and p = 3.

If ||X|* = Z, we see by Lemma 6.1.6, when p = 3, the joint density of X; and
Z, ﬁlﬂll(xv z), is given by

Sion(x1 2) = (3/4R3)1s1us2(x1’ z)

where
Sp = ((x, 2): ((2 — R+ [l0IP)/2)0l) = *, = 24,
(R —10l) = z = (R + |16]))")
and .
S=((xp,2): =2 x, 24,0z (R—9))) -
Hence,

Eg r(IXIPT — (II6N1Xy + co RYIX]|7]
= (3/4R¥) {E-1* (2¢(2)/28)(z — .125R?) dz
+ (3/4R%) SR (r(2)/42)(22 — ((z — R + ||6I)/21161)))
X (3z — 2)|f|lz* + .5R — ||6|]") dz .

If
h(z) = z — .125R* when 0 <zt < R —|id|

=3z — 206}t + (SR — |0F)  when R — |z < R+ 6]
then for 0 < ||f]| < .65R
h(z) £ 0 when 0 < 2} < (L125)iR
=0 when ((125PR<z2< R+ |9).
Since r(z) is nondecreasing, r(z)h(z) = r(.125R*)h(z). For ||§]| = .65R
h(z) <0  when 0 <zt < (|J0ll/3) + ((4l6)F — 1.5R%)/3)
=0 when (||6]l/3) + ((4lI6I" — 1.5R*}/3) < z¢ < R + | 6]

and so
r(2)h(z) = r(((I1611/3) + ((HIOIF — 1.5R*)}/3))*)A(z) .

Hence, in either case, there exists a z, such that
E o r(IXIP)T — (61X, + ¢ R)|X]|7*] = Ejyp r(2)R(2)
= r(20)E; ) h(2)
= r(20)E i [1 — (|l6I1X, + ¢, RY)||1X]|7*]
= r(Z,)(R(X, 0) — R(0y ma(X), 0))/4c, R*
=0 by Theorem 2.2.1.

The proof is complete for this case.
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Case 3. 0|10 =(2(p — D)/p(p + 2))Rand p = 4, 5.
Since X; < ||X|| and r(||X|f) is nondecreasing, -
Eyon r(IXIP)1 — (161X, X117 — <o RALX]I]
Z By r(IXIPT — Eyou(0111IX117* + €0 RAXT)] -

Since ||X||, by Lemma 6.2.3, is stochastically ordered in |6,

EplIOIIXI~ + e RYXI] < EfOIIXI- + e RYIXI|]
(p/(p = DXIEI/R) + (PP + 2))

=1 when [0l < (2(p—1)/p(p+2)R.

Hence, E, r(||X|)[1 — [|0]|X{|X]|"* — ¢, R¥|X]|*] = 0. “Hence, this implies the
remaining cases are (R*/16) < ||f|* < (R*/3) when p = 4 and (64R?/((49)(25))) =
I6IF < (R¥/7) when p = 5.

Case 4. (R*/16) < ||0|F < (R*/3) and p = 4.
Utilizing (6.1.15), Lemma 6.1.5 and (2.1.5), for p = 4, simple calculations
imply if ‘
A(b) = Eypy(2 — 2|0l| X1 X||"* — oR[X||*)  then
3R'A(b) = 6(1 — b)R* + 3(b — 2)|6|"R* + 2]|6]|* -
For fixed b < 1, there exists an a, such that A4(b) = 0 when 0 < ||0| < q,R".

Lemma 6.2.2 states that E,,((||6]|X; + (5/2)R*)||X]|=*|||X|]*) is nonincreasing in ||.X]|
for |6 = (1 — b)R*. Hence, when b = 2¢, = % and q,R* = |||’ = (1 — D)R?,

E o r(IXIP)[2 — 2(116)|1 X, + ¢, R X]|7*]
= Eyp r(IIXIP)[2 — 2(1611X; + (6/2)R?)]|X][~*]
= Euour(”X”z)A(b) =0.
Calculations show for b = 18, a, > 4. Therefore, for
(R/16) < |01 < (R*/8), . Eypr(IXIF)[2 — 2(|I011X, + ¢, RY)||X]|7*] = O .
Similarly, since for b = %, a, > } and for 6 = £, a, > 4, then
E o r(IXIP)[2 — 2(101|X, + ¢, R)||X][~*] = O
when (R%/8) < || < (R*/4) and (R*/4) < ||| < (R%/3), implying the desired
conclusion for this case.
Casg 5. (64R*/((25)(49))) < |10 < (R*/7) and p = 5.
As we did in the previous case, when b > 2¢, = § and ||| = (1 — b)R?,
E g r(IXI)[2 — 2(1011X; + ¢ RIX]|7]
= Eyp r(IIXI7)[2 — 2(1611X: + (6/2)R?)||X]|~*]
= Ep r(1X][)A(5) -
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With respect to the density g, ,(y) for p = 5 given by (2.1.9), we have using
(2.1.5) :

o) (M 58 T =L ay) = a+o)
dri01()
= (R* = 3|0IFR?) + 4[l0I"E e (R* — )*)

— (2bR*[3)[(R* — [[0]FR*)E,0y(R® — y*)~* + 216|P"]
where M = [(2) {& (R* — )*) dy]~'is given by (2.1.7). By Lemma 6.2.1, Ipnon(¥)
has monotone likelihood ratio nondecreasing in y and hence, since leF < RY7 <
R?*, when p =35, '

E (R — Y') 2 EfR — Y) = ()Rl and
E (R — Y?)' < ER(R — 1) = (3/2R%)
implying
A*(b) = (SR* + ||0]'R*)/5 — (bR*[3)(3R* + ||0]) -
When b = 24, A*(24) = O for |||} < R*/3. Hence, when R?/25 < ||0]]? < RY/3,
Ejp[2 — 2(61X, + & RYIXI7) 2 Ewr(XIDAGE
= E g r(IXIP)[M §7 (R* — y*)* dy]4*(34)
=>0.
The interval, R%/25 < ||| < R*/3 includes the interval (64R%/((25)(49))) < ||0|" =
R?/7; thus the proof is complete. 0

3. Minimax estimators for the mean vector of a p-dimensional spherically
symmetric unimodal distribution with respect to quadratic loss.

3.1. A characterization of a spherically symmetric unimodal distribution.

DEFINITION 3.1.1. A random vector X is said to have ap-dimenéional spheri-

cally symmetric unimodal (s.s.u.) distribution about ¢ if the density of X with
respect to Lebesgue measure is a nonincreasing function of ||X — 0|

In this section we will give necessary and sufficient conditions for a random
vector to have a s.s.u. distribution about @ in accordance with Definition 3.1.1.

LemMa 3.1.1. If X is a p X 1 random vector (p = 1) with a density g(||x — 6l])
with respect to Lebesgue measure, then g(+) is a nonincreasing function of |lx — ul
if and only if

9(lx — 6l) = § «(R)Is(x, R) dF(R)

where Iy(x, R) is given in (1.4), ¢(R) given in (1.4) equals ¢/R”, ¢ is a positive con-
stant and F(.) is a cdf on (0, oo0).

Proor. Simply by (1.4), if
g(llx — 6l) = § «(R)Is(x, R) dF(R) = .9 ¢(R) dF(R)

then g(||x — 6])) is a nonincreasing function of ||x — .
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Conversely, suppose g(-) is a nonincreasing function of |x — 6. From Lem-

ma 6.1.1,
H(R) = P(|X — 6| < R)

= Sae-onsn 9(1x — 0]) dx

= (My[c(R)) ¢ r*=2g(r) dr
where M, = P/R*. Hence, since ¢(R) = ¢/R?, M,/c(R) = P/c, and therefore,
(3.1.1) H(R) = (P[c) & rr—g(r) dr .
Consider the function, F(R), given by
(3.1.2) F(R) = H(R) — (R?/c)g(R) .

It follows from (3.1.1) that :
(3.1.3) F(R) = (P[c) {¢ r=g(r) dr — (R?[c)g(R)
= (P[e) §¢ y*~'[9(y) — 9(R)] dy .

We now state, without further proof, that F(R), given by (3.1.2), is the cdf that
characterizes the density g(||x — 4|)), i.e., g(|lx — 6]]) = § ¢(R)Is(x, R) dF(R). ]

3.2. Estimators with smaller risks than the risk of one observation on a spherically
symmetric unimodal distribution. Let X be a p X 1 random vector with a density
with respect to Lebesgue measure given by
(3.2.1) 9(lx — 0))) = § ¢(R)Is(x, R)dF(R) where F(.) isaknown cdf

on (0,c0) and ¢(R) and [Iyx, R) are defined in (1.4).
According to Lemma 3.1.1, X has a spherically symmetric unimodal distribution

about 4.
Hence, since the density of X is a mixture of spherical uniforms, we may con-
sider the random vector X | R to have a spherical uniform distribution

(X|R ~ Uf|lX — 6 < R*}).
Therefore, directly by Lemma 6.1.1,
E(|1X1I*) = E[E(IX]I7* | R)] = (p/(p — 2))E(R).

Consider 9,(X) given by (2.1.1), d,(X) = (I — (a/||X|}))X, for 0 <a <
(2b)/E(IX]I?) = (2¢,)/ E(R-?) where

by=pl(p+2) pz=4
= .375 p=3
and
G={@-2)/p+2) p=4
:.125 p:3.

With respect to quadratic loss (1.1), when 0 < a < (2¢,)/E(R™?)

(3.22)  [R(X, 6) — R(3,(X), 6))/a = E[2X'(X — 6)]X|* — a|X|["]
= E,[2X/(X — 0)|X|-* — (2¢/ER-|X]|] .
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The minimaxity of ,, z(X) for the spherical uniform distribution (see Theo-
rems 2.1.1 and 2.2.1) implies
EJ[2X'(X — O)|X]|* — 2¢, R¥|X||"]
(3.2.3) = E[E,[2X"(X — O)|1X[|* — 2¢, R|X||*| R]]
' =0.
Thus, if
- ElIXII7* — ERTE,(RY|X][™%) = Cov (E,(Rl|X]|*| R), R™?) -
=0,
then
E)[2X'(X — O)IX]I7* — (2c/ E(RT))IIX]|I™*]
Z E,[2X"(X — O)|IX]* — 2¢, RYX|[] ,

clearly implying, by (3.2.2) and (3.2.3), that J,(X) is minimax for 0 < a <
(2¢,/ E(R-).

However, E,(RY||X||"?| R) = E,)(||Z||"*| R) where Z = X/R and thus Z|R ~
U{|Z — 6(R)|F < 1} and 6(R) = [||f||/R, 0,0, ---,0]'. Lemma 6.2.3 implies || Z||*
is stochastically ordered in ||(R)|| and hence, E,,\[||Z]||~*| R] is a nonincreasing
function of ||(R)|| (see Lehmann [14], pages 73-74).

Therefore, for fixed ||0||, E,,[||Z]|"?| R] is a nondecreasing function of R and
since R~* is a nonincreasing function of R, Cov (E,(|Z]|"*| R), R7*) < 0. We
summarize this result in the following theorem.

THEOREM 3.2.1. If X is one observation on a s.s.u. distribution about 0 with a
density given by (3.2.1), 0,(X), defined by (2.1.1) is minimax provided p = 3,
E|\X||=* is finite, the loss is sum of squared errors, (1.1), and 0 < a < 2b,/E||X]|7,
where b, = p/(p + 2) or .375 according as p = 4 or p = 3.

James and Stein [11] proved, for X one observation on a p-variate normal
distribution with mean vector ¢ and covariance matrix the identity, that
0,(X) = (1 — (a/||X|"))X given by (2.1.1), is minimax for 0 < a < 2(p — 2) =
2/(E)|X||"*). In the normal case, the James-Stein class of estimators includes
our class. However, for p > 4, the only estimators in the James-Stein class
which are not in our class are for values of a such that

2pl(p + 2)/EXIT) < a < 2/E(IX]]) -

Similar statements hold when comparing our results to those of Strawderman
[16] given on “variance” mixtures of normal distributions.

Since p/(p + 2) — 1, as p — oo, our class of estimators is, in a sense, ap-
proaching the James-Stein class for large p. Additionally, the best estimator
in the normal case occurs when a = (1/E(||X]|~*)) which is always in our class.
Furthermore, our bounds on a are the best possible which can be obtained for
the whole class of s.s.u. distributions when p > 4, since we have already seen
in Section 2.1 that our bounds are the best possible for the spherical uniform
distribution.
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3.3. . A larger class of minimax estimators. In this section we will consider
estimators of the mean vector of a s.s.u. distribution, given by i

O0,(X) = (1 — a(r(IXIP)/IIXF))X -
In the following theorem we will present sufficient conditions for 4, (X) to be
minimax.

THEOREM 3.3.1. If X is a single observation on a p-dimensional distribution of
the form (3.2.1) and 6, (X) is defined by (2.3.1), then provided:

(1) 0 < a < (2b)/E(IX|) (by is given by (2.3.2)),

(2) r(||X|}*) is nondecreasing,

3) r(IXIP)/IX|F is nonincreasing, and

(4) E(IX]) is finite,
the risk of 9,,,(X) dominates (is less than or equal t0) the risk of X for p = 3 and
quadratic loss (1.1).

Proor. For 0 < r() < land 0 < a < (2b,)/E|(||X]|7?) = (2¢,)/E(R™?),

, [R(X, 6) — R(3, .(X), 6))/a
(3.3.1) Z E[r(IXIP)I2X"(X" — 6) — a)||X][~*]] ,

= E[r(IXIP)[2X"(X — O)X||™* — (2eo/ E(RZ))[IX][]]

where ¢, is defined by (2.1.2). As we noted in the previous section, X| R may be

considered as a spherical uniform random vector. Hence, since Theorem 2.3.1
implies the minimaxity of dy, 2 (X) for the spherical uniform distribution,

E,[r(|XIP)2X"(X — 0)[|X[|7 — 2¢, R|X]|*]]
(3.3.2) = E,[E[r(IX)2X'(X — B)X|~* — 2¢, RYX][*) | R]]
. >0. - .
Hence, as in the proof of Theorem 3.2.1, (3.3.1) and (3.3.2) imply
R(X, 0) — R(3, (X), 6) 2 0
for 0 < a < (2c)/E(R-), if ‘
Ey(r(IXIPNIXN?) — E(R™)E,(r(|1X] IP)RAIX %)
' = Cov (E,(r(IXI)RIIX]~* | ), R™?)
<0.
Since R=? is nonincreasing in R, the proof will be complete if -
 E((IXI)RIXI [ R) = Epa(r(RIIZIPIZI | R)

is nondecreasing in R, where Z = X/R and 6(R) = [||||/R, 0, 0, - - -, 0]". Hence,
Z|R ~ U{||Z — O6(R)|? < 1}. By the properties of r(+) in the statement of this
theorem (properties (2) and (3)) and the stochastic ordering of |Z| in
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lO(R)|| = ||6]|/R (see Lemma 6.2.3), if R, < R, then

Eyrp(r(RIZIPNIZI* | Ry) < Egemy (r(RAZIP)Z]1* | Ry)
= By (MRAZIPDIZI | R,) -

Thus, Eo(R)(r(R’]]\(Z||2)||Z[|—“I [R) is nondecréasing in R, ébmpleting this proof.

4. Minimax estimators of the location parameter ofa p-dimensional (p = 3)
spherically symmetric unimodal distribution with respect to general quadratic
loss. Throughout Sections 2 and 3, the only loss function considered was quad-
ratic loss given by (1.1). In this section, we will explicitly extend the results of
Sections 2 and 3 to the case of general quadratic loss given by (1.2).

4.1. Minimax estimators for the mean vector of a spherical uniform distribution
with known radius. Analogous results to those given in Section 2 for estimating
the mean vector of a p-dimensional (p = 3), spherical uniform distribution are
presented in this section when the loss is general quadratic loss, given, as in
(1.2), by

L(d,0) = (6 — 6)YD(6 — 0)
where D is a known p X p positive definite symmetric matrix.

Consider one observation X having a p-dimensional spherical uniform distri-
bution with a density given by (1.4). Let J,(X) be defined by (2.1.1), i.e.,
d.(X) = (1 — (a/||X|))X. The loss throughout will be general quadratic loss.

We will prove that J,(X) is minimax when 0 < a < 2a,((trace D/d;) — 2)R®
where d;, = maximum eigenvalue of D and

(4.1.1) a,=1/(p + 2) for p=4
= .125 for p=3.

Note that when D is the identity, (4, 6) is just quadratic loss and the result
we will prove coincides with those proven in Sections 2.1 and 2.2.

If RD denotes the risk with respect to general quadratic loss, since X is mini-
max, d,(X) is minimax if the difference in risks, RD(X, §) — RD(3,(X), 6), is
nonnegative for all 6. '

With respect to general quadratic loss (1.2),

RD(X, 6) — RD(9,(X), 0)
= Ey(X — 0YD(X — 6)
(4.1.2) — Ey(X — 0 — (a/|IX|)X)YD(X — 6 — (a/|X])X)
= aBy[2X'D(X — 0)||X||=* — a(X"DX)||X]~]
= aE[(2X'DX + 20'DX)||X + 6|*
— a(X'DX + 20'DX + 6'D0)|X + 6||*] .
Since D is a positive definite symmetric matriX, there exists an orthogonal ma-

trix Q such that Q’DQ = D, = the diagonal matrix whose entries along the di-
agonal are the eigenvalues d,, d,, - - -, d, of D (see Anderson [1], pages 338-341).
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If we transform X, letting Z = Q'X and * = Q'
RD(X, 6) — RD(d,(X), 0)
= aE|[(2Z'D, Z + 2(6*)YD, Z)|Z + 6*7*]
— GE[(ZD,Z + 2A0%)D,Z + (0*YD(O*N|Z + 041
So, we may assume without loss of generality that D is this diagonal matrix.

Hence, X = [X,, X,, ---,X,]’ and 6 =1[6,,6,, ---,0,] then RD(X,0) —
RD(3,(X), 0) = aE[ 17, di[(2X;* 4+ 20, X)X + 6|* — a(X; + 0.)11X + 6]|7]]-

Immediately from Lemma 6.1.7 when r(+) = 1,

RD(X, 8) — RD(d,(X), 6)
= (6'D6af((p—1YIBIMELR(p— DX +01X) — 2 YN +IBI -+ V)]
— aE[((p — DX, + 6 — Y + [61)* + 11YIP)~"]]
+ (tr Daj(p — INIELNYI(X: + 181 + [VIP)~]
— aEJ[[YIP(X, + 6 + [[YI)]]
where ||Y|f = X7, X and tr D = trace D = } 7., d,.
From (6.1.6) and (6.1.8) ’
E[2(p — D)X + [161X,) — 2/YIP)(X, + [01)* + (Y1)~
= 2(p — D1 — E0II(X; + [18I)((X: + (161 + [1¥1P)~]
— 2pE(IIYIF((X: + 161D + [1Y1F)~]
= 4M §§ (R — y)* 7" [dp ()R — 30IPR* + 40|F(R* — )?)) dy
— AM §F (R — y")*= "7 dp 0 (P)I(R* — |IOIPR® + 2|0IF(R* — y*)) dy
where, as in (2.1.6), dg,,(y) = (R* — ||0|)* + 4/|6|/(R* — y*) and M =
[(2R%/p) {& (R* — y*)*=972dy]~*. Therefore,
(4.1.3)  E[2(p — )X + 101X) — 2YIPYX: + 111" + [[Y1P)~]
= —8M|IGIP §& (Y (R* — »")*~"")/dp0i(¥)) 4y -

Lemma 6.1.8 states that Ej[((p — 1)(X; + [10]])* — [[YIP)((X, + [I61)* + [1Y])~*] = O
and clearly, (4.1.3) implies E[(2(p — 1)(X; + [|6]1X)) — 2| YIP)((X: + 19]])* +
[[Y|)~'] < 0. Hence, if d, = maximum eigenvalue of D, then

RD(X, 0) — RD(0,(X), 0)
> (d,al(p — 1))
X [ELQ(p — 1) + 61X — 21V + 181 + Y]]
(4.1.4) — aE{((p — D)X + [0} — VI + [l + [YI)=1]
+ (tr Daj(p — D)ELAYIFX: + 161)° + [YI)™]
— aEIIYIF((X + 1191)* + IYIP)~"1]
= [RD(X, 8) — RD(d,(X), 0)]* .
If

(o) = BL(@u(2(p = DO+ 10]X) — 2] YI) 42 tr DYIPY(CX, -+ 01"+ 11¥17)

Ef(d((p — DX, + 6 = [IYIF) + tr DIYIP)((X, + [61D* + I1YIP)~"]




MINIMAX ESTIMATION OF LOCATION PARAMETERS 397
then (4.1.4) implies
RD(X, 0) — RD(d,(X, 0)) = [RD(X, ) — RD(0,(X), )]* = 0
if 0<a<b%(l)-
Writing b*(||6])) in integral form using (6.1.6)—(6.1.9) we obtain the following:
bx(lel) = Adlen/Bqely,  where
A(I6l) = —8lleIrd, §&& (R — y*)*=""dr, (1)) &y
+ (4tr D/p) §T((R* — y*) =" /dg,101(1))
X (R —|0IPR" + 2|0IP(R* — y*)) dy
B(lol) = do §¢ (R — y*)*="[dg,101(¥)) :
X (I —p)R + (p — DRYOIP + (PR — (p — 2)I0IP)(R* — ) dy
+ (tr DJ(p — 2)) §¢ (R — p*)*=""/dp 101(¥))
X ((p = DR + (1 = pRIOIP + (PO — (p — 2)R)(R* — ¥*) dy
and d, ,,(») is defined by (2.1.6).
Simple calculations using (6.1.1) lead to |
limyg, e, 6*(|0]]) = (2/(p + 2))((tr D/d;) — 2)R*.

Hence, if trace D < 2d,, there does not exist a minimax estimator of the form
(2.1.1) fora = 0.
We will now prove the following theorem:

THEOREM 4.1.1. If X is a single observation on a p-dimensional spherical uniform
distribution and d,(X) is given by (2.1.1), then with respect to general quadratic loss
(1.2), the risk of 6,(X) dominates (is less than or equal to) the risk of X whenp = 3
provided

0 < a < 2a((tr D/d,) — 2)/E(||X||"*) = 2ay((tr D/d,) — 2)R?
where
(4.1.5) a*=pl(p+2)(p—2) for pz4
= .375 for p=23
and a,is givenby (4.1.1), tr D = trace D > 2d, and d, = maximum eigenvalue of D.
PrOOF. Suppose tr D/d, = ¢, therefore, 2 < ¢ < p. If
[RD(X, 6) — RD(dy0y(g-nm(X), 0)]*/(2a(g — 2)d, R’) = A,
then for 0 < a < 2a,(q — 2)R?, by (4.1.4), [RD(X, 6) — RD(d,(X), 0)]*/(ad,) =
A,. In addition, (4.1.4) clearly implies
A, = 1/(p — DIE[(2(p — 1)(X," + [1011X,) — 2]V IP)((X: + [161]) + [[Y]P) ]
(4.1.6) — 2a(q — 2)RE[((p — )X 1611 = 1Y IP)((Xa 01+ 1Y) 1]
+ 9/(p — DIEL2YIP(X: + [161)* + Y1)~
— 2a,(9 — 2)RE|[[YIP(X: + [I6])* + [IYIF)~*1] -

q°



398 ANN R. COHEN BRANDWEIN AND WILLIAM E. STRAWDERMAN

Since RD(X, 0) — RD(9,(X), 0) = [RD(X, ) — RD(9,(X), 0)]* = ad, A,, it is
clear that the proof will be complete if A, > 0 for all ||6]|.
However, for fixed ||0||,

(@)dg")(A,) = (—2Ra/(p — D)E[YIF(X: + [I01)* + IYI)*]1 = 0,
implying that for fixed [|f]|, A, is a concave function of g. Since2 < ¢ < p, the
concavity of A, implies A, = minimum (4,, 4,). >

When ¢ = p,
A, = 2[1 — Ey(I6l(X; + 16ID((X: + N191)* + [I¥1F)")
— a(p — 2)RE((X, + [19)* + [IYIP)~] -
Note first that by the definition of a,, given by (4.1.1), (p — 2)a, = ¢, where c,,
as in (2.1.2), is given by
G =(p—2)/(p+2 when p =4
= .125 when p=3.
Hence, by (2.1.4), A, simply equals (difference in risks for a = 2¢,R*)/(2¢,R?)
when the risk is quadratic loss (1.1). Clearly, Theorems 2.1.1 and 2.2.1 imply
this is nonnegative. ‘
We will now show that A, is also nonnegative.
As (4.1.6) implies, '
A, = (2/(p — D)EL(p — DX + 16I1X,) + [IYIF)X: + 11 + 1Y) 7)] -

Substituting in the expressions for the expected values givenin (6.1.6) and (6.1.8)

8 oc §§ (R = Y) =2 dpum(D)IR" — (p + DIOIPR* + (p + 2)I6F(R* — y*)] dy
= A*.
We will show A,* is nonnegative for two cases:
Case 1. ||0]F < (p/2)R.
With respect to the density
paion(¥) = (R — y) 2= dp ()] §& (R — ) * 727 dg 01 (¥)) dy
for 0<y<R
= 0 elsewhere,
which, according to Lemma 6.2.1, has MLR nondecreasing in y for ||f|| < Rand
MLR nonincreasing in y for ||f]| = R,
A*/SE (R = )70 d g 01(y)) Ay
=R — (p + DRYOIP + (p + 20PEq(R* — Y7)
= R — (p+ DRYAP + (p + 2)0PE(R — T?)
=R — (p + DRYOIP + ((p + 2)(p — D/p)RYOIF
= (R/p)[pR —2/lfIF] = 0.
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Case 2. |0 = (p/2)R%.
Using (6.1.3) and Lemma 6.1.5, we may rewrite A,* as follows:

Ar = AP +2) §F (R = p)rrdy
= [(p — 2R + 2pRYOIF + (p + 2)I0IF] §5° (R* — y*)*~""/dp 101(¥)) )]
& (R — y)»=7/410]1) dy
X [(p + 2O — [(p — 2)R* + (p + 2)lI0IF] Zzmo (—1)"6(R/|I0]1)']
where b, = 1 and b, = [(p — 20)/(p + 2i)}b;_,, i=0,1,2, ...
Applying simple calculations we obtain
A% o0 Tmo (= 1) e RO) ,  where ¢, = (p — 2)biyy — (P + 2)biss

fori=20,1,2,....

For p an even number, ¢, is zero for i = (p — 2)/2 and ¢; is nonnegative for
i<(p—4)2. If p=4i+4 3 for i=1,2,... then (—1)’, is positive for
iz(p— 3)/2 and c; is positive for i < (p — 5)/2 Similarly, if p = 4j 4 1 for
j=1,2, ... then (—1)’, is negative forz > (p — 3)/2and ¢, is positive for i <

(=52 So,
el = [(( + 2)(p — 20 + 2N/ + D(p + 20 + 3))le
when i < (p — 4)/2;
lecnl = [(( + 2)(2( + 2) — P/ + 1)(p + 20 + 3)))]lei]
when i = (p — 3)/2;
el < led for iz (p—3)2

and
el = (p/2)|e]  for i< (p—4)2.

By an analogous argument to the one used in Case 3 of the proof of Theorem
2.1.1 we have
o (= 1)fe( RO = 0.
We have shown that A, > 0and A, > 0, therefore, A, > minimum (4,,A,) = 0.
The proof of the theorem is now complete. []

We now expand this class of estimators by considering the estimators Baranchik
[2] considered, namely estimators of the form

9a,(X) = (1 — a(r([XIP)IXIF))X ,
as given by (2.3.1).
THEOREM 4.1.2. If X = [X, X,, ---, X, is a p X 1 random vector with a
spherical uniform distribution and 9, (X) is given by (2.3.1), then provided r(||X|J)

is nondecreasing and p = 3, 9, (X) is minimax with respect to general quadratic loss
(1.2)when0 < a < 2R%a((tr Djd,) — 2) = 2R%a,*((tr D/d,) — 2)[E|(||X]|"*), where
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a, and a)* are defined by (4.1.1) and (4.1.5) respectively, and trace D = tr D >
2d, = 2 (maximum eigenvalue of D). (For p = 3, also assume r(|X|P)/I1X|[* is non-
increasing.)
PRrOOF. Since r(]|X|f) is nondecreasing,
RD(X, 6) — RD(3, .(X), )
= aE[r(IX|F)[2X'D(X — 0)]1X|~* — ar(|X|F)(X"DX)|X|-]
(4.1.7) 2 aE,[r(IX|)[2X'D(X — 0)|X]-* — a(X'DX)|X||~]]
= ayr(1X + 6)[2X'D(X + O)X + 0]
— a(X'DX + 26'DX + ¢'DO)||X + 4]|™*] .
Clearly, we may assume without loss of generality that D isa diagonal matrix.
Immediately by (4.1.7), Lemma 6.1.7 and Lemma 6.1.2, if Y| = Y7_, X2, then
[RD(X, 6) — RD(9,,,(X), 6)]/a
= (6"DO/((p — D)IIEIF))
(4.1.8) X [Eyon[r(IXIP)2(p — 1)(X" — [16]1X,) — 2/[¥(P)1X]1~*]
— @B [r(IXIP)(p — DX — YIP)IX]0]
+ (tr D/(p — D) Ep [ 2r(IXIPIYIPIXI~]
— aEy [r(IXIPIYIPIXT~1]
where E,, denotes the expected value when 6 = [||¢]|, 0,0, - - -, 0]
Suppose we define E,, r(X)h(X) as follows:
(#1.9) By (r(X)A(X)) = E [r(IXIPN2(p — 1)(X, — [161X:) — 2][Y|P)|X][*]
— @E i [r(IXIP)((p — DX — IYIP)IX]I7] -
Clearly, then, (4.1.8) is equivalent to
[RD(X, 0) — RD(3,,,(X), 6)]/a
(4.1.10) Z (0°DO]((p — DIBIPDE o (r(X)A(X))
+ (tr D(p — DE o (XY IFAXI — (a/2)IIX]-4] -
Case 1. If E 5 r(X)K(X) = r(a/2)E,,, h(X).
Since r(+) is nondecreasing,
Eyg[2r(:X 5. Y #0X 2 — (af2))IXI17] = r(a/2)Eyo (2] YIP(IXIP — (a/2))]1X]17] -
Hence, clearly, by (4.1.10),
[RD(X, ) — RD(d, (X), 0)] = r(a/2)[RD(X, 6) — RD(3,(X), 6)] = 0
when 0 < a < 2a,*((tr D/d,) — 2)/E,(||X||-*) (see Theorem 4.1.1).
Case 2. If B (H(X)A(X)) < 1(a[2)E,p, h(X).
By (4.1.3),
Egy[(2(p — 1)(X* — 11611X5) — 2]|YIP)]|X]1~]
= E[Q(p — DX + [B11%) — 2IYIP)(X: + 6] + Y] < 0.
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Similarly, Lemma 6.1.8 states

E[((p — DX — [[YIP)IIX]]
= E[((p — (X, + 101)* — IYIP)((X2 + [61)* + [YIF)~*]
is nonnegative.

Hence, clearly by the definition of E, (r(X)h(X)) given by (4.1.9),
E,(r(X)h(X)) < 0. Hence, if d, = maximum eigenvalue of D, then

[RD(X, 6) — RD(3,,(X), 0)]/a
2 (du/(p — 1))E o (r(X)A(X))
+ (tr D)(p — D)Ep 2r(IXIPMYIPAXIP — (a/2)NIX]7]]

= [(RD(X, 6) — RD(3, ,(X), O))/a]* . °
For 0 £ a < 2R%((tr D/d,) — 2), 6, (X) will be minimax if [(RD(X, 0) —
RD(d, (X), 0))/a]* = 0 when a = 2R%((tr D/d,) — 2) or equivalently, if
A(r(IX[)) = 0, where g = tr Djd;, and A(r(|X]F)) = (4.)""[(RD(X, 0) —
RD(0, (X), 0))/a]* when a = 2R%a,(q — 2). Hence,

A (r(I1X1P)) = 1/(p— D[Eyan[r(IXIF)2(p — 1)(Xy” —[16]]X2) — 21| Y |F)I|X]1~*]

(4.1.11) — 2a,R(q — 2)E [(IXIP)(p — DX — [[YIP)IXT]]
+ (29/(p — D)E ol 7(IXIPIIYPIX]7]
— ayR(q — 2)E, [r(IXIPIYIPIXI-] -

For fixed ||6]|, A,(r(|X]?)) is a concave function of g clearly implying that
A (X)) 2 minimum (A,(r(IX["), &,(r(1X]F)))- Tf we show that A,(r([X|[)) = 0
and A (r(|X]F)) = O then A (r(|X]F)) = 0 for 2 < ¢ < p, and the proof will be
complete.

Allowing ¢ = p in (4.1.11) and since 2a,R*(p — 2) = 2¢,R?, where ¢, is given
by (2.1.2), we have A,(r(II) = 2B (PN — (A, + e RN = 0
as proven in Theorem 2.3.1.

Before proceeding, note that when r(+) = 1, a shift of X to the origin, clearly
shows that A,(r(||X|P)) = A,(1) = A,, where A, is given by (4.1.6) when ¢ = 2.
In the proof of Theorem 4.1.1, A, was shown to be nonnegative.

Suscaske 2.1. ||6|f = R

From (4.1.11), A(r(IXIP) = (2/(p — D) [FIXIPN(p — 1)(XF — 61X,) +
[IY|P)IX]|7*]. According to Lemma 6.1.9,
E o [r(IXIPYXAXI)] = (P — D/P)EjoilFAIXIPXUXIP — B + [161F)/21161)(XAXT17)

+ (1/p)Eyonr(1XIP) -
Hence,
A(r(I1X1P))
(4.1.12) = @PREwnIXI) + (7 — 2)/200)E i (r(IXIF) X2)
— ((p = DR + (p + DO/ 200 Epn(r(IXIPYXIXT)] -
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By Lemma 6.2.4, E , (X, |||X|) is nondecreasing in || X|* when ||f|| = R. More-
over, Lemma 6.2.2 implies E, (X,|X||~*|||X|*) is nonincreasing in ||X|? when
lf]l = R. Combining these two facts with the assumption that r(||X|f) is a non-
decreasing function of ||X|J, (4.1.12) implies

« As(r(IX1P)) = [Eyon(1XIP)IA, -
As we noted earlier, A, is nonnegative, hence the proof is complete for this
subcase.

SuBcasE 2.2. 0 < ||| < 4a,R".

From (4.1.11), we may rewrite A,(7(]|X|f)) as follows:

(4.1.13) A (r(XIP)) = 2/(p — D) Eyon (IXIF) — Enonl(1XIP)IONX]X]
+ (P = 2)En[r(IXIP)X? — [I911XIIX]17] -
For |0 £ 44a,R?,
E o [r(IXIP)X:E — OIXIXT"] = —(161F/4) Eyonr(IXIP)IXTI7]
= —a,R°E; [ XIP)IIX]|] -
Thus, clearly, by (4.1.13),
By(r(IXIF)) = (L(p — 1)A,((IXIP)) = 0 -
SUBCASE 2.3. 4a,R* < |0 < R*.
Suppose Ey, [r(IXIP)(IOIXIXI] = Ejo[IXIP)IEI — a0 R*)[[X]|~*]; then
E o [r(IXIP)X," — [IBIXIXN] = Eo [r(IXIP) (011X, — NEIP)IXTI]
= —a, REy [r(IXIPMIXIT 5
and so,
Bo(r(IXIP)) = (1(p — 1A (IXIF)) 2 0~

To complete the proof, we will now show that A, (r(|X|})) =0 if
Ey o [r(IXIP)(I011X,)| X121 < E,gy [r(1XIP)( 6] — @, R?)||X][7?]. Lemma 6.2.5 states that

E oy [r(IXIP)IXTE — R — [161F)/2161)(XIXT)] = — e Eyou[r(IXTP)IEN X)X -]
when |0 = ((2/ep) — 1)R®.  Substituting in ¢ = (2a,/(1 — a,)), for
(1 = (p + L)ay)/pa,R* < [[0]F < R, we have that

Ep [r(IXIP)(IXTP — R — [161P)/ 21161 (XlXT=)]
= —(2a,/(1 — a))E o, [r(IXIP)(UIO1 X)X~
= —(2a,/(1 — ap)E; [r(IXIP)(IEI" — a0 R*)|X]1~*]
2 —2a,REp [r(IXP)IX]I7T -

By rewriting (4.1.12) we obtain
Ay(r(IX1F)) = (2/P)2E o1 (IXI) — 2I[61|Eyion [( 1 XTP)XA1X]I*]
(4.1.14) + (P = DE o [r(XIPXAIXIF — 161 — R?)/2]10]])
X (XX -
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Using (4.1.14), we see that

As(r(1XI7) = (2/P)2E 0 (1XIP) — 21611Ey 0 [r(IX]P) Xl X]17]
— 2a(p — 2)RE, [r(IXIP)IXII]]
= (@/p)(A,(r(1X]))) = .
Whenp = 4, (1 — (p + 1)ay)/pa,) = (1/p) < 4a,. Hence, forp =4, A,(r(|X|})) =0
when R*/p < || < R® implying A,(r(||X|)) = O when 44, R* < ||0]F < R".

Forp = 3and .5R* < [ < R, by (4.1.12), A((IXIP)) = 2/3[2E,, (I XIF) +
E\o r(|XIP)((IXIP* — R* — 5[|6]P)/2||0])(X,|X[|*)]. By Lemmas (6.24) and (6.25)
and the fact that A (r(]|X]})) = 0 and for p = 3, E,, (X, |||X]]) is nondecreasing
in 1X]F, ‘

Ao(r(IXIP)) = 2/3[-25RE o r(IXIPNIXII™* — (§)E o 7(IXIPN XTIy Xi]
= 2/3E,(r(IXIIXIT)-25 R — (G)@NIOIF(R® — [16]F)R*]
oc (TSR — 26PR® + 2)p])
= .25R* for SR LGP < R

Hence, for p = 3 and for all ||6]|, A,(r(||X][*)) = 0 and A, (r(|X]}*)) = O thus im-
plying A,(r(|X])) = minimum (A,(r(|X])), A,(r(|X]F))) = O.
The proof of the theorem is complete. []

4.2. Minimax estimators of the mean vector of a spherically symmetric unimodal
distribution. In this section we consider X one observation on a p-dimensional
spherically symmetric ynimodal (s.s.u.) distribution. Hence, as in (3.2.1), the
density of X is given by

| 9(lx = 6l) = § e(R)Is(x, R) dF(R)
where F(+) is a known cdf on (0, o) and ¢(R) and I4(X, R) are defined in (1.4).

We will show that with respect to general quadratic loss (1.2), 6,(X) =
(1 — (a/||X|?))X is minimax when 0 < a < (2a,/E(R7?))((tr D/d,) — 2) where a,
is defined by (4.1.1), d, = maximum eigenvalue of D and tr D = trace D > 2d,.

Since the random vector X| R has a spherical uniform distribution (X|R ~
Uf||X — 6] < R?}), proceeding exactly as in Section 4.1, clearly the same in-
equality (4.1.4) holds for the difference in risks RD(X, §) — RD(3,(X), 0) as did
for the uniform distribution. That is,

RD(X, 6) — RD(3,(X), 0)
= aE[E,[2X'D(X — 0)|X|[7* — a(X"DX)|[X[|~*| R]]
= (dya/(p — DA — DX + 1011X) — 2A[YIP)X + 101 + 1Y1P)~]
— aB[((p — D)X + 10" — [IYIP)(X A+ 1161 + [IY1F)~*H
+ (tr Da/(p — D)EL2(YIP((X: + [191)* + [IY]F)™"]
— aB[[[YIP((X2 + 101" + Y1) ~*]]
= [RD(X, 8) — RD(3,(X), 0)]* .
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If g=trD/d,, 2<q<p, and A* = [RD(X, 0) — RD(3,(X), 0)]*/ad, when
a = 2a,(q — 2)/E(R7?), then

Ax = (1(p — DIEL2(p — DX + [161X:) — 2YIF)(X + 101" + [1Y1F)~]
— (2a(q — 2)/ER)E[((p — )X + 101" — 1Y)
X (X A+ (011 + [[Y1P)~"1]
+ (9/(p — DIER(YIFX: + [19)* + 1Y)
— (2a(9 — 2)[ERZ)E[[YIF((X, + (1611} + [[¥]7)~1] »
and the risk of d,(X) is less than or equal to the risk of X for 0 < a < 2a,(q —
2)/E(R~?) if Aj* = 0. For fixed ||f||, A,* is a concave function of ¢ and since
2 < g < p, it follows that A * > minimum (4,*%, A *).

However, when ¢ = p, 2a,(9 — 2) = 2¢,, where ¢, is defined by (2.1.2) and
A% = (Ef|X — 0|F — Ej||0,(X) — 6])/a for a = 2¢,/E(R™*). Hence, by Theorem
2.3.1,A* = 0.

When ¢ = 2

A = (2/(p — D)E[(p — DX + [10]1Xy) + IYI)(X + [101)* + [1Y]F)~"] -

When ¢ = 2 and X has a spherical uniform distribution, the above expectation
is just A,, defined by (4.1.6) which for that case was shown to be nonnegative
in the proof of Theorem 4.1.1. Hence, since X|R ~ U{||X — 6|F < R%}, it is
clear that A,* > 0.

Thus, 6,(X) given by (2.1.1) is minimax with respect to general quadratic
loss for 0 < a < (2a,/E(R7?)((tr D/d,) — 2). In the following theorem we will
formally state this result.

THEOREM 4.2.1. If X isa p X 1 random vector (p = 3) with a density given by
(3.2.1), then with respect to general quadratic loss (1.2), 0,(X) given by (2.1.1) is
minimax provided

0 < a < (2a/E(R™)((tr DJd,) — 2) = 2a,*((tr DJd,) —
(4.2.1) 2)/E(||X]|*), where a, and a* are defined by
(4.1.1) and (4.1.5) respectively, and  tr D > 2d, =

2(maximum eigenvalue of D) .
We next expand this class of estimators.

THEOREM 4.2.2. If X is one observation on p-dimensional s.s.u. distribution about
0 with a density given by (3.2.1) and o, (X) = (1 — a(r(|X|])/||X|*))X, as defined by
(2.3.1), then provided p = 3, (r(||X|]")/||X|F) is nonincreasing, r(||X|?) is nondecreasing
and (4.2.1) is satisfied, the risk of 6, ,(X) dominates the risk of X with respect to
general quadratic loss (1.2).

Proor. Since X|R may be considered to be a spherical uniform random
vector, proceeding exactly as in the proof of Theorem 4.1.2, we see that this
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theorem will be proven if A *(r(]|X|[*)) is nonnegative for 2 < ¢ = (tr D/d,) < p and

Ax(r(IXIP) = (1(p — DEwn[r(IXIDI2(p — DX — 11611Xy) — 2IYIP)AXID1]
— (29 — 2)a/ E(R))Eyo [r(IXIP)((p — D)X — IYIP)IX]~*1]
+ (9/(p — DILE o [r(IXIP)2YIIX]]
— (29 — 2)ai/ E(RT)E, o, [r(IXIP)IYIFIXTI=]] -

Clearly, A *(r(|X]]*)) is a concave function of ¢ for fixed ||d.
For ¢ = p, 2(9 — 2)a, = 2¢,, where ¢, is defined by (2.1.2) and hence, by
Theorem 3.3.1, :

Ay = E g [r(IXIP)[2 — IIOIX: + (2co ER))IXITT = O -

b4

Moreover, since X|R ~ U{||X — 6]} < R?}, the proof of Theorem 4.1.2 immedi-
ately shows that A,*(r(]|X]*)) = 0.

Hence, by the concavity of A *(r(||X|[*)), A, *(r(|X|]")) = minimum (A,*(r(|X][*)),
A *(r(1X]))) = 0, thus completing the proof of this theorem. []

5. Remarks and conclusions. We conclude with some observations on the
multiple observation case and a discussion of the merits of using these improved
estimators.

Consider n observations, X}, X,, - - -, X,, on a p-dimensional s.s.u. distribution
about §. For the normal distribution the problem is easily reduced by sufficiency
to one observation, X. However, this is not the case here. Pitman’s estimator
given by o(X;, X,, - -+, X,) = X, — E[X,|Y,, Y, ---, Y,] where ¥V, = X, — X,
i=2,3,...,n, is the best invariant estimator and hence, there exist estimators
which are better than it. For the normal distribution, Pitman’s estimator is X
and in fact, in one dimension when n > 3, Pitman’s estimator being X charac-
terizes the normal distribution (see Kagan, Linnik and Rao [12], Chapter 7).
In general, for n > 3, Pitman’s estimator is not X. Itis clear from the defini-
tion of Pitman’s estimator that it is X for n = 1, 2.

If the distribution of Pitman’s estimator is spherically symmetric unimodal
about ¢, the problem is reduced to the case of one observation. We investigated
this question and, as yet, have only proven that Pitman’s estimator has a s.s.u.
distribution about # when sampling from a spherical uniform distribution about
6. The more general problem is still under investigation. Note that X, which
is a convolution of random vectors having s.s.u. distributions, has a s.s.u. dis-
tribution. Hence, we may use the estimators of Sections 2—4 to improve on X
with respect to quadratic and general quadratic loss.

We now return to the case when X is one observation on a p-dimensional
s.s.u. distribution about §. Consider the estimator J,*(X) = max (0, (I —
(a/|X|P))X. It is clear by the work of Baranchik [2] that d,*(X) is better than
d,(X) = (1 — (a/|X]*)X with respect to quadratic loss (1.1). For 0 <a <
(2b,)/ E(|X]|"%), where b, = (p/(p + 2)) when p = 4 and b, = .375 when p = 3,
0,(X) and hence §,*(X) is better than X (see Theorem 3.2.1). These new
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estimators are certainly not very difficult to calculate and the improvements
over X, in some instances, can be very large. Consider, for example, the case
of estimating 6, when X has a p-dimensional spherical uniform distribution
about 6, with respect to quadratic loss (1.1). According to Lemma 6.1.1, the
risk of X equals Ey(||X — 0|*) = (p/R®) (& re+dr = (p/(p + 2))R?, forall §. Again,
by Lemma 6.1.1, when 6 =[0,0, ---, 0], R(3,(X),0) = E(|X]}) — a[2 —
aE(IXI)] = (pl(p + 2)R — a[2 — a(p/(p — 2)R7]. Since R(3,(X), 0) is a
convex function of aand for p = 4, 0 < a < (2b,)/E|(||X]|7*) = 2((p — 2)/(p+ 2))R?,
R(3,(X), 0) Z R(3,(p-,»1a(X), 0) = (4/(p(p + 2)))R?. Clearly, this risk becomes
very small as p becomes large. Moreover, R(0,.,_s, z(X), 0)/R(X, 0) = (4/p*).
Therefore, for p > 4, the risk of §,(X) when a = ((p — 2)/p)R* is at most (}) of
the risk of X at the origin. Note too, that R(d,(X), 6) is a convex function of a
and so isminimized at a = 15(|0||) = $b(||oc||). So, d, is dominated by 6,_;)/(,+s R®s
for 0 < a < 1b(|oo|) = (p — 2)/(p + 2)R’. But, thisis not true for 4,*, which
would normally be preferred to d,.

If we now wish further improvement, we may consider d,*(X). When
| X = a, 0,7(X) = 0,(X) and when || X < a, 6,*(X) = 0. Since the risks only
depend on 6§ = [||¢]|, 0, 0, - - -, 0], Lemma 6.1.6 implies that when ||| = R + a?,
|| X|P? is always greater than or equal to a, and thus, §,*(X) coincides with 9,(X).
Similarly, if ||6]| < a* — R then ||X|P is always less than or equal to @ and thus
0,7 (X) = 0. Therefore, for p=6 and R <a=<2((p—2)/(p+2)R,
R(0,%(X), 0) = 0.

We thus see that when X is one observation on a p-dimensional, (p = 4),
spherical uniform distribution, there exists an @, 0 < a < (2(p — 2)/(p + 2))R’,
for which §,*(X) improves over X for all ||f|| with a large improvement at the
origin. Moreover, when p = 6, there exists an a for which 6,7(X) is minimax
and R(d,%(X), 0) = 0 with respect to quadratic loss (1.1). Since these new im-
proved estimators do not present any difficulties in calculation, they may easily
be used in place of X for estimating the mean of a spherical uniform and more
generally, the mean of a s.s.u. distribution.

We complete this section with a note on the robustness of these estimators.
Our improved estimators are robust in the sense that for any p-dimensional,
(p = 3), distribution about 6 satisfying E,(||X|?) < ¢, when c is a given constant,
8,(X) is minimax with respect to general quadratic loss (1.2) for any a such that
0 < a < 2a,%((tr D/d,) — 2)/c where, as in (4.1.5), a,* = (p/((p + 2)(p — 2)))
for p > 4 and a,* = .48 for p = 3 and tr D > 2d,. Hence, we need not always
know exactly what E(||X]|~%) is in order to use these improved estimators.

It is hoped that these results add some insight into the behavior of the James-
Stein type estimators and with this, perhaps those using these estimators will do
so more confidently.

6. Appendix.

6.1. Integral expressions, expectations and density derivations. In this section
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we present useful integral evaluations and various densities as well as many
expected values which aid in the calculation of important expressions.

(6.1.1) 0 (R — ) dy = (29/29 + DR §§ (R* — )1 dy
(6-1.2) i (R — )i dy = (zR'[4)
(6.1.3)  46IF §& (R* — »*)*/dr,0(¥)) dy
= {0 (R = )t dy — (R — |I0IF)* §5° ((R® — )"/ d, (1)) dy
where
(6.1.4) dro(y) = (R —[10]])* + 4I6IF(R* — )*) -

Lemma 6.1.1. If X is a p X 1 random vector with a spherical uniform distibution
(X ~ U{||X — 60| < R?}) then for any integrable function g(||X — 6||), E,9(|| X — 0|)) =
M, & rr=2g(r) dr, where My = p[R”. In particular, E(||X]|"*} = (p/(p — 2))R~*and
E(XI) = (pl(p — )R | \

Proor. Results follow by a conversion to spherical coordinates. []

LEMMA 6.1.2. IfX=[X, X,, .-+, X,]' ~ U{||X—6|f < R*} then E; g(X'0, || X|) =
E, 4,9(X)\0)], || X|]*) where E,,, denotes the expected value when 6 = [||4||, O, - - -, 0]".
Moreover, if 6 = [||f], 0, - - -, 0],

Ey, g(X:161, {1 X175 11Y1F)
= Eg(I01(X, 4 1161D> (X2 + N191)* + [1Y1P [IY1F)
= M %ars r=g(10Cx + 181D (x, + 017 + 7, ) dx, dr
where ||Y|} = Y P_, X;? and
(6.1.5) M = [(2p)R* |§ (R — y*)7=>2 dy]*

Proor. The first part is true, by a simple transformation of variables by ap-

plying the p x p orthogonal matrix P which is such that P = [|||;, O, - - -, O].

The second part is easily obtained by translating to the origin and then trans-
forming (x,, X;, - - -, X,) into spherical coordinates. []

LemMa 6.1.3. If X = [X,, X;, - -+, X,]" has a spherical uniform distribution then
Ej2X(X — 0)1X|I*) = 2 — 2E][||0]I(X, + [10ID((X2 + 161)* + [1YIF)~*]
(6.1.6) = (4M/(p — 1)) §¢ (R* — y*)*=""]dg 01(¥))
X [R* — 3||6|'R* + 4|6|(R* — y*)] dy

and
E,(|1X]I7*) = E((X; + [10])* + [[Y]F)~

(6.1.7) = (2M[(p — 2)) {§ (R* — y*)*>=92[dy 5(y))
X [R* — ||0|FR® + 2[|0|F(R* — y*)] dy

where ||Y|} = 3P, X2, dy 0/ y) is defined by (6.1.4) and M is defined by (6.1.5). .

Proor. We obtain the desired results by applying Lemma 6.1.2, integrating
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with respect to x, and then integrating by parts and transforming variables to
y=(R —-r)t. ]
LEMMA 6.1.4. If X=[X, X, - -, X,) ~U{IX — 0P < R} and 6=
[y, o, - --, 0y, then
Ep(IYIAIXT7) = EIYIF((X: + 1161)* + 1Y)
(6.1.8) = (2M]p) (& ((R* — y*)*=""dp 5 (1))
X [R' —[I0IPR + 2||0|P(R* — »)] dv

and
Ej(IYIIXI7) = E(IYIP(X, + 1161)* + 1Y17)7%)
(6.1.9) = (M[(p — 2)) §& (R — p")*="[dp,101()))
X [(p — DR — (p — 1)0IPR
+ (PIOIF — (p — 2)R)(R* — y")] dy
where ||Y|? = Y7, X? and dg ,(y) and M are defined by (6.1.4) and (6.1.5)
respectively.

LEMMA 6.1.5. When p = 3,
§ (R — y)*=22/(dp,0/())) dy
= ({7 (R* — yn)e=22dy)[h(|6]l, R)],  when ||f] = R
= (& (R* — y)»=2dy)[h(R, ||0])],  when |6l < R
where
(6.1.10) (4611, R)], = (IBIF(R* + [161)~" 2520 (—1)'a(R/||6|]")’
and
(6.1.11) [A(R, ]16ID], = (RY(R* + ||6]"))~* iz (—1)'as(|61P/ R®)'
anda, = 1,a, = [(p — 2(i + D))(p + 2 — D)acy fori = 1,2, - anddy, 10,()
is defined by (6.1.4).

Proor. The proof is a proof by induction by first assuming the lemma is true
for p and utilizing (6.1.3) to prove it is true for p + 2. In order to prove the
lemma for p > 3, it is straightforward to show it is true for p = 3 and p = 4.

When p = 3, by the definition of d,, ,,(y) given in (6.1.4)

§& (R — ) *=27%(dg,101(¥)) dy '
= ¢ [(R* + [16]P)* — 4ll6IFy*] " dy
= (46I(R* + [16]))~* log [(R + |I6]I)*/(R — [161])°]
= (I6I(R* + [1617))~* Z5=1 (RABI)*™~*/(2n — 1) when |f]] = R
= (I6I(R* + [101"))~* Z5-: (I6l/R)*™*/(2n — 1) when ||| < R.
So, when ||f|| = R
S8 (R + [0 — 4011 dv = [SF dy/(IOFCRE + [B1)] S5m0 (RYI6IP/(2n + 1)
= (& dy[[A(|0], R)]s] as defined in (6.10).
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Similarly, when ||| < R

§5 (R + |I6IF) — 461y dy = §¢ dy [[A(R, [|6]])]s] -

So, the theorem is true for p = 3.
Again, by integrating properly, for p = 4,
V& (R* — p)P=95(dg 0 (p)) dy = §§ (R* — Y)H(R® + ||6|")" — 4ll6II"y*)~* dy
= 7R (4|6|P(R* + |I6]))*  when [|f]] = R
n(R® + (6] when 6] < R .
Since, by (6.1.2), {# (R* — y*)tdy = (=R*/4)

3¢ (R = ¥)}(dr, (1)) dy

= & (R — y)* dy[(I61F(R® + [16]))
= {H(R — P)Y(R(R* +110])

when ||| = R

when ||| < R.
Thus, this implies @, = 1 and a; = 0 fori = 1,2, ..., which implies the theo-
rem is true for p = 4.

Assume the lemma is true for p; to show it is true for p + 2, we must show
that

§& (R — p)P= 22 dy 0()) dy
= (& (R — y)*~22dy [h(|0], R)],+»  when [0 = R
= (R — y) =" dy [(R, [|0|)]5+2
where

when |d| < R
[B(I]1, R)]p+s = (IOIF(R® + 1611))7" Ziezo (— 1)L RIIEIPY"

[A(R, [161)],+2 = (RY(R* + [|6])~* Lo (— 1)B(I6I/R)'
and
bo=1,  bi=[(p— 2)/(p + 2)bis i=1,2, .-
Directly,
40P §& (R — Y= (R — [I6]F) + HOIF(R* — y*) dy
= {§ (R — )22 dy — (R — ||0P)* §& ((R* — ")~ dp,00(¥)) 4y -
Since we assume the lemma is true for p,
401 §& (R* —

P2 dy y01(y)) dy

— éz R — (p=3)/2 g 1 — (R2 - ”0“2)2 ;_0 — 1Y) i R2/11611%)¢
18 (70 — -y (1 — SO iz (- DRy
(6.1.12) if |0|<R and
— (R 2 12\ (p—3)/2 _ ‘_(Rg - ”0”2)2 L —1)¢ 2/ R2)¢

8 (& — ooy (1 = SR IEES e, (< 1yaqarRY)

if 18] < R
where a, = 1 and

a,=[(p — 2 + \))(p + 20 — 1)]a,,, for i=1,2, ..

409
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Case 1. /6] = R.
l_w = o (= 1)'a,(RY/||0]]?)
L1 il e kv
= (R/(R* + [01P)I1 + (l6IF/R?) :
— ((RYIBIF) — 2 + (IB1F/R?)) iz (—1)'ay(RYI61)]
= (RY(R* + [IFD[3 + & + T (— 1)+ a,(RY|j6]+
+ 2 D (= Da(RII6F) + Zims (— 1) ay(Re|6]) ]
= (RY/(R* +IOIPNIB + @) + S (= 1)@y + 2, + a J(RYOIPY] -
This, together with (6.1.12) implies
Vo (R — ) ="%d g 101(y)) dy
(6.1.13) = R§ (R — y)e=o/ dy (46]F(R* + ||6]F))~
X (G +a) + Z (= Dais + 20, 4 a,J(RY|I6])] -
Now, directly by (6.1.1), ‘ |
5§ (R — )=t dy = (pl(p — DR §F (R — )= dy,
80, (6.1.13) becomes
3o ((R* — ") *="dy () dy
= 3 (R = p)r=dy (JOIF(R® + 61) 7 Zize (— )6 RY/)IF)?
where b, = (p/(4(p — 1))(3 + a,) and
by = (p/4(p — D)a;_, + 2a; + ay,,] i=1,2,....
Since a; = [(p — 2(i 4+ 1))/(p + 2(i — 1))]a,_, fori=1,2, ..., and a, = 1,
—_Hp—3p+ 2a,,
4(p — 1)/p)b, =
= D= a5 + 2 )

— 4(P2 - 3P + 2)(P _ 2i)ai—2 for i = 2’ 3, . s
(P20 =2)(p + 20— 1)(p + 2i) '

and

_ - Ap* —3p + 2)a, _
= Dip)oc (P +2( = 1)(p + 2(i — 2)) for =23

so clearly,

by = ((p — 2i)/(p + 2i))b,_, for i=2,3,....
Moreover, b, = (p/4(p — 1))(3 + (p — 4)/p) = 1 and
bu= (p/A(p — D)(P" = 3p + 2)/((p — 3P+ 2)I(P — 4)p) = (P — 2)/(p + 2) .
Thus,

bo=[(p — 20)/(p + 206y for i=1,2,...

by=1.

and
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For [I6]| = R,
§0 ((R* — )2 =07 dp 101(y)) dy = §& (R* — y*)*=02dy [A(|0]], R)],+s
which is what we want to show.
Case 2. ||f)| < R.

Proceeding as we did in Case 1, when ||f|| < R,

1= (R= O s 1yigoi/RY
1~ s T (= DRy |
= (IOIP/(R* + 1163 + ay)
+ Lo (—1)ais + 24, + a,,](10/R)] -
So, (6.1.12) becomes, for ||f|| < R,
38 (R — y)»=r dy (R(R® 4 [1617) 7" Zizo (— 1) R7/|16]F)*
where 6, = 1 and
b= [(p — 20))(p + 2i)]b;y  for i=1,2,....
Thus, for ||| < R,
38 (R — )22 d () dy = §& (R — p*)»=27 dy [A(R, [10])], s -

Hence, we have the desired result for both cases.
Since the lemma is true for p = 3 and p = 4, the induction implies it is true
forp = 3. [ '

LEMMA 6.1.6. Suppose X = [X}, X,, -+, X, ] ~ U{|X — 0] < R*} and 0 =
[y 0,0, ---, 07. If Z = |iX|f,

Sy = ((xp 2): ((z = R £ |0")/2161) = x, = 24 (R — |I0]])* = 2 = (R + |161])*)
and
S=((x,2): =2, 22,02 (R—160))Y 5
then the joint density of X, and Z is given by
(6.1.14)  fip(x1, 2) = (M/2)(z — x,*) P35 (x,, 2) when ||f]| = R
and
(6.1.15)  fio(x1, 2) = (M[2)(z — x) P~ 5,(%, 2) when ||0]] < R

where M is given by (6.1.5) and I(x,, z) and Ig ,5(x,, Z) are the indicator functions
over the sets S, and (S, U S,), respectively.

ProoF. We obtain these densities by taking (d/dx,)(d/dz)P, (X, = x,,
IXIP = 2). O :

Lemma 6.1.7. If X =[X, X, ---, X, ~ U|X — 6P < R?} where 6 =
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[0, 05 ---,0,) and ||Y|? = 32, X;?, then for any integrable function r(+)
(P — DE[r(IX + OP)(2X:" + 260, X)X + 6]]* — a(X, 4 6.)1X + 6]*]]
= (0|01 E[r((Xy + 1161)* + [1Y]P)

X [(2(p — )X + [101X,) — 2[YIP)(X + (161D + [1Y1P) 1]]

— akE[r((X, + |6I)* + [1Y1F)
X [((p — D&+ [101)* — 1Y), + [0l + [1Y1R)~°11]

+ 2E[r((X, + 101" + IYIPNYIF((X, + 116D + 1Y) ]

— aE[r((X, + [6])* + [YIPDIYIFX, + 161 + 1Y 1P)~"] -

Proor. We obtain the desired result by making two transformations of vari-
ables. If Pisa (p — 1) X (p — 1) orthogonal transformation such that P[d,, 6,,
0i 50405 -5 0,1 =[|l0]l:» 0, - - -, 0] where||6]|; = (||0|F — 6%, we first transform
tos = [52) Sgs vty sp]' = P[xv Xgy * vty X1y Xjpqs = v vy xp]/.

There exists an orthogonal transformation Q such that Q[6,, el 0, - --,0) =
(e, 0, ---,07, and if z={[z,2,---,2,) = Q[X; S -+, s,]’ then x;, =
@10z — (61162 5 = (EI/161Dz: + (O/16l)2, and s, = z, for i = 3. With
this transformation and using the fact that for any constant c,

Samzsrn 7((20 4 101" + WY IPXN2(I6]] + ez))((z: + 101 + ([YIP)~'dz =0,
we obtain the desired result. []

LemMa 6.1.8. If X = [X,, X;, - -, X, ] ~ U{||X — 6 < R*}and||Y|} = 7_, X,
then Eq[((p — 1)(X: + JIBI)* — [YIP)((X, + [0 + [[YF)~*] = O whenp = 3.

Proor. Using (6.1.9) and Lemma 6.1.5 it can be shown that

EIYIP((X: + [0)* + [[Y]F)~*] o< gi(]10], R) ~ when [|f]] = R
oc gy(R, [|ff)  when |If]| < R
where , '

9161l R) = (pR* — plEIF)[A(I6]: R)L,) + (PO — (p — 2)R)([A(I6]l, R)]4.)
and .

9:(R, [16])) = (pR* — plOIP)[A(R, [16D],) + (PlOIF — (p - 2)R*)([A(R, (161D)]5+2) -
Moreover, by (6.1.7), (6.1.9), and Lemma 6.1.5

E[((p — DX, + 10 — (IYI)((X, + 161 + [1YIF)~
o g(R,[B)  when Rz [
o< gy(||0]), R) when R < |9 .
Hence, it is nonnegative for all [|f]|. [J

LEMMA 6.1.9. IfX = [X,, X,,---, X,]' ~ U[||X—0|" < R“}V, 6=r1|o0,---,07,
and r(||X|P) is any integrable function, then
Eyo [r(IXIPXXIXIT] = (P — DIP)Ejon r(IXIPIX P — R® - 16]1)/2/[61)(Xl1X]1*)

+ (1p)Ejonr(IXIF) -
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Proor. Use of the expressions for the joint density of X, and ||X|? given in
Lemma 6.1.6 and a straightforward integration by parts completes the proof. []

6.2. Auxiliary lemmas. In this section we present lemmas which contain im-
portant properties which aid in the proof of theorems in Sections 2—4.

LeEmMMA 6.2.1. If Y is a random variable with a density with respect to Lebesgue
measure given by

9a1(¥) = (R — ) [drpon(¥)/§5 (R = ) [dr 101(7)) Y
when 0 <y<R
= 0 elsewhere
where, as in (6.1.5), dy, ,,(y) = (R* — ||0|)* + 4||0|'(R* — y*), then the distribution
of Y has monotone likelihood ratio (MLR) nondecreasing in' Y when ||f|| < R and
MLR nonincreasing in Y when ||| = R.

Proor. It is straightforward to show that for 0 < ||0]|, < ||f]l, < R,

(d]dy)(aq+1,100,(¥)] G2q+1,101,(Y)) Z O
and for R < |0, < |6|l,» '

(d]dy)(2q+1,100,( V) 920 4 1.101,(¥)) = O,
which completes the proof. []

LeEMMA 6.2.2. If X =[X,, X,, - -+, X,]' ~ U{||X — 0} < R*}and Z = || X|", then
forany c, and for fixed||0]| satisfying ||6|* = (1 —2¢)R, Eypy((I6]1X, + ¢ R)||1X]|* | |IX]F)
is nonincreasing in || X|?.

Proor. For (||f]| — R)* < z < (R + ||f]|)’, Lemma 6.1.6 clearly implies that if
S = (||6]|X, + cR?)/Z then

(2 — (sz — cRYYI6|| )"~ 2"1 ,(s)

— h =
ﬁlﬁll(s|z) z(s) 'é((?) (Z _ (SZ _ CR2)2||0||_2)(p_3)/2 ds

where ¢(z) = (|||t + cR®)/z, d(z) = (z — R* + ||0|F + 2¢R*)/2z, A = (s: d(z) <
s < ¢(z)), and

I(s)=1 if sed
=0 if sgAd.
With respect to A,(s),
Ejo (011X, + cR*)(27) 2] = E(s)  for fixed [/f]|.
If z, < z,, ¢(z,) = ¢(2,) and, provided ||f|f = (1 — 2¢)R? d(z,) = d(z,). Therefore,
b, (8)/h.(s) — oo, when d(z,) <5 < d(z),
he ()[R, (5) o< (2, — (52, — cROYO7*)*=7(2, — (s2, — cREY(|O]7*)P =7

when d(zl) é S é c(zg) ’
and ‘

b (5)/h.(5) = O when ¢(z,) < s < ¢(z) .
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If h,(s)/h.(s) is nonincreasing in s, then A,(s) has MLR nonincreasing; hence
E,(S) is nonincreasing in z, and the proof is complete for (R—||0]))* < z < (R+]|0]|)*

For d(z)) £ 5 < ¢(2,),

a1, ($)/e,(9)) o< [2(52, — €R*)[2, — (52, — cRO)0||*]]
- [Zz(szz - CRz)[zl - (szl - CR2)2”0”_2]]
= g%(s) -
Clearly, g*(s) < 0 if (sz, — ¢cR®) = 0 and (sz;, — cR*) < 0. If (sz;, — cR?) and
(sz, — cR?) have the same sign,
9*(s) = (2, — z,)[s2,2, + (52; — cR®)(sz, — cR*)cRY|0||7%]

is clearly nonpositive. So, we have the MLR property satisfied.

When 0 <z < (R — [6]))",
124 (16, + R)z(z — x>~ dx, _ R

(2% (2 — x ) P92 dx, z

Ep[(10]1X, 4+ cRDNZ™ | 2] =

which is clearly nonincreasing in z. []

LEMMA 6.2.3. If X has a p-dimensional spherical uniform distribution about 6,
then P,{||X|? = ¢} = Py {||X]]? = ¢} is a nondecreasing function of |||

Proo¥. Suppose d, = [||6,]], 0, - - -, 0] and 6, = [||#,]|, 0, - - -, 0]’ and ||| < (|0},
Case 1. |||l = R*or (|f|l; < R* and ¢ = R?).

First note that, by Lemma 6.1.6, when ||f|" = R?, x, = 0 (x, is the first co-
ordinate of x) and when ||f|® < R* but ||x| = ¢ = R% x, = |/f||/2=0. This
means that ||x| = ¢ implies

I + (8 — G)IF = [l + 20l — [10:])x, + (16al] — 1164]])*
2| zc.
So,
Po(IX1* = €) = Piou(IX + (6, — 6)I = )

= Py (IXIP = ¢) -
Case 2. ||, < R*and ¢ < R®.

For this case we will show P, (|| X|} < ¢) < Py, (|| X]* < ¢) by showing S, =
(x:[HP S e, ||x — 0 < R*) is a subset of S, = (x: [|x|f < ¢, [|x — 0| < R¥).
Suppose x € S, and x, < ||f,||; then
e =GP — [x = GlF = — (6] — [1fll)* < O,
implying [} — 6, < [lx — 6JF < R
If x, = ||6,]| then

[ — P = [ — 206, + [0 < IIXIF — [0 < [P < ¢ < R
Therefore, S, ¢ S,.
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Case 3. ||6,F < R* < |i6,p.
Cases 1 and 2 imply
P, (|| XIF = ¢) = PR(IXIF = ¢) = Po(IIX11* = c).
The proof is now complete. []

LEMMA 6.2.4. IfX = [X,, X,, - -+, X,] ~ U{IIX — 6| < R*}, 6 = [||¢]}, 0,0, - - -,
0] and p = 3, then for fixed ||0| satisfying ||0]| = R, E, (X, |||X|F) is nonincreasing
in || X|?. For p = 3, E,(X,|||X|}) is nondecreasing for all ||6|}.

Proor. From Lemma 6.2.2, it is clear that the density of X | [|X|?, f;,01/(X, ||| X][*)
has MLR nondecreasing in X, for fixed ||f|| = R. Hence, E,(X) is nondecreasing
in Z. For p = 3, directly finding E, (X,|Z), it is clearly nondecreasing in

(1X1p O

LEMMA 6.2.5. If X =[X,, X,, ---, X, ~ U{|X — 0| <R*}, 0 =||¢)], 0,0, - -,
0Y, then for p = 3, c a positive constant, and ||0|* = ((2/cp) — 1)R?,

Eppulr(IXIPICCX — R* — [161F)/ 210 I(XAXTHTT = — eEyoul (IXIP)IONXAIXT)]
where r(||X|?)is a nonnegative nondecreasing function.

Proor. If g(z) = (z — R* — (1 — 2¢)||6]]")/2||f|| where Z = ||X|}, we will prove
that when |0} = ((2/cp) — 1)R?, E,p[1(Z)9(Z)(X,Z")] = 0. Using the joint
density for X, and Z given by Lemma 6.1.6, we have

Eip[(2)9(Z)(X,Z27)] = r((R* + (1 — 2¢)|l6|")Evpul9(2) X, 2] -
Expression (6.1.6) implies
Eipi[9(2)(X,Z7")] oc —(R* — 2¢||f]")(R* — [|0]P)?
+ (R 4 (1 — 20)[[6I)(R* — 3[[6]R*) + 4[6][Eyg(R* — ¥?)
= Efy[9(Z2)(X,Z7)]
where E,, (R* — Y?) is the expected value with respect to the density g, ,,(»)
given by (6.2.1). Using the MLR properties of g, ,,(») given in Theorem 6.2.1,

we have Ej,(R* — Y?) = E,(R* — Y?) = ((p — 1)/p)R* which along with the
assumption ||f|* = ((2/cp) — 1)R® implies

Efn[9(2)X, 27T =z (2/01/p)l(cp — 2)R* + cp|lf]

>0. 0
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