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We derive a new asymptotic expansion for the global excess risk of a
local-k-nearest neighbour classifier, where the choice of k may depend upon
the test point. This expansion elucidates conditions under which the dom-
inant contribution to the excess risk comes from the decision boundary of
the optimal Bayes classifier, but we also show that if these conditions are
not satisfied, then the dominant contribution may arise from the tails of the
marginal distribution of the features. Moreover, we prove that, provided the
d-dimensional marginal distribution of the features has a finite ρth moment
for some ρ > 4 (as well as other regularity conditions), a local choice of k

can yield a rate of convergence of the excess risk of O(n−4/(d+4)), where
n is the sample size, whereas for the standard k-nearest neighbour classi-
fier, our theory would require d ≥ 5 and ρ > 4d/(d − 4) finite moments to
achieve this rate. These results motivate a new k-nearest neighbour classifier
for semi-supervised learning problems, where the unlabelled data are used
to obtain an estimate of the marginal feature density, and fewer neighbours
are used for classification when this density estimate is small. Our worst-case
rates are complemented by a minimax lower bound, which reveals that the
local, semi-supervised k-nearest neighbour classifier attains the minimax op-
timal rate over our classes for the excess risk, up to a subpolynomial factor
in n. These theoretical improvements over the standard k-nearest neighbour
classifier are also illustrated through a simulation study.

1. Introduction. Supervised classification problems represent some of the most fre-
quently-occurring statistical challenges in a wide variety of fields, including fraud detection,
medical diagnoses and targeted advertising, to name just a few. The area has received an enor-
mous amount of attention within both the statistics and machine learning communities; for
an excellent survey with pointers to much of the relevant literature, see Boucheron, Bousquet
and Lugosi (2005).

The k-nearest neighbour classifier, which assigns the test point according to a majority
vote over the classes of its k nearest points in the training set, was introduced in the seminal
work of Fix and Hodges (1951) (later republished as Fix and Hodges (1989)), and is arguably
the simplest and most intuitive nonparametric classifier. Cover and Hart (1967) provided mild
conditions under which the asymptotic risk of the 1-nearest neighbour classifier is bounded
above by twice the risk of the optimal Bayes classifier. Stone (1977) proved that if k = kn

is chosen such that k → ∞ and k/n → 0 as n → ∞, then the k-nearest neighbour classi-
fier is universally consistent, in the sense that under any data generating mechanism, its risk
converges to the Bayes risk. Further recent contributions, some of which treat the k-nearest
neighbour classifier as a special case of a plug-in classifier, include Kulkarni and Posner
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(1995), Audibert and Tsybakov (2007), Hall, Park and Samworth (2008), Biau, Cérou and
Guyader (2010), Samworth (2012), Chaudhuri and Dasgupta (2014) and Celisse and Mary-
Huard (2018). Nearest neighbour methods have also been extensively used in other statistical
problems, including density estimation (Loftsgaarden and Quesenberry (1965), Mack (1983),
Mack and Rosenblatt (1979)), nonparametric clustering (Heckel and Bölcskei (2015)), en-
tropy and other functional estimation (Berrett and Samworth (2019a), Berrett, Samworth and
Yuan (2019), Kozachenko and Leonenko (1987)) and testing problems (Berrett and Samworth
(2019b), Schilling (1986)); see also the recent book Biau and Devroye (2015).

Despite these aforementioned works, the behaviour of the k-nearest neighbour classifier
in the tails of a distribution remains poorly understood. Indeed, writing (X,Y ) for a generic
data pair, where the d-dimensional feature vector X has marginal density f̄ and Y denotes
a binary class label, most of the results in the papers mentioned in the previous paragraph
pertain either to situations where f̄ is compactly supported and bounded away from zero on
its support, or where the excess risk over that of the Bayes classifier is computed only over a
compact subset of Rd . As such, many questions remain regarding the effect of tail behaviour
on the excess risk.

In this paper, we consider classes of distributions that allow the feature vectors to have
unbounded support. Our first goal is to provide a new asymptotic expansion for the global
excess risk of a k-nearest neighbour classifier, whose error term can be bounded uniformly
over our classes (Theorem 1). This expansion elucidates conditions under which the dominant
contribution to the excess risk comes from the decision boundary of the Bayes classifier, but
we also show that if these conditions are not satisfied, then the dominant contribution may
arise from the tails of the marginal distribution of the features. The threshold for these two
different regimes is governed by a parameter ρ that controls the number of finite moments
of the marginal feature distribution: if d ≥ 5 and ρ > 4d/(d − 4), then we obtain a rate of
O(n−4/(d+4)) uniformly over our classes, while if d ≤ 4 or d ≥ 5 and ρ ≤ 4d/(d − 4) then

our rate is slower, namely O(n
− ρ

2ρ+d
+ε

), for every ε > 0.
The proof of Theorem 1 also reveals a local bias-variance trade-off that motivates a mod-

ification of the standard k-nearest neighbour classifier in semi-supervised learning settings,
where, as well as the labelled training data, we have access to another, independent, sample
of unlabelled observations. Such semi-supervised problems occur in a wide range of applica-
tions, especially where it is expensive or time-consuming to obtain the labels associated with
observations; in fact, it is often the case that unlabelled observations may vastly outnumber
labelled ones. For an overview of semi-supervised learning applications and techniques, see
Chapelle, Zien and Schölkopf (2006).

Our second contribution is to propose to allow the choice of k in k-nearest neighbour
classification to depend on an estimate of f̄ at the test point x ∈ R

d in semi-supervised set-
tings. Such a local choice of k is analagous to the use of local bandwidths in the context of
kernel density estimation, as studied by, for example, Breiman, Meisel and Purcell (1977),
Abramson (1982) and Giné and Sang (2010). However, for density estimation, it is more
common to choose a family of bandwidths {h(Xi) : i = 1, . . . , n} rather than h = h(x), to
ensure that the resulting estimate is itself a density. Moreover, theory there suggests that one
should then choose h(Xi) ∝ f̄ −1/2(Xi) in order to cancel the leading term in the asymp-
totic bias expansion (Abramson (1982)). By contrast, we find that when choosing k = k(x),
by using fewer neighbours in low density regions, we are able to achieve a better balance
in the local bias-variance trade-off for estimating our main quantity of interest, namely the
regression function. In particular, we initially study an oracle choice of k = k(x) that de-
pends on f̄ (x), and show that the excess risk of the resulting classifier, computed over the
whole of Rd , is O(n−4/(d+4)), again uniformly over our classes, for every d ∈ N and pro-
vided only that ρ > 4. Moreover, in the more challenging case where ρ ≤ 4, we obtain a
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rate of O(n
− ρ

ρ+d
+ε

), for every ε > 0, which still reflects an improvement through the locally-
adaptive choice of k. Assuming further that f̄ has Hölder smoothness γ ∈ (0,2], we show
that if m additional, unlabelled observations are used to estimate f̄ by f̂m, and if m = mn sat-
isfies lim infn→∞ mn/n2+d/γ > 0, then our semi-supervised k-nearest-neighbour classifier
mimics the asymptotic performance of the oracle.

Finally, we consider corresponding minimax lower bounds. We show in particular that the
rates of convergence achieved by our semi-supervised, local-k-nearest neighbour classifier
are optimal up to subpolynomial factors in n. Interestingly, our arguments also reveal that
these rates cannot be improved with the additional knowledge of f̄ .

As mentioned previously, studies of global excess risk rates of convergence in nonpara-
metric classification for unbounded feature vector distributions are comparatively rare. Hall
and Kang (2005) studied the tail error properties of a classifier based on kernel density esti-
mates of the class conditional densities for univariate data. As an illustrative example, they
showed that if, for large x, one class has density ax−α , while the other has density bx−β ,
for some a, b > 0 and 1 < α < β < α + 1 < ∞, then the excess risk from the right tail is of
larger order than that in the body of the distribution.

Perhaps most closely related to this work, Gadat, Klein and Marteau (2016) recently
obtained upper bounds on the supremum excess risk of the k-nearest neighbour classifier,
over classes where η is Lipschitz, the well-known margin assumption of Mammen and
Tsybakov (1999) is satisfied with parameter α > 0, and assuming the tail condition that
P{f̄ (X) < δ} ≤ ψ(δ) is satisfied for some function ψ and sufficiently small δ > 0. Gadat,
Klein and Marteau (2016) obtained a minimax lower bound over these classes, as well as pro-
viding an upper bound for the rate of the standard k-nearest neighbour classifier. Since these
rates do not match, they further introduced regions of the form {f̄ −1((aj+1, aj ]) : j ∈N} with
aj+1 = aj/2, and proved that when we choose k = k(j) and specialise to the case where ψ

is the identity function, the resulting sliced k-nearest neighbour classifier attains the minimax
optimal rate of n−(1+α)/(2+α+d) up to a polylogarithmic factor in n. Neither our smoothness
and tail assumptions, nor our conclusions are directly comparable with the work of Gadat,
Klein and Marteau (2016). In particular, we make a stronger smoothness assumption on η in
a neighbourhood of the Bayes decision boundary, implying that the margin assumption holds
with parameter α = 1; see Lemma 1 in the online supplement (Cannings, Berrett and Sam-
worth (2019)). This enables us to show that our semi-supervised classifier attains faster rates
than are achievable under just a Lipschitz condition, and that these rates are minimax optimal
up to subpolynomial factors in n, over all possible values of our tail parameter ρ; moreover,
we are also able to provide the leading constants in the asymptotic expansion of the excess
risk in some cases.

The remainder of this paper is organised as follows. After introducing our setting in Sec-
tion 2, we present in Section 3 our main results for the standard k-nearest neighbour classi-
fier. This leads on, in Section 4, to our study of the semi-supervised setting, where we derive
asymptotic results of the excess risk of our local-k-nearest neighbour classifier. Our minimax
lower bound in presented in Section 5. The main arguments of the proofs of our theoret-
ical results are given in Section 6, while in the online supplement (Cannings, Berrett and
Samworth (2019)), we prove several claims made in the main text, bound various remainder
terms, illustrate the finite-sample benefits of the semi-supervised classifier over the standard
k-nearest neighbour classifier in a simulation study and provide an introduction to the ideas
of differential geometry that underpin much of our analysis.

Finally, we fix here some notation used throughout the paper. Let ‖ · ‖ denote the Eu-
clidean norm and, for r > 0 and x ∈ R

d , let Br(x) := {z ∈ R
d : ‖x − z‖ < r} and B̄r (x) :=

{z ∈ R
d : ‖x − z‖ ≤ r} denote respectively the open and closed Euclidean balls of radius

r centred at x. Let ad := 2πd/2

d�(d/2)
denote the d-dimensional Lebesgue measure of B1(0).
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For a real-valued function g defined on A ⊆ R
d that is twice differentiable at x, write

ġ(x) = (g1(x), . . . , gd(x))T and g̈(x) = (gjk(x)) for its gradient vector and Hessian matrix
at x, and let ‖g‖∞ = supx∈A |g(x)|. We write ‖ · ‖op for the operator norm of a matrix.

2. Statistical setting. Let (X,Y ), (X1, Y1), . . . , (Xn+m,Yn+m) be independent and iden-
tically distributed random pairs taking values in R

d ×{0,1}. Let πr := P(Y = r), for r = 0,1,
and X|Y = r ∼ Pr , for r = 0,1, where Pr is a probability measure on R

d . Let η(x) := P(Y =
1|X = x) denote the regression function and PX := π0P0 + π1P1 denote the marginal dis-
tribution of X. We observe labelled training data, Tn := {(X1, Y1), . . . , (Xn,Yn)}, and unla-
belled training data, T ′

m := {Xn+1, . . . ,Xn+m}, and are presented with the task of assigning
the test point X to either class 0 or 1.

A classifier is a Borel measurable function C : Rd → {0,1}, with the interpretation that C

assigns x ∈ R
d to the class C(x). Given a Borel measurable set R ⊆R

d , the misclassification
rate, or risk, over R is

RR(C) := P
[{

C(X) �= Y
} ∩ {X ∈R}].

When R = R
d , we drop the subscript for convenience. The Bayes classifier

CBayes(x) :=
{

1 if η(x) ≥ 1/2;
0 otherwise,

minimises the risk over any region R (Devroye, Györfi and Lugosi (1996, p. 20)). The per-
formance of a classifier C is therefore measured via its excess risk, RR(C) − RR(CBayes).

We can now formally define the local-k-nearest neighbour classifier, which allows
the number of neighbours considered to vary depending on the location of the test
point. Suppose kL : Rd → {1, . . . , n} is measurable. Given the test point x ∈ R

d , let
(X(1), Y(1)), . . . , (X(n), Y(n)) be a reordering of the training data such that ‖X(1) − x‖ ≤
· · · ≤ ‖X(n) − x‖. We will later assume that PX is absolutely continuous with respect
to d-dimensional Lebesgue measure, which ensures that ties occur with probability zero;
where helpful for clarity, we also write X(i)(x) for the ith nearest neighbour of x. Let

Ŝn(x) := kL(x)−1 ∑kL(x)
i=1 1{Y(i)=1}. Then the local-k-nearest neighbour (kLnn) classifier is

defined to be

ĈkLnn
n (x) :=

{
1 if Ŝn(x) ≥ 1/2;
0 otherwise.

Given k ∈ {1, . . . , n}, let k0 denote the constant function k0(x) := k for all x ∈ R
d . Using

kL = k0, the definition above reduces to the standard k-nearest neighbour classifier (knn),
and we will write Ĉknn

n in place of Ĉ
k0nn
n . For β ∈ (0,1/2), let

Kβ ≡ Kβ,n := {⌈
(n − 1)β

⌉
,
⌈
(n − 1)β

⌉ + 1, . . . ,
⌊
(n − 1)1−β⌋}

denote a range of values of k that will be of interest to us. Note that Kβ1 ⊇ Kβ2 , for β1 < β2.
Moreover, when β is small, the restriction that k ∈ Kβ is only a slightly stronger requirement
than the consistency conditions of Stone (1977), namely that k = kn → ∞, kn/n → 0 as
n → ∞.

3. Global risk of the k-nearest neighbour classifier. In this section, we provide an
asymptotic expansion for the global risk of the standard (nonlocal) k-nearest neighbour clas-
sifier. We first define the classes of data generating mechanisms over which our results
will hold. Let L denote the class of decreasing functions � : (0,∞) → [1,∞) such that
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�(δ) = o(δ−τ ) as δ ↘ 0, for every τ > 0. Let G denote the class of strictly increasing func-
tions g : (0,1) → (0,1) with g(ε) = o(εM) as ε ↘ 0, for every M > 0. Recall from Section 2
that, to any distribution P on R

d × {0,1}, we associate conditional distributions P0, P1, a
regression function η, marginal probabilities π0, π1 and a marginal distribution PX . Now,
for � := (0,∞) × [1,∞) × (0,∞) ×L× G, and θ = (ε0,M0, ρ, �, g) ∈ �, let Pd,θ denote
the class of distributions P on R

d × {0,1} such that the probability measures P0 and P1 are
absolutely continuous with respect to Lebesgue measure, with Radon–Nikodym derivatives
f0 and f1, respectively. Moreover, we assume that there exist versions of f0 and f1 for which
the following conditions hold:

(A.1) The marginal density of X, namely f̄ := π0f0 + π1f1, is continuous PX-almost
everywhere and the set Xf̄ of continuity points of f̄ is open.

Thus η(x) := π1f1(x)/{π0f0(x) + π1f1(x)}, where we define 0/0 := 0. Let S := {x ∈ R
d :

η(x) = 1/2} and, for ε > 0, let Sε := S + Bε(0). In our assumptions below, we will place
further assumptions on S , which ensure not only that this set is nonempty, but in fact that it
is a (d − 1)-dimensional, orientable manifold.

(A.2) The set S∩{x ∈ R
d : f̄ (x) > 0} is nonempty and supx0∈S f̄ (x0) ≤ M0. The function

f̄ is twice continuously differentiable on Sε0 , and

(1) max
{∥∥ ˙̄f (x0)

∥∥, sup
u∈Bε0 (0)

∥∥ ¨̄f (x0 + u)
∥∥

op

}
≤ f̄ (x0)�

(
f̄ (x0)

)
,

for all x0 ∈ S . Furthermore, writing pr(x) := PX(Br(x)), we have for all x ∈ R
d \ Sε0 and

r ∈ (0, ε0] that

pr(x) ≥ ε0adrd f̄ (x).

(A.3) We have that η is twice differentiable on S2ε0 with infx0∈S ‖η̇(x0)‖ ≥ ε0M0. More-
over, supx∈S2ε0 ‖η̇(x)‖ ≤ M0, supx∈S2ε0 ‖η̈(x)‖op ≤ M0 and given ε > 0,

sup
x,z∈S2ε0 :‖z−x‖≤g(ε)

∥∥η̈(z) − η̈(x)
∥∥

op ≤ ε.

Finally, the function η is continuous on {x : f̄ (x) > 0}, and

∣∣η(x) − 1/2
∣∣ ≥ 1

�(f̄ (x))

for all x ∈ R
d \ Sε0 .

(A.4) We have
∫
Rd ‖x‖ρ dPX(x) ≤ M0.

EXAMPLE 1. Consider the distribution P on R
d ×{0,1} for which f̄ (x) = �(3+d/2)

2πd/2 (1−
‖x‖2)21{x∈B1(0)} and η(x) = min(‖x‖2,1). In Section 2 of the online supplement, we show
that P ∈ Pd,θ with θ = (ε0,M0, ρ, �, g) ∈ � for any ρ > 0, g ∈ G, and provided that M0 ≥
max{2,

�(3+d/2)

8πd/2 }, ε0 ≤ min( 1
10 ,2−d, 21/2

M0
) and � ∈ L satisfies �(δ) ≥ max(48, ε−1

0 ) for all
δ > 0.

Asking for PX to have a Lebesgue density allows us to define the tail of the distribution
as the region where f̄ is smaller than some threshold. Condition (A.1) ensures that for all
δ > 0 sufficiently small, the set R := {x : f̄ (x) > δ} ∩ Xf̄ is a d-dimensional manifold, and

PX(Rc) ≤ P{f̄ (X) ≤ δ}, where the latter quantity can be bounded using (A.4). The first
part of (A.2) asks for a certain level of smoothness for f̄ in a neighbourhood of S , and
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controls the behaviour of its first and second derivatives there relative to the original density.
In particular, the greater degree of regularity asked of these derivatives in the tails of the
marginal density in (1) allows us still to control the error of a Taylor approximation even
in this region. The condition (1) is satisfied by all Gaussian and multivariate-t densities, for
example, for appropriate choices of ε0 and �. The last part of (A.2) concerns the behaviour of
the marginal feature distribution away from Sε0 and is often referred to as the strong minimal
mass assumption (e.g., Gadat, Klein and Marteau (2016)). It requires that the mass of the
marginal feature distribution is not concentrated in the neighbourhood of a point and is a
rather weaker condition than we ask for on Sε0 ; in particular, we do not insist that derivatives
of f̄ exist in this region.

The condition infx0∈S ‖η̇(x0)‖ ≥ ε0M0 in (A.3) asks for the class conditional densities,
when weighted by their respective prior probabilities, to cross at an angle; in particular, this
ensures that S is a (d − 1)-dimensional, orientable manifold (cf. Section 7.3 of the online
supplement). Moreover, the bounds on the first and second derivatives of η in a neighbour-
hood of S ensure that we can estimate η sufficiently well. The last part of (A.3) asks that η

does not approach the critical value of 1/2 too fast on the complement of Sε0 . Assumption
(A.4) is a simple moment condition that, together with (A.2), ensures that the constants B1
and B2 in (2) below are finite where needed.

Let d Vold−1 denote the (d − 1)-dimensional volume form on S (cf. Section 7.3 of the
online supplement). Now let

B1 :=
∫
S

f̄ (x0)

4‖η̇(x0)‖ d Vold−1(x0) and

B2 :=
∫
S

f̄ (x0)
1−4/d

‖η̇(x0)‖ a(x0)
2 d Vold−1(x0),

(2)

where

(3) a(x) :=
∑d

j=1{ηj (x)f̄j (x) + 1
2ηjj (x)f̄ (x)}

(d + 2)a
2/d
d f̄ (x)

.

We are now in a position to present our asymptotic expansion for the global excess risk of the
standard k-nearest neighbour classifier.

THEOREM 1. Fix d ∈ N and θ = (ε0,M0, ρ, �, g) ∈ � such that Pd,θ �= ∅.

(i) Suppose that d ≥ 5 and ρ > 4d
d−4 . Then for each β ∈ (0,1/2),

sup
P∈Pd,θ

∣∣∣∣R(
Ĉknn

n

) − R
(
CBayes) − B1

k
− B2

(
k

n

)4/d ∣∣∣∣ = o

(
1

k
+

(
k

n

)4/d)

as n → ∞, uniformly for k ∈ Kβ .
(ii) Suppose that either d ≤ 4, or, d ≥ 5 and ρ ≤ 4d

d−4 . Then for each β ∈ (0,1/2) and
each ε > 0 we have

sup
P∈Pd,θ

∣∣∣∣R(
Ĉknn

n

) − R
(
CBayes) − B1

k

∣∣∣∣ = o

(
1

k
+

(
k

n

) ρ
ρ+d

−ε)

as n → ∞, uniformly for k ∈ Kβ .

Theorem 1 reveals an interesting dichotomy: when d ≥ 5 and ρ > 4d/(d − 4), the dom-
inant contribution to the excess risk arises from the difficulty of classifying points close
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to the Bayes decision boundary S . In such settings, the excess risk of the standard k-
nearest neighbour classifier converges to zero at rate O(n−4/(d+4)) when k is chosen pro-
portional to n4/(d+4). On the other hand, part (ii) shows that when either d ≤ 4 or d ≥ 5 and
ρ ≤ 4d/(d − 4), the dominant contribution to the excess risk when k is large may come from
the challenge of classifying points in the tails of the distribution. Indeed, Example 2 below
provides one simple setting where this dominant contribution does come from the tails of the
distribution.

EXAMPLE 2. Suppose that the joint density of X at x = (x1, x2) ∈ (0,1) × R is given
by f̄ (x) = 2x1f2(x2), where f2 is a positive, twice continuously differentiable density with
f2(x2) = e−|x2|/2 for |x2| > 1. Suppose also that η(x) = x1. Then the corresponding joint
distribution P belongs to P2,θ provided θ = (ε0,M0, ρ, �, g) is such that M0 is sufficiently
large, ε0 ≤ min(1/8,1/M0) and � is a sufficiently large constant (ρ > 0 and g ∈ G can be
chosen arbitrarily). We prove in Section 3 in the supplementary material that for every β ∈
(0,1/2) and ε > 0,

(4) lim inf
n→∞ inf

k∈Kβ

{
k +

(
n

k

)1+ε}{
R

(
Ĉknn

n

) − R
(
CBayes)} > 0

as n → ∞. Thus the rate of convergence in this example is at best n−1/2, up to subpolynomial
factors, whereas a rate of n−2/3 is achievable over any compact set.

The proof of Theorem 1, and indeed the proofs of Theorems 2 and 3 that follow in Sec-
tion 4 below, depend crucially on Theorem 5 in Section 6. This result provides an asymptotic
expansion for the excess risk of a general (local or global) k-nearest neighbour classifier over
a region Rn ⊆ {x ∈ R

d : f̄ (x) ≥ δn(x)}, where δn(x), defined in (7) below, shrinks to zero
at a rate slow enough to ensure that X(k)(x) concentrates around x uniformly over Rn. The
intuition regarding the behaviour of the excess risk, then is that when x ∈ Rn and x is not
close to S , with high probability the k nearest neighbours of x are on the same side of S as
x; that is, sgn(η(X(i)) − 1/2) = sgn(η(x) − 1/2) for i = 1, . . . , k. The probability of classi-
fying x differently from the Bayes classifier can therefore be shown to be O(n−M) for every
M > 0, using Hoeffding’s inequality. Thus, the challenging regions for classification consist
of neighbourhoods of S , where η is close to 1/2, together with Rc

n, where we no longer enjoy
the same nearest neighbour concentration properties. For the first of these regions, we exploit
our smoothness assumptions to derive asymptotic expansions for the bias and variance of
Ŝn(x), uniformly over appropriate neighbourhoods of S , and using a normal approximation,
we can deduce an asymptotic expansion for the excess risk, uniformly over our classes of
distributions and an appropriate set of nearest neighbour classifiers. For Rc

n, we are unable to
bound the probability of classifying differently from the Bayes classifier with anything other
than a trivial bound, but we can control PX(Rc

n) using (A.4).
Finally in this section, we mention that Samworth (2012) obtained a similar expansion to

that in Theorem 1(i) for a fixed distribution P satisfying certain smoothness conditions. How-
ever, there the risk was computed only over a compact set, so the analysis failed to elucidate
the important effects of tail behaviour on the excess risk. Another key difference is that here
we define classes Pd,θ , and show that the remainder terms in our asymptotic expansion hold
uniformly over these classes; the introduction of these classes further facilitates the study of
corresponding minimax lower bounds in Section 5 below.

4. Local-k-nearest neighbour classifiers. In this section, we explore the consequences
of a local choice of k, compared with the global choice in Theorem 1. Initially, we consider an
oracle choice, where k is allowed to depend on the marginal feature density f̄ (Section 4.1),
but we then relax this to semi-supervised settings, where f̄ can be estimated from unlabelled
training data (Section 4.2).
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4.1. Oracle classifier. Suppose for now that the marginal density f̄ is known. For β ∈
(0,1/2) and B > 0, let

(5) kO(x) := max
[⌈

(n − 1)β
⌉
,min

{⌊
B

{
f̄ (x)(n − 1)

}4/(d+4)⌋
,
⌊
(n − 1)1−β⌋}]

,

where the subscript O refers to the fact that this is an oracle choice of the function kL, since
it depends on f̄ . This choice aims to balance the local bias and variance of Ŝn(x).

THEOREM 2. Fix d ∈ N and θ = (ε0,M0, ρ, �, g) ∈ � such that Pd,θ �= ∅. For each
0 < B∗ ≤ B∗ < ∞,

(i) if ρ > 4 then for β < 4d(ρ − 4)/{ρ(d + 4)2},
sup

P∈Pd,θ

∣∣R(
ĈkOnn

n

) − R
(
CBayes) − B3n

−4/(d+4)
∣∣ = o

(
n−4/(d+4)),

uniformly for B ∈ [B∗,B∗] as n → ∞, where

B3 :=
∫
S

f̄ (x0)
d/(d+4)

‖η̇(x0)‖
{

1

4B
+ B4/da(x0)

2
}

d Vold−1(x0) < ∞.

(ii) if ρ ≤ 4 and β < min{1/2,4/(d + 4)}, then for every ε > 0,

sup
P∈Pd,θ

{
R

(
ĈkOnn

n

) − R
(
CBayes)} = o

(
n−ρ/(ρ+d)+β+ε),

uniformly for B ∈ [B∗,B∗], as n → ∞.

Comparing Theorem 2(i) and Theorem 1(i), we see that, unlike for the global k-nearest
neighbour classifier, we can guarantee a O(n−4/(d+4)) rate of convergence for the excess
risk of the oracle classifier, both in low dimensions (d ≤ 4), and under a weaker condition
on ρ when d ≥ 5. In particular, the condition on ρ no longer depends on the dimension
of the covariates. The guarantees in Theorem 2(ii) are also stronger than those provided by
Theorem 1(ii) for any global choice of k. Examining the proof of Theorem 2, we find that the
key difference with the proof of Theorem 1 is that we can now choose the region Rn (cf. the
discussion of the proof of Theorem 1 in Section 3) to be larger.

4.2. The semi-supervised nearest neighbour classifier. Now consider the more realistic
setting where the marginal density f̄ of X is unknown, but where we have access to an
estimate f̂m based on the unlabelled training set T ′

m. Of course, many different techniques
are available, but for simplicity, we focus here on a kernel method. Let K be a bounded
kernel with

∫
Rd K(x) dx = 1,

∫
Rd xK(x)dx = 0,

∫
Rd ‖x‖2|K(x)|dx < ∞, and let R(K) :=∫

Rd K(x)2 dx. We further assume that K(x) = Q(p(x)), where p is a polynomial and Q is a
function of bounded variation. Now define a kernel density estimator of f̄ , given by

f̂m(x) = f̂m,h(x) := 1

mhd

m∑
j=1

K

(
x − Xn+j

h

)
.

Motivated by the oracle local choice of k in (5), for β ∈ (0,1/2) and B > 0, let

kSS(x) := max
[⌈

(n − 1)β
⌉
,min

{⌊
B

{
f̂m(x)(n − 1)

}4/(d+4)⌋
,
⌊
(n − 1)1−β⌋}]

.

Our main result in this setting will require an additional smoothness condition on the marginal
feature density f̄ in order to ensure that f̂m estimates it well. For d ∈N, γ ∈ (0,1] and λ > 0,
let Qd,γ,λ denote the class of distributions P on R

d × {0,1} whose marginal distribution PX
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is absolutely continuous with respect to Lebesgue measure with Radon–Nikodym derivative
f̄ satisfying ‖f̄ ‖∞ ≤ λ and∥∥f̄ (y) − f̄ (x)

∥∥ ≤ λ‖y − x‖γ for all x, y ∈ R
d .

If γ ∈ (1,2], then we define Qd,γ,λ to consist of distributions P on R
d × {0,1} whose

marginal distribution PX is again absolutely continuous with Radon–Nikodym derivative f̄

satisfying ‖f̄ ‖∞ ≤ λ, but we now ask that f̄ be differentiable, and that∥∥ ˙̄f (y) − ˙̄f (x)
∥∥ ≤ λ‖y − x‖γ−1 for all x, y ∈ R

d .

In Section 2 of the online supplement, we show that the distribution considered in Example
1 belongs to Qd,γ,λ with γ = 2 provided that λ ≥ 6π−d/2�(3 + d/2).

THEOREM 3. Fix d ∈N, θ = (ε0,M0, ρ, �, g) ∈ �, γ ∈ (0,2] and λ > 0 such that Pd,θ ∩
Qd,γ,λ �= ∅. Let m0 > 0, let 0 < A∗ ≤ A∗ < ∞ and 0 < B∗ ≤ B∗ < ∞, and let h = hm :=
Am−1/(d+2γ ) for some A > 0.

(i) If ρ > 4 and β < 4d(ρ − 4)/{ρ(d + 4)2},
sup

P∈Pd,θ∩Qd,γ,λ

∣∣R(
ĈkSSnn

n

) − R
(
CBayes) − B3n

−4/(d+4)
∣∣ = o

(
n−4/(d+4))

uniformly for A ∈ [A∗,A∗], B ∈ [B∗,B∗] and m = mn ≥ m0(n − 1)2+d/γ , where B3 was
defined in Theorem 2(i).

(ii) if ρ ≤ 4 and β < min{1/2,4/(d + 4)}, then for every ε > 0,

sup
P∈Pd,θ∩Qd,γ,λ

{
R

(
ĈkSSnn

n

) − R
(
CBayes)} = o

(
n−ρ/(ρ+d)+β+ε),

uniformly for A ∈ [A∗,A∗], B ∈ [B∗,B∗] and m = mn ≥ m0(n − 1)2+d/γ .

Examination of the proof of Theorem 3 reveals that the key property of our kernel estimator
f̂m of f̄ is that there exists α > (1 + d/4)β such that

(6) sup
P∈Pd,θ∩Qd,γ,λ

P

(
‖f̂m − f̄ ‖∞ ≥ 1

(n − 1)1−α/2

)
= o

(
n−4/(d+4)).

This observation would allow similar results to Theorem 3 to be proved for other versions of
the semi-supervised nearest neighbour classifier, with alternative estimators of f̄ in the defini-
tion of k̂SS(·), subject potentially to suitable modifications of the class Qd,γ,λ. It is therefore
not our intention to argue that the kernel density approach is superior to other methods of
estimating the marginal density f̄ .

5. Minimax lower bounds. Our main minimax lower bound is the following.

THEOREM 4. Fix d ∈ N, ρ > 0, g ∈ G with r �→ r/g−1(r) increasing for sufficiently
small r > 0, and γ ∈ (0,2]. There exist λ∗ > 0, ε∗ > 0 and M∗ > 0, depending only on d ,
such that for λ ≥ λ∗, M0 ≥ M∗, ε0 ∈ (0,min(ε∗,1/(4M0))] and � ∈ L with �(δ) ≥ 2/ε0 for
all δ ∈ (0,∞), writing θ = (ε0,M0, ρ, �, g) ∈ �, we can find c = c(d, θ, γ, λ) > 0 such that
for all n ∈ N and all ν ≥ 0, we have

inf
Cn

sup
P∈Pd,θ∩Qd,γ,λ

{
R(Cn) − R

(
CBayes)} ≥ cg−1(1/q)

2d(1+ν)
4+d+ν(ρ+d) n

− 4+νρ
4+d+ν(ρ+d) ,
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where q = qn ∈ (1/‖g‖∞,∞) is the unique solution to q4+d+ν(ρ+d)

g−1(1/q)2 = n and the infimum is

taken over all measurable functions Cn : (Rd × {0,1})×n × R
d → {0,1}. In particular, for

every ε > 0, there exists c = c(d, θ, γ, λ, ε) > 0 such that

inf
Cn

sup
P∈Pd,θ∩Qd,γ,λ

{
R(Cn) − R

(
CBayes)} ≥ cn

−(min{ 4
4+d

,
ρ

ρ+d
}+ε)

.

REMARK 1. The proof of this result also reveals that the lower bound holds if the clas-
sifier is allowed to depend on some unlabelled data or even the true marginal X density f̄ .

EXAMPLE 3. Consider the case where g(ε) = exp(−1/ε), so g ∈ G. Then for q ∈
(1,∞), we have g−1(1/q) = 1/ logq , so for n ∈ N,

g−1(1/qn)
2d(1+ν)

4+d+ν(ρ+d) n
− 4+νρ

4+d+ν(ρ+d) ≥ 1

{1 + logn
4+d+ν(ρ+d)

} 2d(1+ν)
4+d+ν(ρ+d)

n
− 4+νρ

4+d+ν(ρ+d) .

Thus, if ρ > 4, then we can take ν = 0 in Theorem 4 to obtain a minimax lower bound of
order n−4/(4+d)/ log2 n; on the other hand, if ρ ≤ 4, then we can take ν = log1/2 n to obtain

a minimax lower bound of order n
−(

ρ
ρ+d

+ε), for every ε > 0. Combining this result with
Theorem 3, we see that for every ρ ∈ (0,∞), our semi-supervised local-k-nearest neighbour
classifier attains the minimax optimal rate over the class Pd,θ ∩Qd,γ,λ up to polylogarithmic
factors when ρ > 4 and up to subpolynomial factors when ρ ≤ 4.

6. Proofs. The proofs of Theorems 1, 2 and 3 rely on the general asymptotic expan-
sion presented in Theorem 5 below. We begin with some further notation. Define the d × n

matrices Xn := (X1, . . . ,Xn) and xn := (x1, . . . , xn). Write

μ̂n(x) = μ̂n

(
x, xn) := E

{
Ŝn(x)|Xn = xn} = 1

kL(x)

kL(x)∑
i=1

η(x(i)),

and

σ̂ 2
n (x) = σ̂ 2

n

(
x, xn) := Var

{
Ŝn(x)|Xn = xn} = 1

kL(x)2

kL(x)∑
i=1

η(x(i))
{
1 − η(x(i))

}
.

Here, we have used the fact that the ordered labels Y(1), . . . , Y(n) are independent given
Xn, satisfying P(Y(i) = 1|Xn) = η(X(i)). Since η takes values in [0,1] it is clear that

0 ≤ σ̂ 2
n (x) ≤ 1

4kL(x)
for all x ∈ R

d . Further, write μn(x) := E{Ŝn(x)} = 1
kL(x)

∑kL(x)
i=1 Eη(X(i))

for the unconditional expectation of Ŝn(x). Recall also that pr(x) = PX(Br(x)).

6.1. A general asymptotic expansion. Let

cn := sup
x0∈S

�

(
kL(x0)

n − 1

)
.

Further, for x ∈ R
d , let

(7) δn(x) = δn,L(x) := kL(x)

n − 1
cd
n logd

(
n − 1

kL(x)

)
.

Recall that S = {x ∈ R
d : η(x) = 1/2}, and note that by Proposition 2 in the online supple-

ment, for ε > 0, we can write

Sε =
{
x0 + t

η̇(x0)

‖η̇(x0)‖ : x0 ∈ S, |t | < ε

}
.
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Let

(8) εn := 1

cnβ1/2 log1/2(n − 1)
,

and recall the definition of the function a(·) in (3).

THEOREM 5. Fix d ∈ N and θ = (ε0,M0, ρ, �, g) ∈ � such that Pd,θ �= ∅. For n suffi-
ciently large, let Rn ⊆ {x ∈ R

d : f̄ (x) ≥ δn(x)} be a d-dimensional manifold. Write ∂Rn for
the topological boundary of Rn, let (∂Rn)

ε := ∂Rn + εB̄1(0), and let Sn := S ∩ Rn. For
β ∈ (0,1/2) and τ > 0, define the class of functions

Kβ,τ ≡ Kβ,τ,n :=
{
kL :Rd → Kβ : sup

x0∈Sn

sup
|t |<εn

∣∣∣∣kL(x0 + t
η̇(x0)‖η̇(x0)‖)

kL(x0)
− 1

∣∣∣∣ ≤ τ

}
.

Then for each β ∈ (0,1/2) and each τ = τn with τn ↘ 0, we have

RRn

(
ĈkLnn

n

) − RRn

(
CBayes)

=
∫
Sn

f̄ (x0)

‖η̇(x0)‖
{

1

4kL(x0)
+

(
kL(x0)

nf̄ (x0)

)4/d

a(x0)
2
}

d Vold−1(x0)

+ Wn,1 + Wn,2

as n → ∞, where supP∈Pd,θ
supkL∈Kβ,τ

|Wn,1|/γn(kL) → 0 with

γn(kL) :=
∫
Sn

f̄ (x0)

‖η̇(x0)‖
{

1

4kL(x0)
+

(
kL(x0)

nf̄ (x0)

)4/d

�
(
f̄ (x0)

)2
}

d Vold−1(x0),

and where lim supn→∞ supP∈Pd,θ
supkL∈Kβ,τ

|Wn,2|/PX((∂Rn)
εn ∩ Sεn) ≤ 1.

PROOF OF THEOREM 5. First, observe that

RRn

(
ĈkLnn

n

) − RRn

(
CBayes)

=
∫
Rn

[
P

{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
]{

2η(x) − 1
}
f̄ (x) dx.

(9)

The proof is presented in seven steps. We will see that the dominant contribution to the
integral in (9) arises from a small neighbourhood about the Bayes decision boundary, that is,
the region Sεn ∩ Rn. On Rn \ Sεn , the kLnn classifier agrees with the Bayes classifier with
high probability (asymptotically). More precisely, we show in Step 4 that

sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x∈Rn\Sεn

∣∣P{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
∣∣ = O

(
n−M)

,

for each M > 0, as n → ∞. In Steps 1, 2 and 3, we derive the key asymptotic properties of
the bias, conditional (on Xn) bias and variance of Ŝn(x), respectively. In Step 5, we show that
the integral over Sεn ∩Rn can be decomposed into an integral over Sn and one perpendicular
to S . Step 6 is dedicated to combining the results of Steps 1–5; we derive the leading order
terms in the asymptotic expansion of the integral in (9). Finally, we bound the remaining error
terms to conclude the proof in Step 7, which is presented in the supplementary material. To
ease notation, where it is clear from the context, we write kL in place of kL(x).

Step 1: Let μn(x) := E{Ŝn(x)}, and for x0 ∈ S and t ∈ R, write x = x(x0, t) := x0 +
t

η̇(x0)‖η̇(x0)‖ . We show that

μn(x) − η(x) −
(

kL(x)

nf̄ (x)

)2/d

a(x) = o

((
kL(x0)

nf̄ (x0)

)2/d

�
(
f̄ (x0)

))
,
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uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , x0 ∈ Sn and |t | < εn. Write

μn(x) − η(x) = 1

kL(x)

kL(x)∑
i=1

E
{
η(X(i)) − η(x)

}

= 1

kL(x)

kL(x)∑
i=1

E
{
(X(i) − x)T η̇(x)

}

+ 1

2
E

{
(X(i) − x)T η̈(x)(X(i) − x)

} + R1,

where we show in Step 7 that

(10) |R1| = o

{(
kL(x0)

nf̄ (x0)

)2/d}

uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , x0 ∈ Sn and |t | < εn.
The density of X(i) − x at u ∈ R

d is given by

f(i)(u) := nf̄ (x + u)

(
n − 1
i − 1

)
pi−1

‖u‖ (1 − p‖u‖)n−i

= nf̄ (x + u)pn−1
‖u‖ (i − 1),

(11)

where p‖u‖ = p‖u‖(x) and pn−1
‖u‖ (i−1) denotes the probability that a Bin(n−1,p‖u‖) random

variable equals i − 1. Now let

(12) rn = rn(x) :=
{

2kL(x)

(n − 1)f̄ (x)ad

}1/d

.

We show in Step 7 that

R2 := sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t |<εn

E
{‖X(kL) − x‖21{‖X(kL)−x‖≥rn}

}

= O
(
n−M)

,

(13)

for each M > 0, as n → ∞. It follows from (11) and (13), together with the upper bound on
supx∈S2ε0 ‖η̇(x)‖ in (A.3) that

E
{
(X(i) − x)T η̇(x)

}
=

∫
Brn(0)

η̇(x)T un
{
f̄ (x + u) − f̄ (x)

}
pn−1

‖u‖ (i − 1) du + O
(
n−M)

,

uniformly for P ∈Pd,θ , kL ∈ Kβ,τ , i ∈ {1, . . . , kL}, x0 ∈ Sn and |t | < εn. Similarly, using the
upper bound on supx∈S2ε0 ‖η̈(x)‖op in (A.3),

E
{
(X(i) − x)T η̈(x)(X(i) − x)

}
=

∫
Brn(0)

uT η̈(x)unf̄ (x + u)pn−1
‖u‖ (i − 1) du + O

(
n−M)

,

uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , i ∈ {1, . . . , kL}, x0 ∈ Sn and |t | < εn. Hence, summing
over i, we see that

1

kL

kL∑
i=1

E
{
(X(i) − x)T η̇(x)

} + 1

2kL

kL∑
i=1

E
{
(X(i) − x)T η̈(x)(X(i) − x)

}
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=
∫
Brn(0)

[
η̇(x)T un

{
f̄ (x + u) − f̄ (x)

} + 1

2
uT η̈(x)unf̄ (x + u)

]
qn−1
‖u‖ (kL) du

+ O
(
n−M)

,

uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , i ∈ {1, . . . , kL}, x0 ∈ Sn and |t | < εn, where qn−1
‖u‖ (kL)

denotes the probability that a Bin(n− 1,p‖u‖) random variable is less than kL. Let n0 ∈ N be
large enough that

εn + sup
x0∈Sn

sup
|t |<εn

rn(x) < ε0

for n ≥ n0. That this is possible follows from the fact that, for εn < ε0,

sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t |<εn

max
{∣∣∣∣ kL(x)

kL(x0)
− 1

∣∣∣∣,
∣∣∣∣ f̄ (x)

f̄ (x0)
− 1

∣∣∣∣
}

≤ sup
P∈Pd,θ

max
{
τ, cnεn + cnε

2
n

2

}
(14)

≤ max
{
τ,

1

β1/2 log1/2(n − 1)
+ 1

2β log(n − 1)

}
→ 0.

By a Taylor expansion of f̄ and assumption (A.2), for all x0 ∈ Sn, |t | < εn, ‖u‖ < rn and
n ≥ n0,

∣∣f̄ (x + u) − f̄ (x) − uT ˙̄f (x)
∣∣ ≤ ‖u‖2

2
sup

s∈B‖u‖(0)

∥∥ ¨̄f (x + s)
∥∥

op

≤ ‖u‖2

2
f̄ (x0)�

(
f̄ (x0)

)
.

Hence, for x0 ∈ Sn, |t | < εn, r < rn and n ≥ n0,

∣∣pr(x) − f̄ (x)adrd
∣∣ ≤

∫
Br(0)

∣∣f̄ (x + u) − f̄ (x) − uT ˙̄f (x)
∣∣du

≤ 1

2
f̄ (x0)�

(
f̄ (x0)

) ∫
Br(0)

‖u‖2 du(15)

= dad

2(d + 2)
f̄ (x0)�

(
f̄ (x0)

)
rd+2.

Now, for v ∈ B1(0), x0 ∈ Sn, |t | < εn and n ≥ n0,

kL(x) − (n − 1)p‖v‖rn = kL(x) − (n − 1)f̄ (x)ad‖v‖drd
n + R3

= kL(x)
(
1 − 2‖v‖d) + R3,

where

|R3| ≤ dad(n − 1)f̄ (x0)�(f̄ (x0))‖v‖d+2rd+2
n

2(d + 2)

≤ 22/d dkL(x)

a
2/d
d (d + 2) log2( n−1

kL(x0)
)

(
f̄ (x0)

f̄ (x)

)1+2/d(
kL(x)

kL(x0)

)2/d

.
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It follows from (14) that there exists n1 ∈ N such that, for all x0 ∈ Sn, |t | < εn, ‖v‖d ∈
(0,1/2 − 1/ log ((n − 1)/kL(x0))] and n ≥ n1,

kL(x) − (n − 1)p‖v‖rn ≥ kL(x)

log((n − 1)/kL(x0))
.

Similarly, for all ‖v‖d ∈ [1/2 + 1/ log((n − 1)/kL(x0)),1) and n ≥ n1,

(n − 1)p‖v‖rn − kL(x) ≥ kL(x)

log((n − 1)/kL(x0))
.

Hence, by Bernstein’s inequality, we have that for each M > 0,

sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t |<εn

sup
‖v‖d∈(0, 1

2 − 1
log((n−1)/kL(x0))

]
1 − qn−1

‖v‖rn
(
kL(x)

) = O
(
n−M)

,

and

(16) sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t |<εn

sup
‖v‖d∈[ 1

2 − 1
log((n−1)/kL(x0))

,1)

qn−1
‖v‖rn

(
kL(x)

) = O
(
n−M)

.

We conclude that
1

kL(x)

∫
Brn(0)

[
η̇(x)T un

{
f̄ (x + u) − f̄ (x)

}

+ 1

2
uT η̈(x)unf̄ (x + u)

]
qn−1
‖u‖

(
kL(x)

)
du

= 1

kL(x)

∫
B2−1/d rn

(0)

[
η̇(x)T un

{
f̄ (x + u) − f̄ (x)

}

+ 1

2
uT η̈(x)unf̄ (x + u)

]
du + R41

=
(

kL(x)

n

)2/d
∑d

j=1{ηj (x)f̄j (x) + 1
2ηjj (x)f̄ (x)}

(d + 2)a
2/d
d f̄ (x)1+2/d

+ R41 + R42

=
(

kL(x)

nf̄ (x)

)2/d

a(x) + R41 + R42,

(17)

where

|R41| + |R42| = o

((
kL(x0)

nf̄ (x0)

)2/d

�
(
f̄ (x0)

))
,

uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , x0 ∈ Sn and |t | < εn.
Step 2: Recall that σ̂ 2

n (x, xn) = Var{Ŝn(x)|Xn = xn}. We show that

(18)
∣∣∣∣σ̂ 2

n

(
x,Xn) − 1

4kL

∣∣∣∣ = op(1/kL),

uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , x0 ∈ Sn and |t | < εn. Recall that

σ̂ 2
n

(
x,Xn) = 1

k2
L

kL∑
i=1

η(X(i))
{
1 − η(X(i))

}
.

Let n2 ∈ N be large enough that 1 − cnεn − d+1
d+2cnε

2
n ≥ ε0 for n ≥ n2. Then for n ≥

max{n0, n2}, P ∈ Pd,θ , r < εn, x0 ∈ Sn and |t | < εn, we have by (A.2) and a very similar
argument to that in (15) that

(19) pr(x) ≥ ε0adrd f̄ (x0) ≥ ε0adrdδn(x0).
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Now suppose that z1, . . . , zN ∈ Rn ∪ Sεn
n are such that ‖zj − z�‖ ≥ εn/6 for all j �= �, but

supx∈Rn∪Sεn
n

minj=1,...,N ‖x − zj‖ < εn/6. We have by (A.2) that

1 = PX

(
R

d) ≥
N∑

j=1

pεn/12(zj ) ≥ Nε0adβd/2 logd/2(n − 1)

12d(n − 1)1−β
.

For each j = 1, . . . ,N , choose

z′
j ∈ argmax

z∈Bzj
(εn/6)∩(Rn∪Sεn

n )

kL(z).

Now, given x ∈ Rn ∪ Sεn
n , let j0 := argminj ‖x − zj‖, so that Bεn/6(z

′
j0

) ⊆ Bεn/2(x). Thus,
if there are at least kL(z′

j ) points among {x1, . . . , xn} inside each of the balls Bεn/6(z
′
j ), then

for every x ∈ Rn ∪ Sεn
n there are at least kL(x) of them in Bεn/2(x). Moreover by (14), (19)

and (A.2),

min
j=1,...,N

{
npεn/6

(
z′
j

) − 2kL
(
z′
j

)} ≥ (n − 1)β

for all P ∈ Pd,θ , kL ∈ Kβ,τ and n ≥ n3, say. Define AkL := {‖X(kL)(x)−x‖ < εn/2 for all x ∈
Rn ∪ Sεn

n }. Then by a standard binomial tail bound (Shorack and Wellner) (1986, equation
(6), p. 440), for n ≥ n3 and any M > 0,

P
(
Ac

kL

) = P

{
sup

x∈Rn∪Sεn
n

∥∥X(kL(x))(x) − x
∥∥ ≥ εn/2

}

≤ P

{
max

j=1,...,N

∥∥X(kL(zj ))

(
z′
j

) − z′
j

∥∥ ≥ εn/6
}

≤
N∑

j=1

P
{∥∥X(kL(zj ))

(
z′
j

) − z′
j

∥∥ ≥ εn/6
}

≤ N max
j=1,...,N

exp
(
−1

2
npεn/6

(
z′
j

) + kL
(
z′
j

)) = O
(
n−M)

,

(20)

uniformly for P ∈ Pd,θ and kL ∈ Kβ,τ . Now, for 3εn/2 < 2ε0,

sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x0∈Sn

sup
|t |<εn

sup
xn∈AkL

max
1≤i≤kL(x)

∣∣η(
x(i)(x)

) − 1/2
∣∣

≤ 3M0 sup
P∈Pd,θ

sup
kL∈Kβ,τ

εn

2
≤ 3M0

2β1/2 log1/2(n − 1)
→ 0.

It follows that

(21) sup
xn∈AkL

∣∣∣∣∣ 1

kL(x)2

kL(x)∑
i=1

η
(
x(i)(x)

){
1 − η

(
x(i)(x)

)} − 1

4kL(x)

∣∣∣∣∣ = o

(
1

kL(x)

)

as n → ∞, uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , x0 ∈ Sn and |t | < εn. The claim (18) follows
from (20) and (21).

Step 3: In this step, we emphasise the dependence of μ̂n(x, xn) = E{Ŝn(x)|Xn = xn} on
kL by writing it as μ̂

(kL)
n (x, xn). We show that

(22) Var
{
μ̂(kL)

n

(
x,Xn)} = O

{
1

kL(x0)

(
kL(x0)

nf̄ (x0)

)2/d}
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uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , x0 ∈ Sn and |t | < εn. We will write Xn,j := (X1, . . . ,

Xj−1Xj+1, . . . ,Xn), considered as a random d × (n − 1) matrix, so that

μ̂(kL)
n

(
x,Xn) − μ̂

(kL)
n−1

(
x,Xn,(i)) = 1

kL

{
η(X(i)) − η(X(kL+1))

}
1{i≤kL}.

It follows from the Efron–Stein inequality (e.g., Boucheron, Lugosi and Massart (2013),
Theorem 3.1) that

Var
{
μ̂(kL)

n

(
x,Xn)} ≤

n∑
i=1

E
[{

μ̂(kL)
n

(
x,Xn) − μ̂

(kL)
n−1

(
x,Xn,(i))}2]

= 1

k2
L

kL∑
i=1

E
[{

η(X(i)) − η(X(kL+1))
}2]

(23)

≤ 2

k2
L

kL∑
i=1

E
[{

η(X(i)) − η(x)
}2 + {

η(X(kL+1)) − η(x)
}2]

.

Recall the definition of rn given in (12). Now observe that, for max(εn, rn) ≤ ε0 and all M > 0
we have that

max
i∈{1,...,kL+1}E

[{
η(X(i)) − η(x)

}2]
≤ max

i∈{1,...,kL+1}E
[{

η(X(i)) − η(x)
}21{‖X(i)−x‖≤rn}

]
+ P

(‖X(kL+1) − x‖ > rn
)

≤ r2
nM0 + O

(
n−M)

,

(24)

uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ , x0 ∈ Sn and |t | < εn. The final inequality here follows
from similar arguments to those used to bound R1. Now (22) follows from (23) and (24).

Step 4: We show that

sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x∈Rn\Sεn

∣∣P{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
∣∣ = O

(
n−M)

,

for each M > 0, as n → ∞. First, by (A.3) and Proposition 2 in Section 7.2 in the online
supplement, there exists c0 > 0 such that for every r ∈ (0, ε0], P ∈ Pd,θ and kL ∈ Kβ,τ ,

inf
x∈Rn\Sr

∣∣η(x) − 1/2
∣∣ ≥ c0 min

{
r, inf

x∈Rn\Sε0
δn(x)β/2

}
.

Hence, on the event AkL , for εn < ε0 and x ∈ Rn \ Sεn , all of the kL nearest neighbours of x

are on the same side of S , so

∣∣μ̂n

(
x,Xn) − 1/2

∣∣ =
∣∣∣∣∣ 1

kL

kL∑
i=1

η(X(i)) − 1/2

∣∣∣∣∣
≥ inf

z∈Bεn/2(x)

∣∣η(z) − 1/2
∣∣

≥ c0 min
{
εn

2
, inf
x∈Rn\Sε0

δn(x)β/2
}
.

Now, conditional on Xn, Ŝn(x) is the sum of kL(x) independent terms. Therefore, by Hoeffd-
ing’s inequality,

sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x∈Rn\Sεn

∣∣P{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
∣∣
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= sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x∈Rn\Sεn

|E{P{
Ŝn(x) < 1/2|Xn} − 1{η(x)<1/2}|

≤ sup
P∈Pd,θ

sup
kL∈Kβ,τ

sup
x∈Rn\Sεn

{
E

[
e−2kL{μ̂n(x,Xn)−1/2}2

1AkL

] + P
(
Ac

kL

)}

= O
(
n−M)

for every M > 0. This completes Step 4.
Step 5: It is now convenient to be more explicit in our notation, by writing xt

0 := x0 +
t η̇(x0)/‖η̇(x0)‖. We also let

ψ(x) := {
2η(x) − 1

}
f̄ (x) = π1f1(x) − π0f0(x).

Recall that Sn := S ∩Rn and let

Wn,2 :=
(∫

Sεn∩Rn

−
∫
Sεn

n

)
ψ(x)

[
P

{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
]
dx.

We show that∫
Sεn∩Rn

ψ(x)
[
P

{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
]
dx

=
∫
Sn

∫ εn

−εn

ψ
(
xt

0
)[
P

{
Ŝn

(
xt

0
)
< 1/2

} − 1{t<0}
]
dt d Vold−1(x0)

{
1 + o(1)

}
+ Wn,2

uniformly for P ∈ Pd,θ and kL ∈ Kβ,τ , and that for all n ≥ 2,

(25) sup
P∈Pd,θ

sup
kL∈Kβ,τ

|Wn,2|
PX((∂Rn)εn ∩ Sεn)

≤ 1.

Now by Proposition 3 in Section 7.2 of the online supplement, for εn ≤ ε0, the map x(x0, t) =
xt

0 is a diffeomorphism from Sn × (−εn, εn) to Sεn
n , where

Sε
n :=

{
x0 + t

η̇(x0)

‖η̇(x0)‖ : x0 ∈ Sn, |t | < ε

}
.

Furthermore, for such n, and |t | < εn, sgn{η(xt
0) − 1/2} = sgn(t). It follows from this and

(62) in Section 7.3 in the online supplement that∫
Sεn∩Rn

ψ(x)
[
P

{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
]
dx

=
∫
Sεn

n

ψ(x)
[
P

{
Ŝn(x) < 1/2

} − 1{η(x)<1/2}
]
dx + Wn,2

=
∫
Sn

∫ εn

−εn

det(I + tB)ψ
(
xt

0
)[
P

{
Ŝn

(
xt

0
)
< 1/2

} − 1{t<0}
]
dt d Vold−1(x0)

+ Wn,2,

where B is defined in (55) in the online supplement, and det(I + tB) = 1 + o(1) as n → ∞,
uniformly for P ∈ Pd,θ , x0 ∈ S and t ∈ (−εn, εn). Now observe that (Sεn ∩ Rn) \ Sεn

n ⊆
(∂Rn)

εn ∩Sεn and Sεn
n \ (Sεn ∩Rn) ⊆ (∂Rn)

εn ∩Sεn . We deduce from this and the definition
of Wn,2 that (25) holds.
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Step 6: The last step in the main argument is to show that

W̃n,1 :=
∫
Sn

∫ εn

−εn

ψ
(
xt

0
)[
P

{
Ŝn

(
xt

0
)
< 1/2

} − 1{t<0}
]
dt d Vold−1(x0)

−
∫
Sn

f̄ (x0)

‖η̇(x0)‖
{

1

4kL(x0)
+

(
kL(x0)

nf̄ (x0)

)4/d

a(x0)
2
}

d Vold−1(x0)

= o
(
γn(kL)

)
as n → ∞, uniformly for P ∈ Pd,θ and kL ∈ Kβ,τ . First, observe that∫

Sn

∫ εn

−εn

ψ
(
xt

0
)[
P

{
Ŝn

(
xt

0
)
< 1/2

} − 1{t<0}
]
dt d Vold−1(x0)

=
∫
Sn

∫ εn

−εn

t
∥∥ψ̇(x0)

∥∥[
P

{
Ŝn

(
xt

0
)
< 1/2

} − 1{t<0}
]
dt d Vold−1(x0)

{
1 + o(1)

}
,

uniformly for P ∈ Pd,θ and kL ∈ Kβ,τ . Now, write P{Ŝn(x
t
0) < 1/2}−1{t<0} = E[P{Ŝn(x

t
0) <

1/2|Xn} − 1{t<0}]. Note that, given Xn, Ŝn(x) = 1
kL(x)

∑kL(x)
i=1 1{Y(i)=1} is the sum of kL(x)

independent Bernoulli variables, satisfying P(Y(i) = 1|Xn) = η(X(i)). Let � be the standard
normal distribution function, and let

θ̂ (x) ≡ θ̂n(x) := −{
μ̂n

(
x,Xn) − 1/2

}
/σ̂n

(
x,Xn)

,

θ̄ (x0, t) ≡ θ̄n(x0, t) := −2kL(x0)
1/2

{
t
∥∥η̇(x0)

∥∥ +
(

kL(x0)

nf̄ (x0)

)2/d

a(x0)

}
.

We can write ∫ εn

−εn

t
∥∥ψ̇(x0)

∥∥[
P

{
Ŝn

(
xt

0
)
< 1/2

} − 1{t<0}
]
dt

=
∫ εn

−εn

t
∥∥ψ̇(x0)

∥∥E{
�

(
θ̂
(
xt

0
)) − 1{t<0}

}
dt + R5(x0)

=
∫ εn

−εn

t
∥∥ψ̇(x0)

∥∥{
�

(
θ̄ (x0, t)

) − 1{t<0}
}
dt + R5(x0) + R6(x0),

where we show in Step 7 that

(26)
∣∣∣∣
∫
Sn

{
R5(x0) + R6(x0)

}
d Vold−1(x0)

∣∣∣∣ = o
(
γn(kL)

)
uniformly for P ∈ Pd,θ and kL ∈ Kβ,τ . Then, substituting u = 2kL(x0)

1/2t , we see that∫ εn

−εn

t
∥∥ψ̇(x0)

∥∥[
�

(
θ̄ (x0, t)

) − 1{t<0}
]
dt

= 1

4kL(x0)

∫ 2kL(x0)
1/2εn

−2kL(x0)
1/2εn

u
∥∥ψ̇(x0)

∥∥{
�

(
θ̄

(
x0,

u

2kL(x0)1/2

))
− 1{u<0}

}
du

=
{

f̄ (x0)

4kL(x0)‖η̇(x0)‖ +
(

kL(x0)

nf̄ (x0)

)4/d f̄ (x0)a(x0)
2

‖η̇(x0)‖
}{

1 + o(1)
}
,

uniformly for P ∈ Pd,θ , kL ∈ Kβ,τ and x0 ∈ Sn. The conclusion follows by integrating with
respect to d Vold−1 over Sn.

Step 7: It remains to bound the error terms R1, R2, R5 and R6—these bounds are presented
in Section 5 of the supplementary material. �
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6.2. Proof of Theorem 1.

PROOF OF THEOREM 1. Let k ∈ Kβ , and note that since kL(x) = k is constant, we have
that cn = �(k/(n − 1)), and δn = k

n−1cd
n logd(n−1

k
). Now let

Rn = {
x ∈ R

d : f̄ (x) > δn

} ∩Xf̄ ,

and observe that by Berrett, Samworth and Yuan ((2019), Lemma 10(i)), for P ∈ Pd,θ ,

(27) ‖f̄ ‖ρ∞ ≥ ρρdd

a
ρ
d Md

0 (ρ + d)ρ+d
.

It follows that we can find n0 ∈ N be large enough that Rn is nonempty for all P ∈ Pd,θ ,
k ∈ Kβ and n ≥ n0, so that, by Assumption (A.1), for n ≥ n0 it is an open subset of Rd and,
therefore, a d-dimensional manifold. Let Sn := S ∩Rn,

B1,n :=
∫
Sn

f̄ (x0)

4‖η̇(x0)‖ d Vold−1(x0)

and

B2,n :=
∫
Sn

f̄ (x0)
1−4/d

‖η̇(x0)‖ a(x0)
2 d Vold−1(x0).

Recalling the definition of εn in (8), for n ≥ n0, we may apply Theorem 5 with kL(x) = k for
all x ∈ R

d to deduce that

RRn

(
Ĉknn

n

) − RRn

(
CBayes) = B1,n

1

k
+ B2,n

(
k

n

)4/d

+ Wn,1 + Wn,2,

where supP∈Pd,θ
supk∈Kβ

|Wn,1|/γn(k) → 0 and where

lim sup
n→∞

sup
P∈Pd,θ

sup
k∈Kβ

|Wn,2|
PX((∂Rn)εn ∩ Sεn)

≤ 1.

We now show that, under the conditions of part (i), B1,n and B2,n are well approximated by
integrals over the whole of the manifold S , and that these integrals are uniformly bounded.
Given x0 ∈ S ∩ {x ∈ R

d : f̄ (x) > 0}, define ε0(x0) := min{1,
ε0 log 2

2d
, 1

4�(f̄ (x0))
}. Then for any

t ∈ [−ε0(x0), ε0(x0)] we have by (A.2) and Cauchy–Schwarz that∣∣∣∣ f̄ (xt
0)

f̄ (x0)
− 1

∣∣∣∣ =
∣∣∣∣ f̄ (xt

0) − f̄ (x0) − (xt
0 − x0)

T ∇f̄ (x0)

f̄ (x0)
+ (xt

0 − x0)
T ∇f̄ (x0)

f̄ (x0)

∣∣∣∣
≤ t2

2
�
(
f̄ (x0)

) + |t |�(
f̄ (x0)

) ≤ 1

2
.

Moreover, writing λ1, . . . , λd for the eigenvalues of the matrix B defined in (55), for t ∈
[−ε0(x0), ε0(x0)], we have

∣∣log det(I + tB)
∣∣ =

∣∣∣∣∣
d∑

j=1

log(1 + tλj )

∣∣∣∣∣
≤ 2|t |

d∑
j=1

|λj | ≤ 2|t |d‖B‖op ≤ 2|t |d
ε0

,
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so det(I + tB) ≥ 1/2. Hence, for any τ ∈ (d/(ρ +d),1] there exists Aτ = Aτ (d, θ) > 0 such
that, writing τ̄ := 1

2(τ + d
ρ+d

), by (62), Hölder’s inequality and (A.4), we have∫
S

f̄ (x0)
τ d Vold−1(x0)

=
∫
S

1

2ε0(x0)

∫ ε0(x0)

−ε0(x0)
f̄ (x0)

τ dtd Vold−1(x0)

≤ 2τ−1

×
∫
S

∫ ε0(x0)

−ε0(x0)
max

{
1,

2d

ε0 log 2
,4�

(
2f̄

(
xt

0
)
/3

)}
f̄

(
xt

0
)τ

dt d Vold−1(x0)

(28)

≤ 2τ
∫
Sε0

max
{

1,
2d

ε0 log 2
,4�

(
2f̄ (x)/3

)}
f̄ (x)τ dx

≤ Aτ

∫
Rd

f̄ (x)τ̄ dx

≤ Aτ (1 + M0)
τ̄

{∫
Rd

(
1 + ‖x‖ρ)− τ̄

1−τ̄ dx

}1−τ̄

=: A′
τ < ∞.

Now, by Assumption (A.3), for any P ∈ Pd,θ ,

B1 =
∫
S

f̄ (x0)

4‖η̇(x0)‖ d Vold−1(x0) ≤ 1

4ε0M0

∫
S

f̄ (x0) d Vold−1(x0) ≤ A′
1

4ε0M0
.

Moreover, writing τ̄ := 1
2(1 + d

ρ+d
),

sup
P∈Pd,θ

sup
k∈Kβ

(B1 − B1,n) = sup
P∈Pd,θ

sup
k∈Kβ

∫
S\Rn

f̄ (x0)

4‖η̇(x0)‖ d Vold−1(x0)

≤ sup
P∈Pd,θ

sup
k∈Kβ

1

4ε0M0

∫
S\Rn

f̄ (x0) d Vold−1(x0)

≤ sup
P∈Pd,θ

sup
k∈Kβ

δ1−τ̄
n

4ε0M0

∫
S\Rn

f̄ (x0)
τ̄ d Vold−1(x0)

≤ �d(1−τ̄ )(1/(n − 1)) logd(1−τ̄ )(n − 1)

4ε0M0(n − 1)β(1−τ̄ )
A′̄

τ → 0.

By Assumptions (A.2), (A.3), (28) and the fact that ρ/(ρ + d) > 4/d , we have, writing
τ̄ := 1

2(1 − 4/d + d
ρ+d

), that

sup
P∈Pd,θ

B2 = sup
P∈Pd,θ

∫
S

f̄ (x0)
1−4/d

‖η̇(x0)‖ a(x0)
2 d Vold−1(x0)

≤ sup
P∈Pd,θ

sup
x0∈S

{
a(x0)

2f̄ (x0)
ρ/(ρ+d)−4/d

2

‖η̇(x0)‖
}∫

S
f̄ (x0)

τ̄ d Vold−1(x0)

≤ sup
δ∈(0,M0]

M0δ
ρ/(ρ+d)−4/d

2 {�(δ) + 1/2}2

(d + 2)2a
4/d
d ε0

A′̄
τ < ∞.
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Similarly,

sup
P∈Pd,θ

sup
k∈Kβ

(B2 − B2,n) = sup
P∈Pd,θ

sup
k∈Kβ

∫
S\Rn

f̄ (x0)
1−4/d

‖η̇(x0)‖ a(x0)
2 d Vold−1(x0)

≤ sup
k∈Kβ

sup
δ∈(0,δn]

M0δ
ρ/(ρ+d)−4/d

2 {�(δ) + 1/2}2

(d + 2)2a
4/d
d ε0

A′̄
τ → 0.

A similar argument shows that γn(k) = O(1/k + (k/n)4/d), uniformly for P ∈ Pd,θ and
k ∈ Kβ .

Finally, we bound PX((∂Rn)
εn ∩ Sεn) and RRc

n
(Ĉknn

n ) − RRc
n
(CBayes). Suppose that x ∈

(∂Rn)
εn ∩ Sεn . Then there exists z ∈ ∂Rn ∩ Bεn(x) ∩ S2εn with f̄ (z) = δn. By Assumption

(A.2), we have that
∣∣∣∣ f̄ (x)

f̄ (z)
− 1

∣∣∣∣ ≤ �
(
f̄ (z)

)‖x − z‖ + 1

2
�
(
f̄ (z)

)‖x − z‖2

≤ 1 + εn/2

β1/2 log1/2(n − 1)
.

(29)

Thus there exists n1 ∈ N such that (∂Rn)
εn ∩ Sεn ⊆ {x ∈ R

d : f̄ (x) ≤ 2δn} for n ≥ n1. By
the moment assumption in (A.4) and Hölder’s inequality, observe that for any α ∈ (0,1),
P ∈ Pd,θ , n ≥ n1 and ε > 0,

PX

(
(∂Rn)

εn ∩ Sεn
) ≤ P

{
f̄ (X) ≤ 2δn

}
≤ (2δn)

ρ(1−α)
ρ+d

∫
x:f̄ (x)≤2δn

f̄ (x)
1− ρ(1−α)

ρ+d dx

≤ (2δn)
ρ(1−α)
ρ+d

{∫
Rd

(
1 + ‖x‖ρ)

f̄ (x) dx

}1− ρ(1−α)
ρ+d

×
{∫

Rd

1

(1 + ‖x‖ρ)
d+ρα

ρ(1−α)

dx

} ρ(1−α)
ρ+d

≤ (2δn)
ρ(1−α)
ρ+d (1 + M0)

1− ρ(1−α)
ρ+d

×
{∫

Rd

1

(1 + ‖x‖ρ)
d+ρα

ρ(1−α)

dx

} ρ(1−α)
ρ+d

= o

((
k

n

) ρ(1−α)
ρ+d

−ε)

(30)

uniformly for k ∈ Kβ . Moreover,

RRc
n

(
Ĉknn

n

) − RRc
n

(
CBayes) ≤ PX

(
Rc

n

) ≤ P
{
f̄ (X) ≤ 2δn

}
,

so the same bound (30) applies. Since ρ/(ρ + d) > 4/d and α ∈ (0,1) was arbitrary, this
completes the proof of part (i).

For part (ii), in contrast to part (i), the dominant contribution to the excess risk could now
arise from the tail of the distribution. First, as in part (i), we have B1,n → B1 ≤ A′

1/(4ε0M0),
uniformly for P ∈ Pd,θ and k ∈ Kβ . Furthermore, using Assumption (A.3), (28) and the fact
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that 4/d ≥ ρ/(ρ + d), we see that, for any ε′ ∈ (0, ρ/(ρ + d)],

B2,n

(
k

n

)4/d

≤ δρ/(ρ+d)−ε′
n

∫
Sn

δ
4/d−ρ/(ρ+d)
n f̄ (x0)

1−4/d+ε′

c4
n log4((n − 1)/k)‖η̇(x0)‖

a(x0)
2 d Vold−1(x0)

≤ sup
x0∈Sn

a(x0)
2

δ
ρ/(ρ+d)−ε′
n A′

d/(ρ+d)+ε′

ε0M0c4
n log4((n − 1)/k)

= o
(
(k/n)ρ/(ρ+d)−ε),

for every ε ∈ (ε′, ρ/(ρ + d)], uniformly for P ∈ Pd,θ and k ∈ Kβ , where the final conclusion
follows from the fact that supP∈Pd,θ

supx0∈Sn
a2(x0)/c

2
n is bounded. We can also bound γn(k)

by the same argument, so the result follows in the same way as in part (i). �

6.3. Proofs of results from Section 4.

PROOF OF THEOREM 2. Recall that

kO(x) = max
[⌈

(n − 1)β
⌉
,min

{⌊
B

{
f̄ (x)(n − 1)

}4/(d+4)⌋
,
⌊
(n − 1)1−β⌋}]

,

and define

δn,O(x) := kO(x)

n − 1
cd
n logd

(
n − 1

kO(x)

)
,

where cn := supx0∈S:f̄ (x0)≥kO(x0)/(n−1) �(f̄ (x0)). For α ∈ ((1 + d/4)β,1), let

Rn = {
x ∈ R

d : f̄ (x) > (n − 1)−(1−α)} ∩Xf̄ .

Then there exists n0 ∈ N such that for n ≥ n0 we have Rn ⊆ {x ∈ R
d : f̄ (x) ≥ δn,O(x)} for all

P ∈ Pd,θ and B ∈ [B∗,B∗], and by Assumption (A.1) and (27), we then have that Rn is a d-
dimensional manifold. There exists n1 ∈ N such that for all n ≥ n1, P ∈ Pd,θ , B ∈ [B∗,B∗]
and x ∈ Rn ∩ Sε0 we have that kO(x) = �B{f̄ (x)(n − 1)}4/(d+4)�. By (A.2), we therefore
have that kO ∈ Kβ,τ for some τ = τn (which does not depend on P ∈ Pd,θ or B ∈ [B∗,B∗])
with τn ↘ 0.

By a similar argument to that in (29), there exists n2 ∈ N such that for n ≥ n2, P ∈ Pd,θ ,
B ∈ [B∗,B∗] and x ∈ (∂Rn)

εn ∩ Sεn , we have f̄ (x) ≤ 2(n − 1)−(1−α). But, by Markov’s
inequality and Hölder’s inequality, for α̃ ∈ (0,1) and any P ∈ Pd,θ ,

P
{
f̄ (X) ≤ 2(n − 1)−(1−α)}
≤ {

2(n − 1)−(1−α)} ρ(1−α̃)
ρ+d

∫
Rd

f̄ (x)
1− ρ(1−α̃)

ρ+d dx

≤ {
2(n − 1)−(1−α)} ρ(1−α̃)

ρ+d (1 + M0)
1− ρ(1−α̃)

ρ+d

×
{∫

Rd

1

(1 + ‖x‖ρ)(ρ+d)/{ρ(1−α̃)}−1
dx

} ρ(1−α̃)
ρ+d

.

(31)

Thus, if ρ > 4, then we can choose α ∈ ((1 + d/4)β, d(ρ − 4)/{ρ(d + 4)}) and α̃ < 1 −
4(ρ + d)/{ρ(1 − α)(d + 4)} in (31) to conclude that

sup
P∈Pd,θ

PX

(
Rc

n

) ≤ sup
P∈Pd,θ

P
{
f̄ (X) ≤ 2(n − 1)−(1−α)} = o

(
n−4/(d+4)).

Moreover, writing

B3,n :=
∫
Sn

f̄ (x0)
d/(d+4)

‖η̇(x0)‖
{

1

4B
+ B4/da(x0)

2
}

d Vold−1(x0),
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by very similar arguments to those given in the proof of Theorem 1, B3,n → B3 and γn(kO) =
O(n−4/(d+4)) as n → ∞, both uniformly for P ∈ Pd,θ and B ∈ [B∗,B∗]. The proof of part
(i) therefore follows from Theorem 5.

On the other hand, if ρ ≤ 4, then choosing both α̃ > 0 and α > (1+d/4)β to be sufficiently
small, we find from (31) that

B3,nn
−4/(d+4) + γn(kO) + PX

(
(∂Rn)

εn ∩ Sεn
) + PX

(
Rc

n

) = o
(
n

− ρ
ρ+d

+β+ε)
,

for every ε > 0, uniformly for P ∈ Pd,θ and B ∈ [B∗,B∗]. After another application of The-
orem 5, this proves part (ii). �

PROOF OF THEOREM 3. We prove parts (i) and (ii) of the theorem simultaneously, by
appealing to the corresponding arguments in the proof of Theorem 2. First, as in the proof of
Theorem 2, for α ∈ ((1 + d/4)β,1), we define Rn = {x ∈ R

d : f̄ (x) > (n − 1)−(1−α)} ∩Xf̄

and introduce the following class of functions: for τ > 0, let

Fn,τ :=
{
f̃ :Rd →R : f̃ continuous, sup

x∈Rn

∣∣∣∣ f̄ (x)

f̃ (x)
− 1

∣∣∣∣ ≤ τ

}
.

Let τ = τn := 2(n − 1)−α/2. We first show that f̂m ∈Fn,τ with high probability. For x ∈ Rn,

∣∣∣∣ f̂m(x)

f̄ (x)
− 1

∣∣∣∣ ≤ (n − 1)1−α
∣∣f̂m(x) − f̄ (x)

∣∣ ≤ (n − 1)1−α‖f̂m − f̄ ‖∞.

Now

(32) ‖f̂m − f̄ ‖∞ ≤ ‖f̂m −Ef̂m‖∞ + ‖Ef̂m − f̄ ‖∞.

To bound the first term in (32), by Giné and Guillou (2002, Corollary 2.2), there exist C,L >

0, such that

(33) sup
P∈Pd,θ∩Qd,γ,λ

P

(
‖f̂m −Ef̂m‖∞ ≥ s

mγ/(d+2γ )

)
≤ L

(
4L

4L + C

) Ads2
LCλR(K)

,

for all s ∈ [C‖f̄ ‖1/2∞ R(K)1/2

Ad/2 log1/2(
‖K‖∞md/(2(d+2γ ))

‖f̄ ‖1/2∞ Ad/2R(K)1/2
),

C‖f̄ ‖∞R(K)mγ/(d+2γ )

‖K‖∞ ] and A ∈ [A∗,A∗].
Recall that for P ∈ Pd,θ , we have ‖f̄ ‖∞ ≤ λ and ‖f̄ ‖∞ also satisfies the lower bound in

(27). Hence, by applying the bound in (33) with s = s0 := mγ/(d+2γ )/(n − 1)1−α/2, since
m ≥ m0(n − 1)d/γ+2, we have that there exists n∗ ∈ N, not depending on P ∈ Pd,θ or A ∈
[A∗,A∗] such that for n ≥ n∗,

sup
P∈Pd,θ∩Qd,γ,λ

P

{
‖f̂m −Ef̂m‖∞ ≥ 1

(n − 1)1−α/2

}

= sup
P∈Pd,θ∩Qd,γ,λ

P
{‖f̂m −Ef̂m‖∞ ≥ s0m

−γ /(d+2γ )}

≤ L

(
4L

4L + C

)Ad (n−1)αm
2γ /(d+2γ )
0

LCλR(K)

= O
(
n−M)

,
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for all M > 0, uniformly for A ∈ [A∗,A∗]. For the second term in (32), by a Taylor expansion,
we have that for all P ∈ Pd,θ ∩Qd,γ,λ and A ∈ [A∗,A∗],

‖Ef̂m − f̄ ‖∞ ≤ λAγ m−γ /(d+2γ )
∫
Rd

‖z‖γ
∣∣K(z)

∣∣dz

≤ λAγ m
−γ /(d+2γ )
0

n − 1

∫
Rd

‖z‖γ
∣∣K(z)

∣∣dz.

It follows that, writing τ0 := 2(n − 1)−α/2, we have

sup
P∈Pd,θ∩Qd,γ,λ

sup
A∈[A∗,A∗]

P(f̂m /∈ Fn,τ0) = O
(
n−M)

for all M > 0.
Now, for f̃ ∈Fn,τ0 , let

k
f̃
(x) := max

[⌈
(n − 1)β

⌉
,min

{⌊
B

{
f̃ (x)(n − 1)

}4/(d+4)⌋
,
⌊
(n − 1)1−β⌋}]

.

Let cn := supx0∈S:f̄ (x0)≥k
f̃
(x0)/(n−1) �(f̄ (x0)), and let

δ
n,f̃

(x) := k
f̃
(x)

n − 1
cd
n logd

(
n − 1

k
f̃
(x)

)
.

Then there exists n0 ∈ N such that for n ≥ n0 and f̃ ∈ Fn,τ0 , we have Rn ⊆ {x ∈ R
d : f̄ (x) ≥

δ
n,f̃

(x)} and k
f̃

∈ Kβ,τ0 . We can therefore apply Theorem 5 (similar to the application in the
proof of Theorem 2) to conclude that for every ε > 0,

R
(
Ĉ

k
f̃

nn
n

) − R
(
CBayes) =B3,nn

−4/(d+4) + o
(
n−4/(d+4) + n

− ρ
ρ+d

+β+ε)
uniformly for P ∈ Pd,θ ∩ Qd,γ,λ and f̃ ∈ Fn,τ0 , where B3,n was defined in the proof of
Theorem 2. The proof of both parts (i) and (ii) is now completed by following the relevant
steps in the proof of Theorem 2. �
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supervised learning” (DOI: 10.1214/19-AOS1868SUPP; .pdf). We present our remaining
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