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To segment a sequence of independent random variables at an unknown
number of change-points, we introduce new procedures that are based on
thresholding the likelihood ratio statistic, and give approximations for the
probability of a false positive error when there are no change-points. We also
study confidence regions based on the likelihood ratio statistic for the change-
points and joint confidence regions for the change-points and the parameter
values. Applications to segment array CGH data are discussed.

1. Introduction. Diverse scientific applications have led to recent interest in segmen-
tation of models involving multiple change-points. A model having some direct appli-
cability and additional theoretical interest for the insights it provides is as follows. Let
X1,X2, . . . ,Xm be independent and normally distributed with variances equal to 1. Assume
that there exist M ≥ 0 and integers 0 = τ0 < τ1 < · · · < τM < τM+1 = m such that the mean
μi of Xi , 1 ≤ i ≤ m is a step function with constant values on each of the intervals (τk−1, τk],
1 ≤ k ≤ M +1, but different values on adjacent intervals. Segmentation amounts to determin-
ing the value of M , the τk and perhaps also the μi . Because of the computational difficulty
of sorting through all possible partitions of [1,m] to find the change-points when m is large,
there have often been different algorithms for suggesting a set of candidate change-points τk

and for determining which of those possible sets is “correct.” For example, one might use
a dynamic programming algorithm to propose a relatively small set of possible M and τk ,
1 ≤ k ≤ M , then use a statistical procedure to determine a final choice from those suggested
in the first stage of analysis. For recent reviews imbedded in otherwise original research arti-
cles, see Frick, Munk and Sieling (2014) and Fryzlewicz (2014). Recent consistency results
under essentially minimal conditions on the spacing and amplitude of the change-points are
given in Chan and Chen (2017).

Substantial motivation for recent research has been copy number variation (CNV) in ge-
netics (e.g., Olshen et al. (2004), Pollack et al. (1999), Picard et al. (2005), Lai et al. (2005),
Snijders et al. (2003), Zhao et al. (2004), Zhang and Siegmund (2007), Niu and Zhang (2012),
Frick, Munk and Sieling (2014), Zhang et al. (2016)). CNV can occur as somatic mutations,
especially in cancer cells, where they can involve a substantial portion of a chromosome and
show no particular pattern, or as germline mutation, which typically involves a short interval
exhibiting an increase or decrease in the mean followed by a decrease or increase that returns
the mean to a baseline value. Like other genetic polymorphisms, inherited CNV can be used
to track relatedness of different individuals in populations or may be of interest because of a
possible relation to particular inherited diseases. Data in the literature can help us determine
interesting sample sizes and values for parameters in our numerical examples. The sample
size m is typically moderately large to large, while M can be small or large in an absolute
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sense, while still small compared to m; and consecutive change-points can be quite close
together.

Another genomic application involves sequences of Bernoulli variables, which equal 0 or 1
according as the DNA letter at that location is A or T, or is C or G. Since a CG “rich” region is
an indication of the presence of a gene or genes, it may be useful to segment a genome or part
of a genome into regions of relatively low or high CG content. See, for example, Churchill
(1989) who used a hidden Markov model, or Elhaik, Graur and Josić (2010). A variety of
other examples motivated by particular scientific experiments is given by Du, Kao and Kou
(2016). In particular, they describe examples where several consecutive changes are expected
to have the same sign and where the pattern of change-points may arise from a hidden Markov
model.

Scientific focus may emphasize detection and estimation of the change-points, estimation
of the step function of mean values, or a combination of the two. Our primary focus is on the
change-points themselves, which in a genomic context indicate the existence and location of
a signal of interest.

To this end, we study iterative thresholding methods that allow one (with varying degrees
of success, discussed below) to control the global false positive error rate; and subject to
successful control, to understand the relative strengths and weaknesses of different methods.
We also provide approximations to the local power (defined below) and large sample joint
confidence regions for the change-points or for the change-points and mean values.

It bears emphasizing that we have not considered a large class of other methods, in particu-
lar, dynamic programming to compute a penalized likelihood function, or two stage methods,
where a list of candidate change-points obtained in the first stage is followed by a model
selection method. (Three of the four methods used below for comparative purposes have
been originally proposed as two stage methods, but we have adapted them to be single stage
thresholding methods.) To the best of our knowledge, these methods all involve selection of
arbitrary parameters that may have no simple statistical interpretation. In contrast, we have
produced a set of tools to help us understand a restricted set of procedures, each depending
on a single thresholding parameter, in terms of classical statistical criteria of false positive
and false negative error rates, perhaps supplemented by joint confidence regions.

To motivate the methods introduced below, let S0 = 0, Sj = ∑j
1 Xi for j ≥ 1 and consider

the generalized likelihood ratio statistic for testing the hypothesis M = 0 against M = 1:
max0<j<m |Sj − jSm/m|/[j (1 − j/m)]1/2. This statistic is the basis of the binary segmenta-
tion suggestion of Vostrikova (1981), which is a “top down” procedure, in the sense that one
tests all the data to determine if there is at least one change-point and iterates the procedure in
the intervals immediately to the “left” and “right” of the most recently detected change-point.
We discuss below the weaknesses of this method compared to a number of other thresholding
procedures.

Here, we consider “bottom up” procedures motivated by the observation that in the pres-
ence of multiple change-points or to mitigate the effects of inadequately controlled drift in
the “baseline” mean value (see below), it may be useful to compare a candidate change-point
at j to an appropriate “local” background (i, k), where i < j < k. Similar approaches are the
Wild Binary Segmentation (WBS) of Fryzlewicz (2014), which uses a random set of possi-
ble backgrounds and an apparently empirically determined threshold, and the method of Niu
and Zhang (2012), who use a limited number of symmetric backgrounds, to suggest several
sets of candidate change-points followed by model selection to make the final choice. (Our
suggested procedures could also form part of a two-stage procedure, but here we consider in
detail only a single stage, which controls the rate of false positives.)

To that end, consider

(1.1) max
0≤i<j<k≤m

|Zi,j,k|,
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where for i < j < k:

Zi,j,k = [
Sj − Si − (j − i)(Sk − Si)/(k − i)

]
/[

(j − i)
(
1 − (j − i)/(k − i)

)]1/2
.

(1.2)

Our first theoretical result in Theorem 2.1 below is an approximation for the tail probability
of (1.1) when there is no change. This approximation gives strong control of the probability of
a false positive result in the sense that if there are M true change-points, say at 0 = τ0 < τ1 <

· · · < τM < τM+1 = m, the maximum of (1.2) over n = 0, . . . ,M and τn ≤ i0 < j0 < k0 ≤
τn+1 is stochastically smaller than (1.1) when there are no change-points. Hence, except for
an event of the probability evaluated asymptotically in Theorem 2.1, any background interval
(i1, k1) where maxj |Zi1,j,k1 | exceeds the threshold must contain a τ� for some 1 ≤ � ≤ M .

Our second principal result is an approximate likelihood ratio confidence region jointly for
the change-points {τk, k = 1, . . . ,M} or for the change-points and the mean values. A related
result allows one to approximate the local power (cf. Section 3.2), which we find useful in
helping us understand which change-points are relatively easily detected and which may be
missed.

In more detail, our segmentation procedure based on (1.2), which we call the Local Like-
lihood Ratio (LLR) is as follows. (In the following, we use the same acronym to refer to both
the statistic and associated segmentation procedures.) Because of local correlations between
different Zi,j,k , thresholding (the absolute value of) (1.2) produces a frequently large list
of candidate change-points j , each one against multiple backgrounds (i, k). Since our goal
is to detect individual changes against the appropriate background, we find it convenient in
searching the list of candidates to require that the background for one candidate change-point
j not overlap another candidate change-point j ′ in the sense that if j < j ′, the correspond-
ing backgrounds should satisfy k ≤ j ′ and i ′ ≥ j . This can be accomplished by sequentially
reevaluating candidate change-points until they satisfy the constraint. Hence, when a new
change-point is identified, the existing putative change-points to its left and to its right may
need to be removed or altered. An approach that requires very little and usually no reevalu-
ation of candidate change-points is to select the shortest of the possible backgrounds (i, k)

from among those for which Zi,j,k exceeds the required threshold, which is similar to the
method recommended in Baranowski, Chen and Fryzlewicz (2019). If there is a tie for the
shortest value of k − i, we choose the one with the largest value of |Zi,j,k|. Another possible
algorithm is selection based on the largest value of the statistic, which rarely leads to signif-
icant differences from selection based on the shortest background, although now iteration to
enforce the no overlap condition is common.

For various scientific reasons and in particular for determination of the confidence regions
discussed below, an important consideration is the size, as well as the location of the change.
Although it seems natural to conjecture that the largest |Z|-value, subject to no overlap, pro-
vides the most accurate estimate since it is based on a longer background, from simulations
we can see that this is by no means always the case. Since we have “paid up front” for protec-
tion against false positive errors, we can also choose to look at a number of candidate change-
point-background combinations to find one that is subjectively appealing. Simple possibilities
that seem to present themselves frequently are to choose from among the (i, j, k) combina-
tions having, say, the five shortest backgrounds the value of j that appears most frequently,
or has the largest Z-score, or also heads the list generated by the algorithm that is focused on
the largest Z-score.

We also study a pseudo-sequential procedure (SLLR) where we initially set i = 0, find
the smallest k > i + 1 such that maxi<j<k |Zi,j,k| is above an appropriate threshold, set j1
equal the largest such j or the value of j that maximizes |Zi,j,k|, then set i = j1 and iterate
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the process. In simulations not reported here, we have found that there is rarely a signifi-
cant difference between these alternatives for defining j1 and have not found a preference for
one method over the other. This procedure has lower computational complexity than LLR,
although it is still a bottom up procedure in the sense that each detected change-point is com-
pared to a local background that ideally contains no other change-points that might introduce
potential biases into the estimated location or size of the change. Because SLLR has a lower
threshold than LLR, it also usually has larger power to detect change-points. However, as
explained below Theorem 2.2, we do not have as strong a theoretical guarantee that the false
positive error probabilities are controlled. See the unpublished Stanford Ph.D. thesis of E. S.
Venkatraman for an early discussion of a similar idea.

The paper is organized as follows. In Section 2, we give approximations to control the false
positive probabilities of our proposed and other segmentation methods. Approximate joint
confidence regions are discussed in Section 3. Using simulations and analysis of some real
data, we compare our methods in Section 4 with other thresholding methods that control false
positive probabilities with varying degrees of success, and we give some numerical examples
for confidence regions. Section 5 contains extensions to exponential families, and Section 6
some additional discussion. In an online supplement (Fang, Li and Siegmund (2019)), we
prove the theorems stated in Sections 2 and 3.

REMARKS. (i) For some applications, for example, for inherited CNV, the signal to be
detected extends over a relatively short range in the form of a departure from a baseline
value where one change is followed by a second, nearby change in the opposite direction. For
problems of this form, it seems reasonable to use statistics adapted to the expected shape of
the signals, (e.g., Olshen et al. (2004), Frick, Munk and Sieling (2014), Zhang et al. (2010)).
We give appropriate approximations for false positive control in Section 2 and consider such
procedures in more detail in Section 4, where we show that they perform very well even when
there is no particular pattern to the change-points. Inherited CNV also provide motivation for
studying multivariate observations (i.e., multiple DNA sequences), since the change-points
may be difficult to detect in individual sequences and their occurrence in several sequences
indicate possible relationships among those sharing the same change-points (Zhang et al.
(2010)).

(ii) For theoretical calculations, we have assumed the variance of the observations is
known. The sequences are usually long enough that, under our assumption of independence,
the variance can be accurately estimated by one-half the average of the squared differences
of consecutive observations. This estimator avoids the substantial upward bias of the empiri-
cal variance of the data, which arises when there are multiple change-points and the changes
themselves show no particular pattern. We have used this estimator in our simulations and
applied examples. Alternatives are to use a function of the order statistics of adjacent ob-
servations, for example, the median of |Xi − Xi−1| or the interquartile range of Xi+1 − Xi ,
multiplied by suitable constants. Still another estimator that may have some value is the av-
erage of squared second-order differences of consecutive observations, which has the virtue
of nullifying the effect of linear drift and perhaps also the relatively slow oscillations in the
baseline distribution that plague some genomic applications (Olshen et al. (2004)). The es-
timator based on pairwise differences is inappropriate when the data are autocorrelated, a
problem we expect to study in the future. An example where the empirical variance is itself
satisfactory occurs when the data are of the form envisioned in Remark (i), where change-
points occur in a relatively sparse set of departures from a baseline value followed by a return
to the baseline a few observations later.

(iii) In recent research, some authors recommend a multiscale modification of the likeli-
hood ratio statistic. One possibility is to modify (1.2) by subtracting {2κ log[3m/min(j −
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i, k − j)]}1/2, κ > 0, in order to obtain greater power to detect relatively small changes that
persist over longer intervals at the cost of less power to detect large changes that come rela-
tively close together; see, for example, Dümbgen and Spokoiny (2001) and Frick, Munk and
Sieling (2014). Our methods can be adapted to study these modifications, and in Section 4
we investigate a procedure based on the statistic recommended in Frick, Munk and Sieling
(2014). However, these methods are not central to our studies for the following reasons. (a)
For problems of CNV detection, difficult detections in the synthetic data suggested in the
applied literature and in the real data in Section 4 often involve short intervals and relatively
large changes. (b) What appear to be small, relatively isolated changes may arise from techni-
cal artifacts and are not scientifically interesting (cf. Olshen et al. (2004), Zhang et al. (2010),
and Table 5). (c) Multiscale modifications are not uniquely defined; and in different problems
different statistics may have slight advantages and disadvantages. (d) Multiscale methods do
not appear to adapt as naturally for the determination of confidence regions as the likelihood
ratio statistic.

2. Approximate p-values. In what follows, we write A � B to mean that 0 < c1 ≤
A/B ≤ c2 < ∞ for two absolute constants c1 and c2, and A(b) ∼ B(b) means A(b)/B(b) →
1 as b → ∞; also ϕ and � are the standard normal probability density function and distribu-
tion function, respectively.

We have the following p-value approximation for max0≤i<j<k≤m |Zi,j,k|.
THEOREM 2.1. Let (X1, . . . ,Xm) be an independent sequence of normally distributed

random variables with mean μ and variance 1. Then for Zi,j,k as defined by (1.2), we have
for b → ∞ and m � b2,

P
{

max
0≤i<j<k≤m

|Zi,j,k| ≥ b
}

∼ b5ϕ(b)

4

∑
u,v∈{1,...,m}:

u+v≤m

(m − u − v)

uv(u + v)
ν

[
b

(
u

v(u + v)

)1/2]

× ν

[
b

(
v

u(u + v)

)1/2]
ν

[
b

(
u + v

uv

)1/2]
.

(2.1)

The function ν is defined, for example, in Siegmund and Yakir (2007) page 112 and given to
a simple approximation (which we use below) by the equation

ν(x) = (
�(y) − 1/2

)
/
[
y
(
y�(y) + ϕ(y)

)]
,

where y = x/2.

For the proof of Theorem 2.1, we use a new method beginning from an observation of
Zhang and Liu (2011), which was used there as the basis for Monte Carlo simulation with a
one (time)-dimensional random field and which we have used for an analytic approximation
involving maxima of certain three (or higher dimensional) random fields. The starting point
is a number of simple observations, which require a large number of detailed calculations for
complete justification.

Denote the right-hand side of (2.1) by p, which asymptotically

∼ ϕ(b)

4b

∑
u,v∈{1,...,m}:

u+v≤m

(m − u − v)

{
b6

uv(u + v)
ν

[
b

(
u

v(u + v)

)1/2]

× ν

[
b

(
v

u(u + v)

)1/2]
ν

[
b

(
u + v

uv

)1/2]}
.
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It was shown in Siegmund (1985) that ν(x) = exp(−cx) + o(x2) as x → 0 for c ≈ 0.583,
while x2ν(x)/2 → 1 as x → ∞. Therefore, the term inside the curly brackets above is
bounded. Hence

(2.2) p � b5ϕ(b) → 0,

where we used the assumption that m � b2.
Fix a sufficiently small constant c0. We will prove first that

P
{

max
0≤i<j<k≤m:
j−i,k−j≥c0b

2

Zi,j,k ≥ b
}

∼ 1

8
b5ϕ(b)

∑
u,v∈{1,...,m}:

u+v≤m;u,v≥c0b
2

(m − u − v)

uv(u + v)
ν

[
b

(
u

v(u + v)

)1/2]

× ν

[
b

(
v

u(u + v)

)1/2]
ν

[
b

(
u + v

uv

)1/2]
.

(2.3)

We write

P
(

max
0≤i<j<k≤m

j−i,k−j≥c0b
2

Zi,j,k ≥ b
)

= ∑
0≤i<j<k≤m

j−i,k−j≥c0b
2

P
(
Zi,j,k ≥ b,Zi,j,k = ∑

0≤r<s<t≤m

s−r,t−s≥c0b
2

Zr,s,t

)

= ∑
0≤i<j<k≤m

j−i,k−j≥c0b
2

∫ ∞
0

P
(

max
0≤r<s<t≤m

s−r,t−s≥c0b
2

Zr,s,t ≤ b + x|Zi,j,k = b + x
)

× P(Zi,j,k ∈ b + dx)

= ∑
C logb≤i<j<k≤m−C logb

j−i,k−j≥c0b
2

∫ b+1

b
P

(
max

0≤r<s<t≤m

s−r,t−s≥c0b
2

Zr,s,t ≤ x|Zi,j,k = x
)
dP+ R,

where C is a positive constant to be chosen. The rest of the proof involves a detailed analysis
of the conditional probability, to show that R and various other terms that have been ignored
are indeed negligible. These technical details are facilitated by the assumption that b2 � m,
which guarantees that the range of perturbations of i, j and k that must be considered is not
too large and in this range the conditional probability is well behaved. Details are given in
Appendix A of the online supplement.

REMARKS. (i) Other methods that appear to be adaptable to prove Theorem 2.1, albeit
with more, less intuitive, computation are those of Siegmund (1988a) and of Yakir (2013).

(ii) Usually we are interested in small probabilities, and then we can use (2.1) as given.
Occasionally, we may be interested in cases where m is so large that the probability is not
small. In those cases, we can supplement our large deviation approximation with a “Poisson”
approximation in the form 1 − exp[−RHS(2.1)], which reduces to our approximation when
the probability is small; see Siegmund and Yakir (2000) for a proof in a related case.

(iii) Based on other, related calculations (see, e.g., (5) in Zhang et al. (2010)), it seems clear
that similar results apply to multivariate data with a few changes. This case is particularly
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interesting for detection of inherited CNV, which are short and sometimes difficult to detect in
single DNA sequences (e.g., Zhang et al. (2010)). It is also interesting to infer which subsets
of the distributions have changed at the various change-points. The required modifications of
the approximation given in the theorem are (a) replace ϕ(b) by bfd(b2) where fd is the χ2

probability density function with d degrees of freedom, and (b) multiply the entire expression
by q5 and the arguments of the functions ν by q , where q = 1 − (d − 1)/b2 (to account for
the curvature of the sphere when the dimension d is large); see (2.9) below.

(iv) For a multiscale statistic along the lines suggested in Remark (iii) at the end of Sec-
tion 1, where we subtract, for example, {2κ log[3m/min(j − i, k − j)]}1/2 from (1.2), a
similar approximation holds, with the right-hand side modified by replacing b by b(u, v) =
b+{2κ log[3m/min(u, v)]}1/2 and moving the expressions involving b(u, v) inside the sum-
mation; see (2.9) below for a similar approximation involving the (Frick, Munk and Sieling
(2014)) recommended statistic.

(v) In applications, we may wish to put a lower and/or an upper bound on the length of
the background, for example, m0 ≤ j − i, k − j ≤ m1. The appropriate change to (2.1) is
to restrict the summation on the right-hand side to m0 ≤ u, v ≤ m1. For applications where
very short intervals between change-points can occur, we may want to take m0 = 1. Values
of m1 � m can be used to minimize detection of small jumps, which may themselves reflect
experimental artifacts that lead to drift in the underlying distributions (cf. Olshen et al. (2004),
Zhang et al. (2010)); and they speed up what may otherwise be time consuming computations
for large values of m; see Section 4 for other possible speed-ups.

(vi) If there is a large number of change-points to be detected, one might prefer to control
the rate of false positive errors via the false discovery rate (FDR). In change-point problems,
it is important to distinguish between discoveries and “tests,” since in our context many cor-
related test statistics may refer to relatively few change-points. Efforts to clarify and deal
with this distinction that seem applicable in principle to our segmentation problem are found
in Schwartzman, Gavrilov and Adler (2011), Hao, Niu and Zhang (2013) and Siegmund,
Zhang and Yakir (2011); but since the number of change-points in our motivating examples
is typically not large, we do not consider this possibility in detail.

(vii) One can choose to approximate the probability in the theorem by simulation; and to
do this once for a particular study does not seem to pose difficulties. Simulation may also
be useful to study variations of our problem under different models, and for WBS we do not
know any alternative. But the analytic approximations are much faster to evaluate, and hence
we find it useful to perform a relatively limited set of simulations to gain confidence that
our approximations are reasonably accurate, then use the approximations. In addition to de-
termining suitable thresholds, we may want to compute p-values, defined by the probability
that a statistic would exceed its observed value under specified conditions, or to determine the
confidence regions suggested in Section 3, which involve iterative computation of probabili-
ties; for these and other problems rapid analytic computation is useful. We will, nevertheless,
see in Section 4 that simulations play an indispensable role when we deal with difficult to
approximate probabilities.

(viii) The natural setting for these approximations is the likelihood ratio statistic in ex-
ponential families, as discussed briefly in Section 5. A more robust, although often quite
conservative approximation is to replace the discrete time random walk of the theorem by
continuous time Brownian motion. The resulting approximation would look the same, but
the functions ν would be replaced by 1, and the sums would be integrals (perhaps still evalu-
ated as sums). While this would in principle allow the theorem to be applied to a wide variety
of statistics, in specific cases the approximation may be quite conservative.

For the SLLR, we have a similar approximation to the probability of a false positive de-
tection.
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THEOREM 2.2. Let (X1, . . . ,Xm) be a sequence of independent normally distributed
random variables with mean μ and variance 1. Let Zi,j,k be defined as in (1.2). We have for
b → ∞ and m � b2,

P
{

max
0<j<k≤m

|Z0,j,k| ≥ b
}

∼ 1

2
b3ϕ(b)

∑
1<k≤m

∑
0<j<k

j−2ν
{
b
[
(k − j)/(jk)

]1/2}

× ν
{
b
[
k/

(
j (k − j)

)]1/2}
.

(2.4)

Compared to the segmentation procedure based on LLR, the pseudo-sequential procedure
has the advantage that it is easier and faster to implement. In the case of no discovery, it
searches over two indices j , k, as opposed to three indices i, j , k in LLR. It does not, however,
have as strong a theoretical guarantee that the false positive error probabilities are controlled,
since each restart creates an independent opportunity for a false positive error. For example, if
there is a large change (or even no change) at τ , a detection may occur at t < τ , and process
restarted at t may detect the same change a second time. This situation is usually easy to
recognize and correct ad hoc. It could be prevented by delaying the restart, but this would
hurt the power to detect a genuine second change that occurs near the first, since SLLR must
have enough data to estimate the current mean before it can detect a change. Finally, since
SLLR does not use the maximum available background, the location of the change-point and
the magnitude of a change may not be as accurately estimated as with LLR. However, as
simulations and examples below suggest, SLLR is quite stable and efficient.

The statistic suggested by Niu and Zhang (2012) is similar to LLR, but uses a background
that is symmetric around a putative change-point. Consider the local maxima with respect to
j of

(2.5) Zj,h = ∣∣[(Sj+h − Sj ) − (Sj − Sj−h)
]∣∣/(2h)1/2,

where h is a parameter to be chosen. Since there is no obvious choice for h, Niu and Zhang
suggest maximizing (2.5) over a finite number of values of h. For their applications to copy
number variation, they suggest 3 values, 10, 20 and 30. To complete their method, which they
call SaRa, they use a model selection procedure following their use of (2.5), a step that we
omit.

Our implementation of SaRa below takes maxima over all j and h. The methods of proof
of Theorems 2.1 and 2.2 (and (2.9) below) use the fact that local perturbations of the pro-
cesses around a high maximum, for example, the difference between a large value of Zi,j,k

and values Zi′,j ′,k′ as a function of i′ ≈ i, j ′ ≈ j and k′ ≈ k involves a sum of three approxi-
mately independent random walks. Since the local random walks obtained from perturbations
of j and h for (2.5) are not independent, we cannot apply the same methods to obtain a the-
oretical approximation to the false positive error probability. Since the local increments are
weakly positively dependent, it seems natural to conjecture that treating them as if they were
independent would produce a slightly conservative approximation.

An approximation to the the maximum over j and h of (2.5), calculated on the assumption
that the local increments obtained from perturbations of j and h are independent is given by

P
{

max
0<t<m,0<h<min(t,m−t)

|Zt,h| ≥ b
}

∼ 1.5mb3ϕ(b)
∑
h

ν
[
b(3/h)1/2]

ν
[
b(1/h)1/2]

/h2.
(2.6)
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TABLE 1
Approximation (2.1). Simulated values based on N = 10,000 repetitions in the first three rows, 1000 in the last

two rows and 2000 otherwise

b m m0 m1 pApprox Monte Carlo

3.64 25 1 24 0.050 0.052
4.00 50 1 49 0.050 0.049
4.30 100 1 99 0.049 0.046
4.54 200 1 199 0.052 0.049
4.68 300 1 299 0.050 0.049
4.76 400 1 399 0.051 0.048
4.83 500 1 499 0.050 0.047
4.83 500 1 100 0.043 0.042
4.83 500 1 50 0.035 0.035
4.71 500 1 50 0.059 0.053
4.60 500 1 100 0.11 0.10
4.77 500 1 100 0.056 0.054
4.71 500 3 100 0.056 0.043
4.45 500 3 50 0.12 0.11
4.62 500 1 499 0.11 0.11
5.17 2000 1 1000 0.055 0.042
4.99 1000 1 300 0.055 0.046
4.40 1000 1 300 0.46 0.41
4.30 1000 1 300 0.59 0.51

Simulations indicate that (2.6) is slightly conservative, as expected, so we have used simu-
lated thresholds in comparing SaRa to other procedures in Section 4. Because of the restric-
tion to a symmetric background, SaRa is, on one hand very easy to simulate, but on the other
hand can suffer a serious loss of power when change-points are spaced irregularly, with some
being close to others.

Table 1 compares simulated values for the maximum of LLR with the approximation given
in Theorem 2.1 (with the simple approximation to the function ν) for various values of m

(i) when the maximum is constrained by m0 ≤ j − i, k − j ≤ m1 and (ii) for the related
Poisson approximation described above when m is sufficiently large compared to b2 that the
tail probability approximation exceeds 0.10. Some of the thresholds are used in comparing
different methods in Section 4.

Some numerical experimentation, not reported here in detail, suggests that the approxi-
mation of Theorem 2.2 is also reasonably accurate. For example, for m = 500, the threshold
b = 4.34 yields the probability 0.051, while simulations (2500) repetitions give the probabil-
ity 0.045.

In Section 4, we compare the methods described above with (a) the widely used method
of Olshen et al. (2004), which the authors called CBS (for Circular Binary Segmentation)
and developed specifically for applications to copy number data, and (b) a threshold based
implementation of the multiscale modification of CBS suggested by Frick, Munk and Sieling
(2014) (called Multi below). For completeness, we give in (2.9) appropriate approximations
for their false positive control. Consider

(2.7) max
0≤j<j+n≤m

Zj,n,

where

(2.8) Zj,n = |Sj+n − Sj − nSm/m|
[n(1 − n/m)]1/2 − {

2κ log
[
3m/n(1 − n/m)

]}1/2
.
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CBS, which has κ = 0, is the likelihood ratio statistic for testing the hypothesis of no change-
points against the alternative that there exists a pair of changes, where the second change is
equal in magnitude but opposite in sign to the first change. The case κ = 1 is the multiscale
statistic of Frick, Munk and Sieling (2014), who argued that CBS puts relatively too much
power into the detection of short intervals of large amplitude, but has much less power to
detect relatively long intervals of small amplitude.

An approximation for the false positive probability of (2.8) stated here for the case of
d-dimensional Xi with covariance matrix 	 (cf. Remark (iii) following the statement of
Theorem 2.1), is given by

P

{
max

0≤j<j+n≤m
m0≤n≤m1

{‖	−1/2(Sj+n − Sj − nSm/m)‖
[n(1 − n/m)]1/2

−
{

2κ log
[

3m

n(1 − n/m)

]}1/2}
≥ b

}

∼ 2
m1∑

n=m0

(m − n)fd

(
b2
n

)( b4
nq

3
n

(2n(1 − n/m))2

)

× ν2
(

bnqn

[n(1 − n/m)]1/2

)
,

(2.9)

where fd denotes the chi-square probability density function with d degrees of freedom,
bn = b + {2κ log[3m/n(1 − n/m)]}1/2, and qn = 1 − (d − 1)/b2

n. The derivation of (2.9) is
similar to that of Theorem 2.1 for d = 1, modified as suggested in the proof of (5) of Zhang
et al. (2010) for d > 1.

The method of proof of Theorem 2.1 also appears to be applicable to some sparse interval
systems considered in the literature, although theoretical and/or numerical justification for
the approximations that we can formally obtain requires investigation. For example, consider
the sparse interval system (2.3) of Chan and Chen (2017) with T = m, h = m, r = 1 + ε with
small ε > 0. A modification of the calculations used in the proof of our Theorem 2.1 (which
is given in the online Supplementary Material) produces the approximation

P
{

max
0≤i<j<k≤m

j−i,k−j∈{(1+ε)a�:a∈Z+}
|Zi,j,k| ≥ b

}

∼ b5ϕ(b)

4

∑
u,v∈{1,...,m},u+v≤m

u,v∈{(1+ε)a�:a∈Z+}

(m − u − v)

3∏
i=1

(
4d2

i

)
ν(2di),

where

d1 = b

2

[
(εu� ∨ 1)v

u(u + v)

]1/2
,

d2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b

2

[
1

u
+ 1

v

]1/2
if

(εv� ∨ 1
) = (εu� ∨ 1

) = 1,

b

2

[
2(u2 + v2 + uv)

uv(u + v)

]1/2
otherwise,

d3 = b

2

[
(εv� ∨ 1)u

v(u + v)

]1/2
.
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Here, d1 and d3 can be interpreted as the standardized drifts of the local random walks ob-
tained by perturbing i and k, respectively, by the amounts of (εu� ∨ 1) × Z+, while d2

corresponds to perturbing j in one case, and shifting (i, j, k) in the other case. For m = 500,
b = 4.83, ε = 0.1, this approximation gives 0.043 and simulation based on 2000 repetitions
gives 0.040. For m = 1000, b = 5.1, ε = 0.1, the approximation gives 0.029 and simulation
based on 2000 repetitions give 0.023. Similar approximations can be obtained if we allow the
threshold b to depend on i, j , k as in Chan and Chen (2017).

3. Confidence regions and local power. We continue to assume independent normal
observations X1, . . . ,Xm with mean values forming a step function with jumps at τk , 1 ≤
k ≤ M and variance equal to one. For a given value of M , we can use the likelihood ratio
statistic to construct a joint confidence region for the change-points τ = (τ1, . . . , τM) or for
the change-points and mean values μ = (μ1, . . . ,μM+1).

We use the inverse relation between confidence intervals and hypothesis tests. For testing
a putative value of the positions of change-points and the corresponding mean values, the
maximum log likelihood ratio statistic is

Tτ,μ = max
0<t1<···<tM<m

M+1∑
k=1

(Stk − Stk−1)
2

2(tk − tk−1)

−
M+1∑
k=1

[
μk(Sτk

− Sτk−1) − μ2
k

2
(τk − τk−1)

]
(3.1)

=: max
0<t1<···<tM<m

Ut,τ,μ,

t = (t1, . . . , tM), t0 = τ0 = 0, tM+1 = τM+1 = m and Si = ∑i
j=1 Xj for 0 ≤ i ≤ m. The 1 −α

confidence region consists of those τ and μ such that Tτ,μ ≤ aτ,μ where

(3.2) Pτ,μ(Tτ,μ > aτ,μ) = α.

If we are only interested in the confidence region of τ and treat μ as a nuisance parameter,
the maximum log likelihood ratio statistic is

(3.3) Tτ = max
t1,...,tM

M+1∑
k=1

(Stk − Stk−1)
2

2(tk − tk−1)
−

M+1∑
k=1

(Sτk
− Sτk−1)

2

2(τk − τk−1)
.

By sufficiency the conditional distribution of Tτ given {Sτk
: 1 ≤ k ≤ M + 1} does not depend

on μ. Therefore, a 1 − α confidence set for the change-points is the set of τ such that Tτ ≤
aτ,Sτ1 ,...,SτM

where

(3.4) Pτ (Tτ > aτ,Sτ1 ,...,SτM
|τ, Sτ1, . . . , SτM

) = α.

In the case there is known to be only one change-point, that is, M = 1, for exponentially
distributed random variables, the exact value of the left-hand side of (3.4) was given by
Worsley (1986). For M = 1, asymptotic approximations for the left-hand side of both (3.2)
and (3.4) were given by Siegmund (1988b) for distributions from exponential families. Since
the asymptotic approximations in Siegmund (1988b) seem difficult to generalize to the case
where M ≥ 2, here we use a different approach to obtain asymptotic approximations for the
left-hand side of both (3.2) and (3.4) for M ≥ 1.
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3.1. Tail approximations. To construct the joint confidence region for the change-points
and the corresponding parameters, for each τ and μ, we need to find aτ,μ such that

Pτ,μ(Tτ,μ > aτ,μ) = α,

where Tτ,μ is defined in (3.1). The following theorem, the proof of which is deferred to the
online Supplementary Material (Appendix B), gives an approximation to

Pτ,μ(Tτ,μ > a)

for large a. We assume that the putative change-points are close enough to the true change-
points that the maximum can be taken over relatively small neighborhoods (|tk − τk| ≤ nk) of
the putative change-points, that is,

Pτ,μ(Tτ,μ > a) ∼ Pτ,μ

(
max

t :|tk−τk |≤nk

Ut,τ,μ > a
)
.

The assumption (3.5) imposed in the theorem also ensure that the change-points are reason-
ably well separated from one another. Despite these technical assumptions, simulation shows
that our approximation is reasonably accurate (cf. Tables 2 and 7).

THEOREM 3.1. Let τ = {τ1, . . . , τM} and μ = {μ1, . . . ,μM+1} be defined as above. De-
fine δk = μk+1 − μk for 1 ≤ k ≤ M and mk = τk − τk−1 for 1 ≤ k ≤ M + 1. Suppose that
|δk| � 1 and

(3.5) 1 � a � nk � (mk ∧ mk+1)/a,

where A � B means A/B → 0 as a → ∞. We have

(3.6) Pτ,μ

(
max

t :|tk−τk |≤nk

Ut,τ,μ > a
)

∼ P

(
M∑

k=1

Wk + 1

2
χ2

M+1 > a

)
,

where Ut,τ,μ was defined in (3.1), W1, . . . ,WM,χ2
M+1 are independent, χ2

M+1 is a chi-
squared random variable with M + 1 degrees of freedom, and for 1 ≤ k ≤ M the distribution
of Wk is given by

(3.7) P(Wk > x) = 2ν
(|δk|)e−x − ν2(|δk|)e−2x, ∀x ≥ 0

for 1 ≤ k ≤ M .

We have a similar approximation for the left-hand side of (3.4). Table 3 shows that the
approximation is reasonably accurate.

THEOREM 3.2. Let T ′
τ be defined as in (3.3) with the maximum taken over |tk − τk| ≤ nk

for 1 ≤ k ≤ M . Define δ̂k = μ̂k+1 − μ̂k for 1 ≤ k ≤ M , μ̂k = (sτk
− sτk−1)/(τk − τk−1) and

mk = τk − τk−1 for 1 ≤ k ≤ M + 1. Suppose that |δ̂k| � 1 and

1 � a � nk � (mk ∧ mk+1)/a.

We have

(3.8) Pτ

(
T ′

τ > a|Sτ1 = sτ1, . . . , SτM
= sτM

) ∼ P

(
M∑

k=1

Wk > a

)
,

where W1, . . . ,WM are independent and have the same distributions as in Theorem 3.1 with
δk replaced by δ̂k .
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TABLE 2
Approximation (3.6) for M = 2. Simulated values based on N = 10,000 repetitions. The values of p̂ in

parentheses correspond to those δ2 in parentheses

m/τ1/τ2 δ1 δ2 a p̂ (Monte Carlo)

105/35/70 1.5 1.5 (−1.5) 6.55 0.052 (0.055)
2 2 (−2) 6.11 0.048 (0.043)
2.25 2.25 (−2.25) 5.92 0.058 (0.042)
1.5 0.75 (−0.75) 6.94 0.060 (0.062)

210/70/140 0.75 0.75 (−0.75) 7.33 0.059 (0.067)
1.5 1.5 (−1.5) 6.55 0.051 (0.048)
2 2 (−2) 6.11 0.044 (0.046)
1.5 0.75 (−0.75) 6.94 0.055 (0.060)

It is easy to evaluate the distributions of
∑

Wk and
∑

Wk + χ2
M+1 by Fourier inversion,

for values of M up to about 100, and by asymptotic methods in the rare case that still larger
values of M are of interest. We start from the standard inversion formula for a probability
density function f with an integrable characteristic function f̂ :

f (x) = (2π)−1
∫ ∞
−∞

exp(−√−1λx)f̂ (λ) dλ.

For a distribution on the nonnegative numbers, we integrate this from 0 to b to find that
probability to the left of a equals

π−1
∫ ∞

0
Re

{[
1 − exp(−√−1λa)

]
f̂ (λ)

}
dλ/λ.

For our special case, for simplicity assume that δk = δ for all k. Let ν = ν(δ) and f̂ (λ) =
(1 − ν)2 + 2ν/(1 + √−1λ) − 2ν2/(2 − √−1λ) denote the characteristic function of Wk . Let
ĝ(λ) be the characteristic function of a χ2

M+1 random variable. Finally, let h(λ) = f̂ m(λ) ∗
g(λ)[1 − exp(

√−1λa)]/(1 + √−1λ). Then the probability on the right-hand side of (3.6)
equals 1 − ∫ ∞

0 Re[h(λ)]dλ/π . For Theorem 3.2, a similar expression without the factor h

provides a numerical value for the approximation.
In Tables 2 and 3, we use simulations to check the accuracy of the approximations of The-

orems 3.1 and 3.2, respectively. The number of change-points is M = 2. The other parameters
are indicated in the tables. For different values of δ1 and δ2, we compute the threshold a such
that our approximation of the relevant probability equals 0.05. The values p̂ denotes a Monte

TABLE 3
Approximation (3.8) for M = 2. Simulated values based on N = 10,000 repetitions. The values of p̂ in

parentheses correspond to those δ̂2 in parentheses

m/τ1/τ2 δ̂1 δ̂2 a p̂ (Monte Carlo)

105/35/70 1.5 1.5 (−1.5) 4.28 0.054 (0.047)
2 2 (−2) 3.80 0.045 (0.047)
2.25 2.25 (−2.25) 3.59 0.043 (0.042)
1.5 0.75 (−0.75) 4.68 0.053 (0.056)

210/70/140 0.75 0.75 (−0.75) 5.09 0.055 (0.057)
1.5 1.5 (−1.5) 4.28 0.049 (0.047)
2 2 (−2) 3.80 0.049 (0.047)
1.5 0.75 (−0.75) 4.68 0.056 (0.055)
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Carlo estimate of the appropriate probability with n1 = n2 = m, based on 10,000 repetitions
each. We see that the approximations are reasonably accurate for the range 1 < |δ| < 2.

For a simple example of a confidence region for the change-points, we simulated m = 161
observations with changes in the mean value of size ±2 at observations 51, 91 and 121. In
the first simulation, δ̂ ≈ 2 for all three change-points. This value gave a threshold of 4.95
for a 95% conditional confidence region. The joint confidence region consisted of the point
estimators 51, 91 and either of 121 or 122. In a second simulation with the same parameters,
the smallest estimate of δ̂ was 1.5, which if used for all three change-points would lead to
a conservative threshold, in this case equal to 5.6. The joint confidence region based on this
threshold was substantially larger. The union of the three regions was 50, 51, 91, 92, 93, 121,
122. The joint confidence region consisted of 7 of the 2 × 3 × 2 = 12 possible combinations
of these values; we omit the details. When the size of the changes was decreased to ±1.5,
we again used the smallest value of δ̂, which again gave a threshold of 5.6, and the 95%
joint confidence region extended up to 5 observations away from the change-points at 51
and 91, and a couple of observations away from 121. As a reflection of the fluctuations in
the sample paths of the random walk, the regions around the individual change-points were
neither symmetric nor connected.

For applications to copy number variation, see Section 4.2.

REMARK. As one sees from an examination of the conditions of Theorem 3.1 and The-
orem 3.2, the methods discussed in this section work well if the sizes of the changes and the
distances between them are reasonably large. If there is a mixture of large and small changes,
or if it is unclear whether a putative change is real or not, the procedure can be adapted
appropriately. For example, suppose we are interested in a joint confidence region for the
change-points when there are clear changes close to τ1 < τ3, with what may or may not be a
change at τ2 ∈ (τ1, τ3). In taking the maximum indicated above, one can fix the value t2 = τ2
and maximize only over t1 and t3, while evaluating the conditional probabilities given by
all three τi . Whether there is a change at τ2 or not, the conditional probability adapted from
Theorem 3.2 now involves the sum of two conditionally independent maxima, not three. To
be more conservative in protecting against a change-point near, but not exactly at, τ2, we
can bracket τ2 by, say τ20 < τ2 < τ21, and proceed from there. The confidence coefficient
is still asymptotically as given in Theorem 3.2, but the confidence region itself may have
changed due to the change in the statistics used for conditioning. Presumably unnecessary
conditioning leads to less accurate estimation.

3.2. Power. To help our intuition concerning the relation between background and size of
a change that makes a particular change-point either easy or difficult to detect and to compare
different procedures under hypothesized conditions, it is helpful to have an approximation for
the power to detect a change.

When the size of a change in the mean value is δ > 0 and the (largest possible) background
is (i∗, k∗) for a change-point at j∗, we define the marginal power to be

(3.9) 1 − �
(
b − δ

[
h1h2/(h1 + h2)

]1/2)
,

where h1 = j∗ − i∗, h2 = k∗ − i∗. This is just the marginal probability that the statistic Zi,j,k

evaluated at the true change-point j = j∗ with the largest possible background i = i∗, k = k∗
exceeds the threshold b. A detection may fail to occur at i∗, j∗, k∗, but occur at i ′, j ′, k′ which
is a local perturbation of the values i∗, j∗, k∗ in the sense that i∗ ≤ i ′ < j ′ < k′ ≤ k∗. Using a
similar argument as in the derivation of (3.6) (cf. Appendix B in the online supplement), we
can approximate the probability of such a detection by conditioning on Z2

i∗,j∗,k∗ to obtain

(3.10) 2
∫ b2/2

0
P

{ ∑
i∈{0,1,2}

Wi > b2/2 − x

}
f (2x;1, λ) dx,
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where f (·;1, λ) is the probability density function of a χ2 distribution with one degree
of freedom and noncentrality parameter λ = δ2h1h2/(h1 + h2), W0, W1, W2 are indepen-
dent, W0 is nonnegative and has the probability distribution P{W0 > x} = 2ν(�) exp(−x) −
ν2(�) exp(−2x) for x ≥ 0 with � = b

√
1/h1 + 1/h2, and for i = 1,2, Wi is nonnega-

tive and has the distribution given by P{Wi > x} = ν(�i) exp(−x) for x ≥ 0 with �1 =
�/(1 + h1/h2) and �2 = �/(1 + h2/h1). We use the term local power to denote the sum
of the marginal power (3.9) and the perturbation (3.10). Similar approximations can be ob-
tained for the pseudo-sequential procedure, for multidimensional statistics and for multiscale
statistics. We omit the details.

4. Simulations and applications. In this section, we report the result of numerical ex-
ercises involving simulated and real data to compare a number of different segmentation
procedures, with emphasis on their efficiency to detect change-points without an excessive
number of false positive errors. We consider only thresholding algorithms that control the
false positive error rate under the global null hypothesis that there are no change-points. As
we see below on the basis of simulations that control is compromised to varying degrees
when iteration to find multiple change-points is required.

In contrast to LLR and SaRa, both CBS and Multi are “top down” procedures, where we
begin by searching the entire interval of observations. When one change-point (resp., a pair
of change-points) is detected, the interval searched is divided into two (resp., three) subinter-
vals, and those subintervals are searched for additional change-points. Since the methods are
designed to detect change-points occurring in pairs, under various conditions, for example,
when there is only one change-point to be detected in a search interval, or when consecutive
changes are both positive or both negative, one of the paired “detections” often suggests a
change-point very near to one end-point of the search interval. This is usually a false de-
tection that is easy to recognize and disregard, although the decision to disregard it has an
element of subjectivity. To minimize this subjectivity in our simulations, after some experi-
mentation we usually discard any detection having a distance to an end-point of the interval
searched that is within 5% of the length of that interval. If both detections are within this
distance, the one closer to an end-point is discarded. If they are equally distant from an end-
point, the one to be discarded is chosen at random. While objective, this rule can in some
cases lead to errors, so in practice we recommend making a subjective decision based on a
careful examination of the data.

Although the top down iterations of CBS and Multi make it natural to suspect that their
false positive error control may be inadequate, in most cases this does not appear to be a
major problem. If a large interval is partitioned into smaller intervals by correctly detected
change-points, the false positive probability for CBS for the initial interval is numerically
very close to the sum of the probabilities for the subintervals, so the sum of the false positive
probabilities for the small intervals is roughly the same as that of the initial search. For Multi,
this sum is much less than the false positive probability of the initial search (provided the
value of m is used for all searches, not changed to reflect the lengths of the different subinter-
vals). It appears that for both of these statistics the main source of false positive errors arises,
fortunately not often, when a correct detection is paired with a false detection that is not close
enough to an endpoint to be excluded.

It is also possible to give approximations for the local power for these two statistics, at least
under the simplifying conditions that we are at a stage of the search where there is only one
or a pair of change-points to be detected in the interval searched. For simplicity, we consider
only the CBS statistic when either (i) the mean before the first change-point at τ1 equals
μ1, between the first and second change-point at τ2 equals μ2, and returns to the value μ1
after τ2, or (ii) there is only one change-point at τ1 and τ2 = m. Denote the magnitude of the
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change by δ and let n0 = τ2 − τ1 denote the length of the changed interval. Approximations
and some calculus similar to that given in Section 3.2 lead to

Pδ

{
max

0≤i<j≤m

|Sj − Si − (j − i)Sm/m|
[(j − i)(m − j + i)/m]1/2 ≥ b

}

≈ �
(
δ
[
n0(1 − n0/m)

]1/2 − b
)

+ 2
∫ b2/2

0
P

(
W3 + W4 ≥ b2/2 − x

)
f

(
2x;1, δ2n0(1 − n0/m)

)
dx,

(4.1)

where f (·;1, λ) is the density function of the chi-squared distribution with 1 degree of
freedom and noncentrality parameter λ, and W3, W4 are independent nonnegative random
variables similar to those appearing in the approximation for the local power of LLR (cf.
(3.10)). If τ2 < m, both have the distribution given by P(W3 > x) = 2ν(�) exp(−x) −
ν2(�) exp(−2x) for x ≥ 0, where � = b/

√
n0(1 − n0/m). If τ2 = m, the right-hand tail

of the distribution of W4 equals � exp(−x). Similar results hold for the local power of Multi
and of SLLR.

Some other top down iterative thresholding procedures appear to have poorly controlled
false positive error rates if iterated with the same threshold and poor power under easily
understood conditions. In particular, we mention here but do not consider the thresholding
procedure suggested by Aston and Kirch (2012), which is similar to CBS and Multi in the
sense that it searches for a complementary pair of change-points; but the statistic Sj − Si −
(j − i)Sm/m to be maximized over i < j in searching for change-points is not standardized
to have a marginal distribution with unit variance when there are no change-points. Its false
positive probability can be approximated by a modification of the arguments of this paper
and is found to be poorly controlled when the procedure is iterated with a fixed threshold to
find multiple change-points. It also has very poor power to detect nearby change-points that
move in opposite directions. For example, assume that in 300 observations there are only two
changes: an increase of 3 standard deviations at observation 100 followed by a decrease of
the same magnitude 7 observations later. The Aston and Kirch (2012) procedure with a 0.05
false positive error rate when there are no changes, either detects neither of the two indicated
changes or detects changes with a value of the statistic that is maximized at i � 100 and
j � 107, which give an incorrect impression of the size of the interval. This latter possibility
is a reflection of the bias of the statistic in favor of up-down (or down-up) changes that
occur relatively much farther apart than the example given here. A procedure that has similar
weaknesses is the classical binary segmentation (BS) procedure (Vostrikova (1981)), but in
view of its apparent popularity, we do include it in Table 6 below. Siegmund (1985), Chapter
XI, among others, has given an approximation for the false positive probability, which turns
out to be approximately logarithmic in the length of the sequence. Hence, when the statistic is
applied iteratively over short intervals of data to search for multiple change-points, the false
positives increase quickly with the number of iterations. For the up-down pair of changes
described above, it is easy to see by computing mean values that BS has almost no power.
By way of contrast, the other procedures we have discussed would detect both change-points
with probability almost 1, as can be seen by simulations or by the local power approximations
discussed above.

We would like to emphasize that our goal in this paper is to develop methods to study
change-point problems. The variety of problems is such that the method of choice in a partic-
ular problem may well depend on what can be expected by way of the number and configura-
tion of change-points. The remarks of the preceding paragraph notwithstanding, procedures
that appear inadequate for some problems may be the method of choice for others.
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Tables 4 and 5 do not include WBS, but the results in Table 6, where it is included, suggest
that it would perform similar to LLR and SLLR, with the major difference being that we
cannot without additional simulations give a threshold bringing WBS close to the others in
regard to false positive errors.

4.1. Simulations. For the numerical examples of this section, our implementation of both
LLR and SaRa was to choose the values j by minimizing the associated length of the back-
ground k − i from among those values of |Zi,j,k| exceeding the threshold. If necessary, we
enforced the condition mentioned above that the backgrounds not overlap. For SLLR ini-
tialized at i, we choose the maximum value of j associated with the smallest k such that
maxi<j<k |Zi,j,k| exceeds the relevant threshold. The other possibilities mentioned above, to
choose the value j giving the largest Z-value (subject to the no overlap condition) rarely
leads to a substantially different segmentation. Our preference here is simply to have a defi-
nite algorithm, although it may not always make the best choice.

The first example in Table 4 is a modified version of a suggestion of (Olshen et al. (2004)),
which those authors said was typical of the copy number data that motivated their study.
There are three hundred observations and four change-points at 138, 199, 208 and 232, with
mean values 0.0, 0.75, 2.5, 0.25 and 1.5 in the five gaps between change-points. According to
the local power approximation of the preceding section, LLR has local power 0.77, 0.73, 0.91
and 0.85, respectively, to detect these change-points, so its expected number of change-points
detected is 3.3. As a reflection of its lower threshold, SLLR has an expected number of 3.45
detections, although, as we remarked above and see empirically in Table 6 below, it also has
a larger rate of false positives. Simulations not reported here indicate that these approximate
expected values are quite accurate.

The second example in the table has changes of the same magnitude in the same locations,
but with all changes in a positive direction. The results are similar in spite of the fact that
both CBS and Multi are not designed with this case in mind. The third case is qualitatively
similar to the first one, but it contains one very short up-down pair of change-points. In this
case, the expected number of change-points detected by LLR is predicted by our local power
approximation to be 3.4.

Failure to detect a change-point is marked in the table by a zero (0), and false positives by
an asterisk (*).

Although the table contains only a few examples, several entries reinforce our intuition.
The procedure SaRa lacks power to detect both of two nearby changes by virtue of its require-
ment to use a symmetric background. The procedure Multi fails to detect a short interval that
CBS detects—not surprising since its justification involved an increase in power to detect
longer intervals paid for by a decrease in power to detect very short intervals.

In Table 4, we see only a few false positive errors. For CBS and Multi there is a false
positive error that occurred when searching an interval where there is only one true change-
point to be detected. The statistics detect two, and the incorrect detection is not eliminated
by the 5% rule described above. Other simulations suggest that this is the most commonly
occurring false positive error of those statistics.

As mentioned in Section 1, in studying CNV various authors starting with Olshen et al.
(2004) have found in their data technical artifacts in the form of local trends that tend to
disrupt the idealized model of a step function mean value. The local trends appear to be
affected primarily by CG content, which oscillates in a roughly sinusoidal fashion. To test
robustness against these perturbations Olshen et al. (2004) suggest adding a low frequency
sinusoid, which produces some degradation of performance. In Table 5, we report a very
small simulation comparing only LLR and CBS in the presence of a sinusoidal perturbation
of the mean values. In the first four rows, the amplitude and frequency are slightly larger than
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TABLE 4
Examples of segmentations: m = 300, bLLR = 4.68, bSLLR = 4.21, bSaRa = 4.27, bCBS = 4.23 and

bMulti = 1.51. The initial mean value is 0. Locations of change-points and mean values after the change are as
indicated

Procedure/Parameters 138, 0.75 199, 2.5 208, 0.25 232, 1.5

LLR 164 198 206 248
SLLR 134 197 206 248
SaRa 48*, 140 198 207 249
CBS 149 199 207 249
Multi 149 199 208 249

LLR 127 198 211 230
SLLR 127 199 209 230
SaRa 130 0 211 230
CBS 135 199 212 231
Multi 135 199 212 231

Procedure/Parameters 138, 0.75 199, 2.5 208, 4.75 232, 6.0

LLR 145 198 207 234
SLLR 134 197 206 232
SaRa 134 0 207 234
CBS 140 199 208 235
Multi 140 199 208 235

LLR 137 0 207 231
SLLR 136 197 206 235
SaRa 137 199 208 235
CBS 138 0 207 236
Multi 138 0 207 236

LLR 159 198 207 231
SLLR 129 198 209 231
SaRa 131 198 0 231
CBS 130 199 208 232
Multi 130 199 208 232

Procedure/Parameters 100, 3.0 103, −0.5 120, 1.8 200, 2.5

LLR 97 102 119 199
SLLR 97 101 117 199
SaRa 0 0 119 200
CBS 98 103 120 200
Multi 0 0 120 200

LLR 98 102 119 200
SLLR 96 101 118 199
SaRa 0 104 119 200
CBS 100 103 120 201
Multi 0 0 120 207

LLR 99 101 122 214
SLLR 98 0 117 214
SaRa 99 0 121 214
CBS 100 102 122 140*, 215
Multi 100 102 122 140*, 215
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TABLE 5
Examples with sinusoidal local trends: m = 200, bLLR = 4.54, bCBS = 4.13. Format as in Table 4, but to
simulate local trends, in the first four rows 0.2 sin(0.1k + U) is added to the kth mean value, where U is a

uniformly distributed random phase. For the next four rows, the addition to the kth mean value is
0.4 sin(0.05k + U), and in the last four rows it is 0.7 sin(0.03k + U)

Procedure/Parameters 60, 3.0 63, −0.2 83, 1.1 153, 2.0

LLR 59 63 83 152
CBS 60 63 83 152

LLR 60 63 78 155
CBS 60 63 83, 141* 155

LLR 60 63 99 0
CBS 60 63 99 0

LLR 0 0 83 146
CBS 0 0 83 146

Procedure/Parameters 50, 1.5 65, −0.1 125, 1.2 145, 2.6

LLR 42 66 127 144
CBS 42 65, 73* 126 144

LLR 43 0 130 0
CBS 25*, 43 0 0 143

LLR 50 65 122 145
CBS 50 65 0 144

LLR 49 65 125 145
CBS 49 65 125 145

Procedure/Parameters 50, 2.0 60, 0.0 135, 3.0 140, 0.0

LLR 50 60 135 140
CBS 50 60 121*, 135 140, 181*

LLR 50 60 135 140
CBS 47 60, 82* 135 140, 184*

LLR 50 60 135 140
CBS 50 60 135 140

LLR 49 60 135 140
CBS 49 63 135 140

those suggested by Olshen et al. (2004). In the next four rows the amplitude is still larger
and the frequency is relatively small. These and other simulations, not shown here, suggest
that modest local trends lead to slight increases in the false positive rate of CBS (and Multi),
but less so for LLR, and to slight decreases in the power of detection of all methods. The
local trends in the last four rows have a large amplitude and small frequency. Without these
local trends, the change-points would be easy to detect, and the up-down pairs are ideal for
CBS. The local power approximation of Section 3.2 indicates that in the absence of the local
trends local power to detect each of the four change-points averages about 0.95. Indeed, each
change-point is detected in these experiments, but there is a striking increase in false positives
for CBS, presumably because the top-down nature of the search for change-points makes it
particularly vulnerable to oscillations in the background.

Table 6 provides the outcomes of 1000 simulations for detecting M change-points ran-
domly located from 0 to 500. The sizes of the changes are normally distributed with mean
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TABLE 6
Random change-points, m = 500, bBS = 3.25, bLLR = 4.83, bLLR-F = 4.83, bSLLR = 4.33, bWBS = 4.62, bSaRa = 4.42, bCBS = 4.36, bMulti = 1.57. The three rows in each entry
are the number of times that the number of change-points is correctly detected, under detected and over detected, respectively, in 1000 repetitions. The accompanying numbers in

parentheses are the number of change-points missed (false negative errors) and the number of over detections (false positive errors). E(asy) denotes the number of repetitions where
all methods detected the correct number of change-points; I(mpossible) gives the number of repetitions where no method detected the correct number of change-points

M BS LLR LLR-F SLLR WBS SaRa CBS Multi E/I

0 955 949 954 953 939 948 953 961 846/3
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

45 (47) 51 (68) 46 (59) 47 (83) 61 (79) 52 (54) 47 (90) 39 (74)

3 739 835 833 848 820 791 805 820 574/65
90 (114) 133 (146) 136 (150) 110 (122) 128 (141) 175 (197) 105 (114) 92 (104)
171 (183) 32 (38) 31 (37) 42 (70) 52 (60) 34 (35) 90 (143) 88 (122)

5 625 656 646 675 643 572 634 652 352/150
190 (257) 325 (388) 335 (401) 277 (325) 306 (371) 404 (495) 255 (305) 248 (302)
185 (215) 19 (20) 19 (20) 48 (60) 51 (51) 24 (27) 111 (142) 100 (120)

8 408 324 316 404 344 257 412 400 107/316
396 (647) 670 (1037) 678 (1052) 567 (835) 633 (961) 735 (1255) 472 (682) 491 (732)
196 (235) 6 (7) 6 (6) 29 (37) 23 (24) 8 (8) 116 (144) 109 (126)
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value 2.5ξ , where the values ξ are independently ±1 with probability 1/2 and variance 0.5.
The first method is the classical binary segmentation method with the threshold b = 3.25,
so the probability of a false positive is about 0.05 (Siegmund (1985), Chapter XI). The sec-
ond uses the LLR statistic with segmentation based on the smallest value of k − i for which
the statistic exceeds the 0.05 level threshold bLLR = 4.83; the third is a faster LLR proce-
dure introduced in the following paragraph; the fourth is SLLR with the threshold 4.33; the
fifth is the Wild Binary Segmentation (WBS) procedure of Fryzlewicz (2014) with 5000 ran-
dom segments and threshold bWBS = 4.62, which by our simulations also provides a false
positive rate of about 0.05 when there are no change-points. (This threshold is close to, but
slightly larger than the value 1.3[2 log(m)]1/2 = 4.58 recommended by Fryzlewicz, which
was presumably also determined by numerical experimentation.) The fifth is SaRa with the
(simulated) threshold 4.42. The last two procedures are CBS and Multi with thresholds that,
according to (2.9), control the false positive error rates to be approximately 0.05 when there
are no change-points.

Since LLR requires order m3 computations, it can be slow for large values of m. A pos-
sible speed-up is based on the observation that for the large backgrounds required to detect
relatively small changes, determining the exact background does not seem to be important.
Suppose that in considering a fixed value of j , to determine an appropriate k, we choose
k = j +1, then choose a new value of k recursively as the old value plus max(1, [(k−j)/10]),
where [x] denotes the largest integer less than or equal to x. Thus, for k − j < 20, we choose
every integer, then every second integer for k − j < 30, etc. The computational complexity
of this procedure is of order m(log(m))2�2. In Table 6, this procedure with � = 10 is denoted
LLR-F. A second appealing speed up would be to use a random number of intervals along the
lines of WBS, but (unlike WBS) impose a no overlap condition in the process of change-point
detection and identification.

All procedures lose power with an increasing number of change-points. The top down
procedures, BS, CBS and Multi seem to lose less power, but the price they pay is an increasing
number of false positives. This is especially severe for BS. By raising the threshold for BS,
we are able to control the false positive rate, but at a substantial loss of power when there are
several change-points. For the LLR threshold of b = 4.83 suggested by a referee, a simulation
produced in the cell for M = 5 the numbers 550, 414 (620), 27 (36) and for M = 8 the
numbers 218, 751 (1579), 31 (33), which are uniformly worse than for LLR. This and other
numerical experiments, in addition to the difficulties with up-down pairs of changes discussed
above, led us to believe that BS could not compete with the other procedures we have studied
unless the change-points are small in number and well separated. The bottom up procedures,
LLR and SaRa, have decreasing false positive rates with an increasing number of change-
points, but they experience a greater loss of power than the top-down procedures. SLLR and
WBS, which are not strictly top-down nor bottom-up, seem slightly more stable than the
others in regard to both false positive control and power. As expected, SaRa has problems
with detection of near-by change-points.

If scientific considerations, knowledge of similar data, and/or a plot of the data give a rough
guide to the number of change-points, one might compensate for the behavior discussed
above by decreasing the threshold of the bottom-up methods or increasing it for the top-down
methods if multiple change-points can be anticipated.

Although the simple counts in Table 6 without an indication of accuracy of the detections
are not definitive, as we see in Tables 4 and 5, in most cases accuracy of estimation of the
change-points is less an issue than the errors of over or under detection.

4.2. Array CGH data. In this section, we present examples involving changes in copy
number from array CGH data.
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We first consider the test cases GBM29 and GBM31 used by Lai et al. (2005) to compare
different methods of segmentation.

For GBM29, the total length of the sequence is 193. The estimated standard deviation is
0.76. The theoretical 0.05 thresholds for LLR and SLLR are 4.53 and 4.07, while that for
CBS is 4.12 and for Multi is 1.45. Change-points are detected at

81,85,89,96,123,133

by all methods.
For GBM31, the length of the sequence is 797. The estimated standard deviation is 0.38.

All methods, except the multiscale statistic detect the same set of change-points, at

317,318,538,727,728.

The third change-point is a relatively small change apparently indicating a long region of
loss of copy number; the first two and last two change-points are large spikes. Only one of
the two is detected by the multiscale statistic, which is designed to favor detection of longer
intervals.

We have also tested our methods on the BT474 cell line data from Snijders et al. (2003).
See Pollack et al. (1999, 2002) for a different experimental technique involving BT474 and
a discussion of the implications for breast cancer. This cell line has also been used by, for
example, Zhao et al. (2004), who based their experimental technique on SNPs rather than
array CGH.

For a scan of the entire genome, which involves slightly more than 2000 observations, we
detect 63 change-points with LLR at a 0.05 genome-wide significance threshold of b = 5.2;
and we detect 67 using SLLR with a threshold of 4.7. However, the data are organized by
chromosomal location, and it turns out that the estimated standard deviation varies consid-
erably from chromosome to chromosome. Although the cited literature typically involves
scans of the entire genome, we find a scan of each chromosome using the estimated standard
deviation of that chromosome more reasonable.

We continue to use genome wide thresholds, which are 4.68 for CBS and 1.67 for Multi;
but we now use standard deviations specific to each chromosome. Particularly interesting
are chromosome 17, where an increase in copy number appears to have implications for the
severity of breast cancer, and chromosome 20, which appears to contain a second increase
in copy number embedded in a modest increase in copy number. For chromosome 17, there
are m = 87 observations, with an estimated standard deviation of 0.51. According to LLR,
SLLR, CBS and Multi, there is an increase in copy number at the 35th observation (17q11.2–
12), with a change back to baseline just two observations later. There is a second increase at
the 50th observation (17q21.3) and a return to the baseline at the 66th (17q23). Chromosome
20 contains m = 85 observations, and the standard deviation is 0.59. LLR, SLLR, CBS and
Multi again agree and detect a decrease in copy number from the 38th (20q11.2) to the 52nd
observation, followed by an increase from the 53rd (20q13) to the 68th (20q13.1). From the
69th observation, there is an even larger increase until the 82nd (20q13.3), then a return to
roughly the baseline value for the last three observations.

Also interesting are chromosomes 4, 5 and 11, all of which have several changes, and
some of the changes are followed by a second change after only a few observations. On
chromosome 4, there are 162 observations and an estimated standard deviation of 0.19. At
the 0.05 global significance level, LLR and SLLR detected changes at 7, 8, 59, 61, 141, 143
and 155. CBS and Multi detected the same changes with the exception of 143, which both
missed. On chromosome 5, there were 99 observations and an estimated standard deviation
of 0.16. Changes were detected by all four methods at 25, 45, 51 and 65. CBS and Multi also
detected paired changes at 87 and 91. The first of these was missed by LLR, and both were
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missed by SLLR. On chromosome 11, there are 181 observations and an estimated standard
deviation of 0.34. Changes were detected by all four methods at 91, 124, 139, 144, 162, 165.
In this case, SLLR also detected changes at 6 and 163. Looking at a plot of the cumulative
sum of the data and the proximity of the statistic to the detection threshold suggests that the
change at 163 is a false positive. The putative change at 6 is also borderline, but looks real in
the cumulative sum plot.

To illustrate our confidence region calculations, we consider Chromosome 3, where there
are 85 observations and change-points are detected at 19, 39 and 44. The estimated size of the
change at 44 is δ̂ = 2.25, while the changes at 19 and at 39 are estimated to be substantially
larger. For simplicity, we (conservatively) use the single estimated difference, δ̂ = 2.25, so
from the theory developed above, the critical constant for a 95% joint conditional confidence
region for the three change-points is 4.63. Using this threshold, a joint confidence region
consists of the exact point estimates 19 and 39, and the union of 43, 44 and 45. For Chro-
mosome 15, change-points are detected at observations 43 and 57, where the smaller change
is estimated to be about 2.3 and the other only slightly larger. For the approximate threshold
of b = 3.6, we found a 95% joint confidence region to consist of the four pairs 42 or 43 and
56 or 57. For Chromosome 20, where we detected change-points at 38, 52, 68 and 82, the
smallest value of δ̂ is 2.1 at 68. Using this single estimator, we find that the critical constant
for a 95% joint confidence region for four change-points is b = 5.9. The union of the values
that in various 4-tuples form the joint confidence region are 38, 39, 51, 52, 66, 67, 68 and 82.

REMARK. In studying copy number variation, it is customary to plot the locus by locus
measurements, which should be about equal to zero when the copy number is two, with
positive values indicative of amplifications and negative values indicative of deletions. There
may be advantages to plotting the consecutive partial sums also and looking for a change in
slope to indicate an increase or decrease in copy number. This plot is substantially smoother,
and changes in slope that are candidates for change-points in copy number are often easier to
see than in a plot of the raw data. The disadvantage is that it is sometimes difficult to infer the
regions of normal copy number, which are regions where the slope should be zero although
it seems that it is always different from zero.

4.3. Simulations for confidence intervals. In order to illustrate the size of the joint confi-
dence regions introduced in Section 3, we consider in Table 7 some parameter settings related
to Table 3. The upper part of the table, like Table 2, gives the estimated coverage probability
based on 10,000 simulations for examples where the threshold a has been selected so our
theoretical approximation gives the probability 0.05. The lower part of the table gives the
probability from 1000 simulations that the indicated values of t1, t2 are not contained in the
confidence region. We have chosen values of ti for which this probability is about 0.5, so one
can regard the difference between ti and τi as a rough measure of the size of the confidence
region when all other parameters are set to their correct values. Recall that δi = μi − μi−1
denotes the size of the change at τi .

The rows beginning with 0.65 are particularly interesting, since they show that the rela-
tively small change at τ1 = 138 compared with very large change at τ2 = 225 leads to sub-
stantially more uncertainty in the value of τ1 compared to the value of τ2.

4.4. Comparison with other confidence intervals. Frick, Munk and Sieling (2014) sug-
gested a different method to construct a confidence region jointly for the change-points and
the mean values of the observations in the segments connecting those change-points. For
each candidate set of change-points τ and mean values μ, they suggest an application of their
multiscale statistic

(4.2) max
( |Sj − Si − (j − i)μ|

(j − i)1/2 − [
2 log

(
3m/(j − i)

)]1/2
)
,
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TABLE 7
Likelihood ratio based joint confidence intervals. p̂ is the simulated probability that the parameters t1 and t2 are
rejected when the true parameter values are τ1 and τ2. Nominal confidence level is 0.05. Simulations are based

on 10,000 (1000) repetitions in the first four (last 12) rows

δ1 δ2 a τ1, τ2 t1, t2 p̂ (Monte Carlo)

2.13 1.33 6.4 9, 33 9, 33 0.049
2.5 4.0 5.35 87, 104 87, 104 0.051
0.65 2.5 6.65 138, 225 138, 225 0.047
1.73 2.13 6.23 57, 66 57, 66 0.049

2.13 1.33 6.4 9, 33 7, 33 0.59
2.13 1.33 6.4 9, 33 11, 33 0.58
2.13 1.33 6.4 9, 33 9, 29 0.47
2.13 1.33 6.4 9, 33 9, 37 0.44
0.65 2.5 6.65 138, 225 138, 227 0.75
0.65 2.5 6.65 138, 225 138, 223 0.73
0.65 2.5 6.65 138, 225 120, 225 0.49
0.65 2.5 6.65 138, 225 156, 225 0.46
2.5 4.0 5.35 87, 104 87, 102 0.43
2.5 4.0 5.35 87, 104 87, 106 0.44
2.5 4.0 5.35 87, 104 86, 104 0.89
2.5 4.0 5.35 87, 104 88, 104 0.89

where the maximum is taken over all i < j within one of the segments of (0, τ1], . . . , (τM,m],
and μ is the hypothesized mean value in the segment. This is in effect a test of the hypoth-
esis that there are no change-points in the hypothesized segments (0, τ1], . . . , (τM,m] and
the mean values are as hypothesized. Worsley (1986) discusses a similar idea under the as-
sumption that there is a single change-point, and one is interested only in a confidence region
for the change-point, not a joint confidence region for change-points and means. (Note that
our approximation (3.8) allows us to condition on the sum of the observations in the inter-
val under investigation, and hence use these ideas to obtain joint confidence regions for the
change-points alone.)

It is difficult to make a comparison of the two methods. In Table 8, we compare our con-
fidence region defined by (3.2) with that using (4.2) in a small number of examples. We set
m = 200, τ1 = 50, τ2 = 100 and consider values of the δi that are large enough that most of

TABLE 8
Power to detect departure from true parameter values: τ = (50,100) and μ as given; t and ξ are hypothesized

values of τ and μ. The subscript 1 indicates the likelihood ratio procedure, while 2 indicates the procedure
based on (4.2). Simulations are based on 10,000 repetitions

μ ξ t P̂ower1 (Monte Carlo) P̂ower2 (Monte Carlo)

0.0, 1.0, 0.0 0.0, 1.0, 0.0 55, 95 0.64 0.08
0.0, 1.0, 0.0 0.1, 0.9, −0.2 55, 95, 0.87 0.40
0.0, 1.0, 0.0 0.1, 0.9, −0.2 40, 100 0.75 0.32
0.0, 1.2, 2.0 0.0, 1.2, 2.0 47, 105 0.47 0.044
0.0, 1.2, 2.0 0.0, 1.5, 1.9 47, 105 0.75 0.32
0.0, 1.5, 0.75 0.1, 1.4, 0.9 40, 97 0.96 0.69
0.0, 1.5, 0.75 0.0, 1.5, 0.75 44, 98 0.81 0.32
0.0, 1.2, −0.1 0.1, 1.1, 0.1 48, 103 0.68 0.22
0.0, 1.1, 0.1 −0.2, 1.0, 0.0 52, 115 0.91 0.44
0.0, 1.0, 2.0 −0.1, 1.1, 2.1 45, 110 0.87 0.24
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the time we will detect two change-points. The problem becomes one of locating them and
estimating the mean values. For our confidence regions, we choose the thresholds a = 7.2 so
that the probability in (3.6) equals 0.05. This threshold was confirmed by simulation. More-
over, for the statistic (4.2), we chose the threshold b2 = 1.44 for which a 20,000 repetition
simulation experiment gave the probability 0.05. This threshold is slightly larger than the
theoretical approximation 1.41.

Since a direct comparison of these regions in terms of size is conceptually complicated
and technically demanding, we use the relation of confidence regions to hypothesis testing
to compare them in terms of power. Under specific hypothetical, but incorrect, values of the
change-points and mean values the power of the test of the true values represents the prob-
ability that the hypothetical values do not lie in the confidence region. Hence the procedure
with larger power is preferred. From Table 8, it seems clear that for the parameter settings
analyzed, the likelihood ratio procedure is preferable.

5. Exponential families. A natural generalization of the methods of this paper involve
data from exponential families, where there usually is the option to pursue analogous methods
or to use a normal approximation. We first develop the analogous theory and discuss the
second possibility below.

Assume X1, . . . ,Xm are independent and from a one-parameter exponential family of dis-
tributions {Fθ : θ ∈ �} where

dFθ

du
(x) = exp

(
θx − ψ(θ)

)
, x ∈ R, θ ∈ �,

u is a σ -finite measure on the real line and � is an open interval. For 0 ≤ i < j < k ≤ m, the
likelihood ratio statistic to test whether j is a change-point in the local background (i, k) is

�i,j,k = (j − i) sup
θ1∈�

(
θ1

Sj − Si

j − i
− ψ(θ1)

)
+ (k − j) sup

θ2∈�

(
θ2

Sk − Sj

k − j
− ψ(θ2)

)

− (k − i) sup
θ∈�

(
θ
Sk − Si

k − i
− ψ(θ)

)
.

In the following, we use Pθ (Eθ , resp.) to denote the probability (expectation, resp.) calculated
when Xi ∼ Fθ ,∀i. Following the proof of (2.1), we suggest the following approximation to
the p-value of maxi,j,k �i,j,k :

Pθ

(
max

i<j<k

m0≤j−i,k−j≤m1

�i,j,k ≥ b2

2

)

∼ ϕ(b)
∑

m0≤n1,n2≤m1:
n1+n2≤m

(m − n1 − n2)

× ∑
θ1,θ2

a(θ1, θ)a(θ1, θ2)a(θ, θ2)

[n1(θ1 − θ)2ψ ′′(θ1) + n2(θ2 − θ)2ψ ′′(θ2)]1/2 ,

(5.1)

where the second summation is over two pairs of θ1 < θ2, which are assumed to exist (see the
remark below), solving

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

ψ ′(θ1)n1 + ψ ′(θ2)n2 = ψ ′(θ)(n1 + n2),

n1
[
θ1ψ

′(θ1) − ψ(θ1)
] + n2

[
θ2ψ

′(θ2) − ψ(θ2)
]

− (n1 + n2)
[
θψ ′(θ) − ψ(θ)

] = b2/2,
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TABLE 9
Exponential distribution with rate λ

λ m m1 b pApprox p̂ (Monte Carlo)

1 500 50 4.72 0.049 0.061
1 500 100 4.78 0.048 0.053
1 1000 100 4.95 0.047 0.048

and for θ1 < θ2,

a(θ1, θ2) = exp

(
−

∞∑
1

n−1Eθ2e
−[(θ2−θ1)Sn−n(ψ(θ2)−ψ(θ1))]+

)
.

We use Theorem 8.51 of Siegmund (1985) and Theorem A of Tu and Siegmund (1999) to
compute a(θ1, θ2) numerically for nonarithmetic and arithmetic random variables, respec-
tively.

REMARK. For those n1 and n2 such that the solutions to (5.2) do not exist, we first find
the smallest θ ′ > θ such that the solutions to (5.2) with θ replaced by θ ′ exist. We denote
the solutions by θ ′

1 and θ ′
2. Then the proposed approximation is the RHS(5.1) with θ , θ1, θ2

replaced by θ ′, θ ′
1, θ ′

2 respectively, and multiplied by Pθ (Sn1+n2/(n1 + n2) ≥ ψ ′(θ ′)).

5.1. Simulations. We first consider the exponential distribution with rate λ. Observing
that in (5.1), both the probability and its approximation do not depend on λ, we choose λ = 1
without loss of generality. We fix m0 = 1. In Table 9, with different values of m, m1 and
b, p denotes the RHS(5.1) and p̂ denotes the simulated p-value with 2000 repetitions. We
see from Table 9 that our approximation to the p-values are reasonably accurate, especially
when m and m1 are large. From these results, it appears that use of a normal model would
also be reasonable, especially for larger m1 and m. For the three examples in Table 9, the
approximation of Theorem 2.1 gives the probabilities 0.056, 0.053, 0.053, respectively.

Next, we consider the inverse Gaussian distribution with fixed shape parameter λ = 10.
We fix m0 = 1. With different values of the mean μ, m, m1 and b, p denotes the RHS(5.1)
and p̂ denotes the simulated p-value with 2000 repetitions. We can see from Table 10 that
both the theoretical and simulated p-values are reasonably robust against variations in the
mean μ.

Since the computation of appropriate thresholds for nonnormal exponential families is
somewhat complicated, one may also consider the use of normal approximations, which in
some cases appears to work quite well. Following are two examples where a Gaussian approx-
imation to the signed square root of the likelihood ratio statistic seems to perform admirably.

TABLE 10
Inverse Gaussian distribution with shape parameter λ = 10

μ m m1 b pApprox p̂ (Monte Carlo)

1 500 50 4.72 0.051 0.043
5 500 50 4.72 0.036 0.027
1 500 100 4.78 0.049 0.037
5 500 100 4.78 0.035 0.031
1 1000 100 4.95 0.049 0.050
5 1000 100 4.95 0.036 0.034
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For the detection of CG rich regions in genomic studies, as mentioned in the Introduc-
tion, the sequences are very long and the exact boundary between regions has little biological
significance. Hence one often forms groups of consecutive Bernoulli variables. Following
Elhaik, Graur and Josić (2010), we have used groups of 33 consecutive Bernoulli variables.
Since the values of the Bernoulli parameters p are usually neither extremely small nor ex-
tremely large, possibilities that might indicate a Poisson approximation, we have tentatively
assumed that we can use the theory developed above for the normal distribution. Since the
Bernoulli variances depend on p, and hence must be estimated each time that parameter
changes, it turns out that the skewness of the binomial distribution when p is not in the
immediate neighborhood of 1/2 can make an approximation of the distribution of the scaled
value of [Sj −Si −(j − i)(Sk −Si)/(k− i)] by a normal distribution unsatisfactory, unless the
size of the groups is relatively large. To avoid this problem, we have used the signed square
roots of the log likelihood ratio statistics, which behave very much like a Gaussian process
with a relatively stable variance. Simulations of this process indicate that the approximation
is quite satisfactory and offer no new insights, so we omit the details.

The copy number data discussed in this paper was all obtained by comparative genomic
hybridization. To achieve greater resolution, many present day studies use sequence data (e.g.,
Zhang et al. (2016)), which often utilize models built from Poisson processes. The simplest of
these is concerned with detection of a change from a background rate for a Poisson process.
Since the background rate varies with genomic position due to variation in sequencing depth,
local detection procedures along the lines of LLR may be useful. Like the binomial distribu-
tion, to detect changes in the rate of a Poisson process, simulations support an approximation
based on a normal approximation to the signed square root of the (generalized) log likelihood
ratio statistic. For 500 observations, b = 4.83, and the mean of the Poisson distribution equal
to 10, 400 simulations gave the significance value 0.0475, when our normal approximation
gives the value 0.05. Calculation of Kullback–Leibler information suggests that for detecting
changes from 10 to 20 and back to 10 in well separated intervals, interval lengths of 6 and
7 are borderline detectable. Several simulations of this case involving two pairs of change-
points lead to successful detections of all four change-points, while the differences between
the estimates of the change-points and the true values totaled 1–3 observations.

5.2. Changes in a normal mean and variance. An interesting, but considerably more
complex example, is to allow for simultaneous changes to both the mean and variance (or
mean vector and covariance matrix) of a sequence of independent, normally distributed ob-
servations. Although the formulation we have adopted, which assumes a constant value of
the variance is much more common, and the copy number data considered above shows lit-
tle evidence of heteroscedasticity within chromosomes, the recent paper of Du, Kao and Kou
(2016), where the possibility of simultaneous changes in the mean and variance is considered,
motivates the following brief discussion.

For 0 ≤ i < j ≤ m, let �i,j = −0.5(j − i) log(σ 2)−0.5
∑j

i+1(Xk −μ)2/σ 2 denote the log

likelihood of Xi+1, . . . ,Xj , and let �̂i,j = −0.5(j − i) log(σ̂ 2
i,j )−0.5

∑j
i+1(Xk − X̄i,j )

2/σ̂ 2
i,j

denote the log likelihood with parameters replaced by estimators. When the estimators are the
maximum likelihood estimators, the generalized likelihood ratio statistic (which reduces to
one-half the square of (1.2) in the case of known σ 2 = 1) is �̂i,j + �̂j,k − �̂i,k , maximized over
i < j < k. Necessarily, we must take the minimum values of j − i and k − j at least equal to
m0 = 2. If one is interested in detecting changes occurring as close together as those studied
above, this maximum likelihood ratio statistic is very unstable when there are no changes and
j − i or k − j is small, since the maximum likelihood estimator of σ 2 can with substantial
probability assume very small values. The consequence is that a suitable threshold to control
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the rate of false positives must be so large that the statistic has very poor power to detect
changes, and this problem persists even when m0 is substantially larger than 2.

A device to ameliorate this problem that maintains the invariance of the likelihood ra-
tio statistic under scale and location changes is to subtract a small constant c/2 from the
sample size in the denominators of the estimators σ̂ 2

i,j and σ̂ 2
j,k , and subtract c from the

denominator of σ̂ 2
i,k . Then with these new estimators (denoted by a tilde) use the statistic

−(j − i − c/2) log(σ̃ 2
i,j ) − (k − j − c/2) log(σ̃ 2

j,k) + (k − i − c) log(σ̃ 2
i,k). In simulations, we

have found that with m0 = 2 and c ≈ 2.7, this statistic has a false positive rate approximately
the same as a two-dimensional version of (1.2), for which the significance level and power
approximations of this paper are easily adapted. A similar result holds for the corresponding
CBS statistic. If the variance changes by a factor of 1 + �, the difference in mean values,
scaled to unit standard deviation, is δ, and π denotes the fraction of observations at unit vari-
ance before a change-point, rough law of large numbers arguments indicate a noncentrality
parameter in large samples proportional to

π(1 − π) log
(
1 + π(1 − π)δ2 + (1 − π)�

) − (1 − π) log(1 + �)

for the two-dimensional statistic.
If in fact there is no change in the variance the marginal power of the two-dimensional

statistic to detect a change-point is approximately 0.2–0.3 less than the power of (1.2). When
the variance does change, theoretical calculations and simulations suggest that there is a
complex tradeoff that depends on the size of the changes in variance and the relative locations
of the various change-points. Finally, there is also the issue that the likelihood ratio statistic
that tests for a change in both mean and variance will not be as robust against excess kurtosis
as a statistic that tests only for a change in mean value.

Following are the results of a few simulations that indicate the complexity of the problem.
The statistics considered are the two-dimensional statistic suggested in this section, the statis-
tic (1.2), and a modified version of (1.2), designed to compensate for the possibility that (1.2)
has an excess of false positives. Since (1.2) estimates an average variance, if there is a subin-
terval where the variance is much larger than that average variance, the statistic (1.2) will use
an inappropriately small variance estimate, which may lead to false positives. The modifica-
tion of (1.2) is as follows: for any i < k, when searching for a putative change-point in [i, k],
standardize the process by the estimated (maximum likelihood) variance of the observations
Xi, . . . ,Xk . If there is a change-point in the interval, the maximum likelihood estimate may
be positively biased, but other possibilities appear to be too unstable when the interval is
short. Simulations indicate that the thresholds suggested by Theorem 2.1 are conservative.

In Table 11, the false positive in the sixth row is presumably a reflection of the fact that in
the interval between 110 and 135 the variance of the observations is substantially larger than
the “average variance” used by (1.2). Although we did not observe this in a number of other
simulations, not reported here, this possibility of an inflated false positive error rate appears
to be one of the principal disadvantages of using the unmodified (1.2), which otherwise seems
to perform very well. The last five rows were based on the test case suggested by Du, Kao
and Kou (2016) following an earlier suggestion of Lai et al. (2005), but we have reduced the
signal to noise ratio to make more difficult what otherwise would be easy detections. In those
last five rows, we see the effect on the two-dimensional statistic of the constant c ≈ 2.7, which
was introduced to reduce false positive errors in short test intervals, but here has an adverse
effect on the power. For the modified version of (1.1), the behavior of which is similar to
the two-dimensional statistic, the loss of power is presumably due to estimating the variance
locally, which leads to large positive biases in (short) intervals containing change-points.

Since multiscale methods are designed to favor detection of change-points in longer over
shorter intervals, it is natural to ask if imposition of a multiscale penalty on the square root
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TABLE 11
Changes in mean and variance: m = 200, Threshold for (1.1) and for the modification suggested above is b1 = 4.54; threshold for the two-dimensional statistic is b2 = 4.97.

Detected change-points are as noted for (1.2), for the modification indicated in the text (denoted by an asterisk), and for the two-dimensional statistic suggested in this section,
respectively. False positive errors are denoted by an asterisk

τ μ σ (1.1) (1.1)∗ 2-D

38, 88, 108, 132 1.1, 2.7, 1.0, 2.5 1.1, 1.8, 1.1, 1.7 0, 88, 104, 132 0, 86, 0, 132 0, 88, 0, 133
38, 88, 108, 132 1.1, 2.7, 1.0, 2.5 1.1, 1.8, 1.1, 1.7 39, 86, 106, 135 39, 86, 106, 0 39, 88, 107, 0
38, 88, 108, 132 1.1, 2.7, 1.0, 2.5 1.1, 1.8, 1.1, 1.7 0, 0, 0, 132 37, 0, 0, 132 69, 82, 0, 0
38, 88, 108, 132 1.1, 2.7, 1.0, 2.5 1.1, 1.8, 1.1, 1.7 0, 90, 108, 134 36, 90, 0, 134 36, 84, 0, 134

30, 80, 110, 135 1.5, 0.5, 2.5, 1.0 1.5, 1.0, 2.0, 1.2 0, 0, 110, 134 0, 0, 110, 0 0, 0, 110, 136
30, 80, 110, 135 1.5, 0.5, 2.5, 1.0 1.5, 1.0, 2.0, 1.2 30, 74, 110, 115*, 132 30, 74, 110, 132 30, 77, 110, 133
30, 80, 110, 135 1.5, 0.5, 2.5, 1.0 1.5, 1.0, 2.0, 1.2 30, 0, 110, 134 30, 0, 110, 134 30, 0, 110, 134

48, 50, 150, 154 4.0, 0.0, 4.0, 0.0 2.0, 1.0, 2.0, 1.0 48, 50, 150, 154 0, 0, 150, 153 0, 0, 150, 155
48, 50, 150, 154 4.0, 0.0, 4.0, 0.0 2.0, 1.0, 2.0, 1.0 48, 50, 150, 154 48, 50, 150, 154 48, 50, 150, 155
48, 50, 150, 154 4.0, 0.0, 4.0, 0.0 2.0, 1.0, 2.0, 1.0 0, 0, 150, 155 0, 0, 150, 155 0, 0, 150, 154
48, 50, 150, 154 4.0, 0.0, 4.0, 0.0 2.0, 1.0, 2.0, 1.0 48, 50, 149, 154 48, 50, 0, 0 48, 50, 0, 0
48, 50, 150, 154 5.0, 0.0, 5.0, 0.0 2.0, 1.0, 2.0, 1.0 48, 50, 150, 154 48, 50, 150, 154 0, 0, 150, 155
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of the likelihood ratio statistic would work here. Some numerical experimentation suggests
that the penalty [4 log(3m/min(j − i, k − j))]1/2 allows one to control the false positive rate,
and the multiscale statistic performs about as well in these examples as the two-dimensional
statistic defined above.

6. Discussion. We have studied local thresholding procedures for segmenting sequences
of independent random variables subject to change-points in the mean. The local likelihood
ratio statistic, LLR, begins with subsets of intervals (i, k], computes the maximum log likeli-
hood ratio statistic, maxi<j<k |Zi,j,k|, which is compared to a threshold designed to control
the probability of a false positive error, and values of j are selected by enforcing a no overlap
condition described above. The method is designed to provide a set of detected change-points
j and background intervals (i, k], each of which contains only a single putative change-point.
The pseudo-sequential procedure SLLR leaves i fixed at 0 or at the most recently discovered
candidate change-point, then sequentially with respect to k examines maxi<j<k Zi,j,k until
it exceeds a suitable threshold, which suggests a change-point at an appropriate value of j .
The statistic LLR has better false positive control than SLLR, although it requires a relatively
large threshold, and hence loses some power compared to SLLR, especially when the number
of change-points is large.

Our suggested procedures are compared to several other threshold based procedures that
attempt to control, with varying degrees of success, the false positive error rate: (i) the Wild
Binary Segmentation (WBS) procedure of Fryzlewicz (2014), (ii) the SaRa procedure of Niu
and Zhang (2012), (iii) the CBS procedure of Olshen et al. (2004) and (iv) Multi, a related
iterative threshold based implementation of the statistic of Frick, Munk and Sieling (2014).
Each of these methods has strengths and weaknesses, some obvious, others not so obvious.
When the thresholds are chosen so that the probability of exceeding the threshold somewhere
when there are no change-points is fixed, say 0.05, the procedures WBS, SLLR, CBS and
Multi have the best power of detection. CBS and Multi have less adequate control over the
false positive rate, especially when the number of change-points is large, so a substantial
number of iterations of the basic search is required. The statistics LLR and SaRa provide
strict asymptotic control of the false positive error rate, but LLR has less power than the
others, while SaRa suffers a severe loss of power when change-points are close together. CBS
and Multi show expected power advantages/disadvantages, with CBS performing better in
detecting near-by change-points of large amplitude and Multi performing better in detecting
distant change-points of small amplitude. If the mean moves in the same direction at both
of relatively nearby change-points, CBS and Multi may pick an intermediate value and fail
to detect the second change-point. Our thresholding implementation of Multi is based on the
approximation (2.9) and omits the dynamic programming step from the algorithm suggested
in Frick, Munk and Sieling (2014). We (and others) found that algorithm to perform poorly
when used with default parameters; but our analysis shows that when it is calibrated to have
a global false positive rate comparable to the others, it performs competitively.

When the number of change-points is large, the statistics CBS and Multi experience an
increase in false positives, while LLR experiences a decrease. This reflects the difference
between top-down and bottom-up approaches. The method of proof of Theorem 2.1 shows
that a bottom-up versions of CBS (also Multi) can be formulated and would have guaranteed
(asymptotic) false positive control, although it would require still higher thresholds than LLR,
run more slowly, and suffer a similar loss of power with an increasing number of change-
points. After some preliminary experimentation that suggests the disadvantages outweigh, or
at least neutralize the potential advantages, we have not pursued this possibility.

If one’s goals are somewhat exploratory and do not depend on providing convincing evi-
dence of the existence of particular change-points, a visual and/or rough preliminary analysis
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that provides some idea of the number and configuration of change-points may be helpful
in choosing a detection threshold that brings the false positive and false negative rates into
balance.

Inversion of the log likelihood ratio statistic is used to obtain approximate confidence re-
gions for the locations of the change-points or jointly for the locations and amplitudes of
the changes. For the latter case, Frick, Munk and Sieling (2014) suggested a quite differ-
ent method, which amounts to testing whether there is a change in the hypothesized mean
values between any two hypothesized change-points. Numerical examples suggest that for
change-points of large amplitude our methods provide more accurate estimates, although our
asymptotic control of the confidence level deteriorates if the sizes of the changes or the dis-
tances between consecutive change-points are not sufficiently large.

We have conducted a small simulation experiment to study the problem noted in the liter-
ature on detection of copy number variations, that there may be local drifts that can give the
appearance of change-points where there is none. For these problems, all methods appear to
suffer some loss of power, but the methods LLR, SLLR, WBS and SaRa which use a local
background seem less likely to experience an increase in false positives than the top down
methods CBS and Multi.

We have provided a brief discussion of detection of simultaneous changes in a normal
mean and variance, but our analysis to date suggests that the problem is quite complicated
and requires additional study.

We have assumed the observations are independent, which appears to be the case for the
problems motivating our study, both from the nature of the experiments and from the data
themselves. This provides a considerable advantage in estimating the variance, as discussed
above. For weakly dependent data, there are roughly two different alternatives, which we
are now studying. For short range dependence, if the distance between change-points is pro-
portional to the number of observations, a number of authors (e.g., Robbins, Gallagher and
Lund (2016)) have observed that weak convergence arguments can be used to obtain mathe-
matical results similar to those given above, expressed in terms of Brownian motion. Details
involve correcting the (estimate of the) variance for autocorrelation of the individual obser-
vations. A second approach is to use a low-order autoregressive model, which allows one to
pursue an asymptotic likelihood analysis, similar to what we have followed in this paper. Our
preliminary studies suggest that both approaches are successful under certain conditions in
controlling the false positive rate, but lead to a substantial loss of power, because of biased
estimates of the variance and autocorrelation when there are change-points. We expect to
provide a thorough discussion of these problems in the future.

Another challenging problem is to detect and estimate local signals in spatial data (with or
without a temporal variable). For independent observations on a rectangular grid, our methods
generalize easily to signals having a rectangular shape with sides parallel to the sides of the
grid. A natural question is the extent to which this is adequate for detection of the signals
having the many irregular shapes possible in higher dimensions. Another approach would be
to smooth the signals, which opens up the possibility of dealing with a much larger set of
shapes.
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SUPPLEMENTARY MATERIAL

Supplement to “Segmentation and estimation of change-point models: False positive
control and confidence regions.” (DOI: 10.1214/19-AOS1861SUPP; .pdf). This supplement
contains proofs of Theorems 2.1 and 3.1.
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