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It is a common saying that testing for conditional independence, that
is, testing whether whether two random vectors X and Y are independent,
given Z, is a hard statistical problem if Z is a continuous random variable
(or vector). In this paper, we prove that conditional independence is indeed a
particularly difficult hypothesis to test for. Valid statistical tests are required to
have a size that is smaller than a pre-defined significance level, and different
tests usually have power against a different class of alternatives. We prove
that a valid test for conditional independence does not have power against
any alternative.

Given the nonexistence of a uniformly valid conditional independence
test, we argue that tests must be designed so their suitability for a partic-
ular problem may be judged easily. To address this need, we propose in
the case where X and Y are univariate to nonlinearly regress X on Z, and
Y on Z and then compute a test statistic based on the sample covariance
between the residuals, which we call the generalised covariance measure
(GCM). We prove that validity of this form of test relies almost entirely
on the weak requirement that the regression procedures are able to esti-
mate the conditional means X given Z, and Y given Z, at a slow rate. We
extend the methodology to handle settings where X and Y may be multi-
variate or even high dimensional. While our general procedure can be tai-
lored to the setting at hand by combining it with any regression technique,
we develop the theoretical guarantees for kernel ridge regression. A simu-
lation study shows that the test based on GCM is competitive with state of
the art conditional independence tests. Code is available as the R package
GeneralisedCovarianceMeasure on CRAN.

1. Introduction. Conditional independences lie at the heart of several fundamental con-
cepts such as sufficiency [21] and ancillarity [22, 23]; see also Jensen and Sørensen [28].
Dawid [17] states that “many results and theorems concerning these concepts are just appli-
cations of some simple general properties of conditional independence”. During the last few
decades, conditional independence relations have played an increasingly important role in
computational statistics, too, since they are the building blocks of graphical models [30, 32,
37].

Estimating conditional independence graphs has been of great interest in high-dimensional
statistics, particularly in biomedical applications (e.g., [18, 35]). To estimate the conditional
independence graph corresponding to a random vector X ∈ R

d , edges may be placed between
vertices corresponding to Xj and Xk if a test for whether Xj is conditionally independent of
Xk given all other variables indicates rejection.

Conditional independence tests also play a key role in causal inference. Constraint-based
or independence-based methods [37, 39, 48] apply a series of conditional independence tests
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in order to learn causal structure from observational data. The recently introduced invariant
prediction methodology [26, 38] aims to estimate for a specified target variable Y , the set of
causal variables among potential covariates X1, . . . ,Xd . Given data from different environ-
ments labelled by a variable E, the method involves testing for each subset S ⊆ {1, . . . , d},
the null hypothesis that the environment E is conditionally independent of Y , given XS .

Given the importance of conditional independence tests in modern statistics, there has been
great deal of work devoted to developing conditional independence tests; we review some
important examples of tests in Section 1.3. However, one issue that conditional independence
tests appear to suffer from is that they can fail to control the type I error in finite samples,
which can have important consequences in downstream analyses.

In the first part of this paper, we prove this failure of type I error control is in fact un-
avoidable: conditional independence is not a testable hypotheses. To fix ideas, consider n

i.i.d. observations corresponding to a triple of random variables (X,Y,Z) where it is desired
to test whether X is conditional independent of Y given Z. We show that provided the joint
distribution of (X,Y,Z) ∈ R

dX+dY +dZ is absolutely continuous with respect to Lebesgue
measure, any test based on the data whose size is less than a pre-specified level α, has no
power; more precisely, there is no alternative, for which the test has power more than α. This
result is perhaps surprising as it is in stark contrast to unconditional independence testing, for
which permutation tests allow for the correct calibration of any hypothesis test. Our result
implies that in order to perform conditional independence testing, some domain knowledge
is required in order to select an appropriate conditional independence test for the particular
problem at hand. This would appear to be challenging in practice, as the validity of condi-
tional independence tests typically rests on properties of the entire joint distribution of the
data, which may be hard to model.

Our second main contribution aims to alleviate this issue by providing a family of con-
ditional independence tests whose validity relies on estimating the conditional expectations
E(X|Z = z) and E(Y |Z = z) via regressions, in the setting where dX = dY = 1. These need
to be estimated sufficiently well using the data such that the product of mean squared pre-
diction errors from the two regressions is o(n−1). This is a relatively mild requirement that
allows for settings where the conditional expectations are as general as Lipschitz functions,
for example, and also encompasses settings where Z is high dimensional but the conditional
expectations have more structure.

Our test statistic, which we call the generalised covariance measure (GCM) is based on
a suitably normalised version of the empirical covariance between the residual vectors from
the regressions. The practitioner is free to choose the regression methods that appear most
suitable for the problem of interest. Although domain knowledge is still required to make
an appropriate choice, selection of regression methods is a problem statisticians are more
familiar with. We also extend the GCM to handle settings where X and Y are potentially high
dimensional, though in this case our proof of the validity of the test additionally requires the
errors Xj −E(Xj |Z) and Yk −E(Yk|Z) to obey certain moment restrictions for j = 1, . . . , dX

and k = 1, . . . , dY and slightly faster rates of convergence for the prediction errors.
As an example application of our results on the GCM, we consider the case where the

regressions are performed using kernel ridge regression, and show that provided the condi-
tional expectations are contained in a reproducing kernel Hilbert space, our test statistic has
a tractable limit distribution.

The rest of the paper is organised as follows. In Sections 1.1 and 1.2, we first formalise
the notion of conditional independence and relevant concepts related to statistical hypoth-
esis testing. In Section 1.3, we review some popular conditional independence tests, after
which we set out some notation used throughout the paper. In Section 2, we present our main
result on the hardness of conditional independence testing. We introduce the generalised co-
variance measure in Section 3 first treating the univariate case with dX = dY = 1 before
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extending ideas to the potentially high-dimensional case. In Section 4, we apply the theory
and methodology of the previous section to study that particular example of generalised co-
variance measures based on kernel ridge regression. We present numerical experiments in
Section 5 and conclude with a discussion in Section 6. All proofs are deferred to the Ap-
pendix and Supplementary Material [47].

1.1. Conditional independence. Let us consider three random vectors X, Y and Z tak-
ing values in R

dX , RdY and R
dZ , respectively, and let us assume, for now that their joint

distribution is absolutely continuous with respect to Lebesgue measure with density p. For
our deliberations, only the continuity in Z is necessary; see Remark 4. We say that X is
conditionally independent of Y given Z and write

X ⊥⊥ Y | Z
if for all x, y, z with p(z) > 0, we have p(x, y|z) = p(x|z)p(y|z); see, for example, Dawid
[17]. Here and below, statements involving densities should be understood to hold (Lebesgue)
almost everywhere. We now discuss an equivalent formulation of conditional independence
that has given rise to several hypothesis tests, including the generalised covariance measure
proposed in this paper. Let therefore L2

X,Z denote the space of all functions f :RdX ×R
dZ →

R such that Ef (X,Z)2 < ∞ and define L2
Y,Z analogously. Daudin [16] proves that X and Y

are conditionally independent given Z if and only if

(1) Ef (X,Z)g(Y,Z) = 0

for all functions f ∈ L2
X,Z and g ∈ L2

Y,Z such that E[f (X,Z)|Z] = 0 and E[g(Y,Z)|Z] = 0,
respectively.

This may be viewed as an extension of the fact that for one-dimensional X and Y , the
partial correlation coefficient ρX,Y |Z (the correlation between residuals of linear regressions
of X on Z and Y on Z) is 0 if and only if X ⊥⊥ Y | Z in the case where (X,Y,Z) are jointly
Gaussian.

1.2. Statistical hypothesis testing and notation. We now introduce some notation and
relevant concepts related to statistical hypothesis testing. In order to deal with composite null
hypotheses where the probability of rejection must be controlled under a variety of different
distributions for the data to which our test is applied, we introduce the following notation.
We will write EP (·) for expectations of random variables whose distribution is determined
by P , and similarly PP (·) = EP 1{·}.

Let P be a potentially composite null hypothesis consisting of a collection of distribu-
tions for (X,Y,Z). For i = 1,2, . . . let (xi, yi, zi) ∈ R

dX+dY +dZ be i.i.d. copies of (X,Y,Z)

and let X(n) ∈ R
dX·n, Y(n) ∈ R

dY ·n and Z(n) ∈ R
dZ ·n be matrices with ith rows xi , yi and

zi , respectively. Let ψn be a potentially randomised test that can be applied to the data
(X(n),Y(n),Z(n)); formally,

ψn : R(dX+dY +dZ)·n × [0,1] → {0,1}
is a measurable function whose last argument is reserved for a random variable U ∼ U [0,1]
independent of the data which is responsible for the randomness of the test.

Given a sequence of tests (ψn)
∞
n=1, the following validity properties will be of interest;

note the particular names given to these properties differ in literature. Given a level α ∈ (0,1)

and null hypothesis P , we say that the test ψn has

valid level at sample size n if sup
P∈P

PP (ψn = 1) ≤ α,
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where the left-hand side is the size of the test; the sequence (ψn)
∞
n=1 has

uniformly asymptotic level if lim sup
n→∞

sup
P∈P

PP (ψn = 1) ≤ α,

pointwise asymptotic level if sup
P∈P

lim sup
n→∞

PP (ψn = 1) ≤ α.

In practice, we would like a test to have at least uniformly asymptotic level. Otherwise, even
for an arbitrarily large sample size n, there can exist null distributions for which the size
exceeds the nominal level by some fixed amount.

Given a sequence of tests (ψn)
∞
n=1 each with valid level α ∈ (0,1) and alternative hypothe-

ses Q, it is desirable for the power to be large uniformly over Q, and to have infQ∈Q PQ(ψn =
1) → 1. In standard parametric settings, we can certainly achieve this for any fixed alternative
hypothesis and indeed have uniform power against a sequence of

√
n alternatives. Nonpara-

metric problems are much harder and when Q contains all distributions outside a small fixed
total variation (TV) neighbourhood of P , we have

lim inf
n→∞ inf

Q∈QPQ(ψn = 1) < 1,

[33], [4], Proposition 2, Theorem 3. To achieve power tending to 1, we need to restrict Q by
imposing certain smoothness conditions for example [3].

A class of even harder hypothesis testing problems may be defined as those where no
test with valid level achieves power at any alternative, so supQ∈Q PQ(ψn = 1) ≤ α. In other
words, for all n, tests ψn and alternative distributions Q ∈Q, we have

PQ(ψn = 1) ≤ sup
P∈P

PP (ψn = 1).

The hypothesis testing problem defined by the pair (P,Q) is then said to be untestable [19].
In order to have power at even a single alternative, we need to restrict the null P in some way.
One of the main results of this paper is that conditional independence is untestable.

1.3. Related work. Our hardness result for conditional independence contributes to an
important literature on impossibility results in statistics and econometrics starting with the
work of Bahadur and Savage [2], which shows that there is no nontrivial test for whether a
distribution has mean zero. Canay et al. [11] shows that certain problems arising in the con-
text of identification of some nonparametric models are not testable. In these examples, the
null hypothesis is dense with respect to the TV metric in the alternative hypothesis, a prop-
erty which implies untestability [45]. Interestingly, our Proposition 5 shows that conditional
independence testing is qualitatively different in that some distributions in the alternative are
in fact well-separated from the null. It has been suggested for some time that conditional
independence testing is a hard problem (see, e.g., [5], and several talks given by Bernhard
Schölkopf). To the best of our knowledge, the conjecture that conditional independence is
not testable (cf. Corollary 3 with M = ∞) is due to Arthur Gretton. We also note that when
the conditional distribution of X given Z is known, conditional independence is testable (e.g.,
[7]).

We now briefly review several tests for conditional independence that bear some relation
to our proposal here.

Extensions of partial correlation. Ramsey [40] suggests regressing X on Z and Y on
Z and then testing for independence between the residuals. Fan et al. [20] consider this ap-
proach in the setting where Z is potentially high-dimensional and under the null hypothesis
of X ⊥⊥ Y | Z, X = ZT βX + εX , Y = ZT βY + εY with εX ⊥⊥ Z and εY ⊥⊥ Z. The following
simple example however indicates where such methods can fail.
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EXAMPLE 1. Define NX , NY and Z to be i.i.d. random variables with distribution
N (0,1) and define X := Z · NX , Y := Z · NY . This implies X ⊥⊥ Y | Z. Since E[X|Z] =
E[Y |Z] = 0, the (population) residuals equal R1 := Z ·NX and R2 := Z ·NY ; they are uncor-
related but not independent since, for example, cov(R2

1,R2
2) 
= 0. Consider regressing X on Z

and Y on Z, and then testing for independence of the residuals. If the regression method out-
puts the true conditional means and the independence test has power against the alternative
cov(R2

1,R2
2) 
= 0, the method will falsely reject the null hypothesis of conditional indepen-

dence with large probability.

Kernel-based conditional independence tests. The Hilbert–Schmidt independence crite-
rion (HSIC) equals the square of the Hilbert–Schmidt norm of the cross-covariance operator,
and is used in unconditional independence testing [25]. Fukumizu et al. [24] extend this idea
to conditional independence testing. To construct a test for continuous variables Z, their work
requires clustering of the values of Z and permuting X and Y values within the same clus-
ter component. Another extension is proposed by Zhang et al. [51]. Their kernel conditional
independence (KCI) test is stated to yield pointwise asymptotic level control.

Estimation of expected conditional covariance. Though typically not thought of as condi-
tional independence tests, there are several approaches to estimating the expected conditional
covariance functional Ecov(X,Y |Z) in the semiparametric statistics literature [14, 36, 42].
From (1), we see these may be used as conditional independence tests and indeed the GCM
test we propose falls under this category. We delay further discussion of such methods to
Section 3.1.2.

1.4. Notation. We now introduce some notation used throughout the paper. If
(VP,n)n∈N,P∈P is a family of sequences of random variables whose distributions are de-
termined by P ∈ P , we use VP,n = oP(1) and VP,n = OP(1) to mean respectively that for
all ε > 0,

sup
P∈P

PP

(|VP,n| > ε
) → 0, and

there exists M > 0 such that sup
n∈N

sup
P∈P

PP

(|VP,n| > M
)
< ε.

If (WP,n)n∈N,P∈P is a further family of sequences of random variables, VP,n = oP(WP,n) and
VP,n = OP(WP,n) mean VP,n = WP,nRP,n and respectively that RP,n = oP(1) and RP,n =
OP(1). If A is a c × d matrix, then Aj denotes the j th column of A, j ∈ {1, . . . , d}.

2. No-free-lunch in conditional independence testing. In this section, we show that,
under certain conditions, no nontrivial test for conditional independence with valid level ex-
ists. To state our result, we introduce the following subsets of E0 defined to be the set of all
distributions for (X,Y,Z) absolutely continuous with respect to Lebesgue measure.

Let P0 ⊂ E0 be the subset of distributions under which X ⊥⊥ Y | Z. Further, for any M ∈
(0,∞], let E0,M ⊆ E0 be the subset of all distributions with support contained strictly within
a �∞ ball of radius M . Here, we take E0,∞ = E0. We also define Q0 = E0 \ P0 and set
P0,M = E0,M ∩ P0, and Q0,M = E0,M ∩ Q0. Consider the setup of Section 1.2 with null
hypothesis P = P0,M . Our first result shows that with this null hypothesis, any test ψn with
valid level at sample size n has no power against any alternative.

THEOREM 2 (No-free-lunch). Given any n ∈ N, α ∈ (0,1), M ∈ (0,∞], and any poten-
tially randomised test ψn that has valid level α for the null hypothesis P0,M , we have that
PQ(ψn = 1) ≤ α for all Q ∈Q0,M . Thus ψn cannot have power against any alternative.
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A proof is given in the Appendix. Note that taking M to be finite ensures all the random
vectors (xi, yi, zi) are bounded. Thus, for example, averages will converge in distribution
to Gaussian limits uniformly over P0,M ; however, as the result shows, this does not help in
the construction of a nontrivial test for conditional independence. An immediate corollary
to Theorem 2 is that there is no nontrivial test for conditional independence with uniformly
asymptotic level.

COROLLARY 3. For all M ∈ (0,∞] and for any sequence (ψn)
∞
n=1 of tests, we have

sup
Q∈Q0,M

lim sup
n→∞

PQ(ψn = 1) ≤ lim sup
n→∞

sup
P∈P0,M

PP (ψn = 1).

This result is in stark contrast to unconditional independence testing, where a permutation
test can always be used to control the size of any testing procedure. As a consequence, there
exist tests with valid level at sample size n and nontrivial power. For example, Hoeffding
[27] introduces a rank-based test in the case of univariate random variables and proves that
it maintains uniformly asymptotic level and has asymptotic power against each fixed alter-
native. For the multivariate case, Berrett and Samworth [6] consider a test based on mutual
information and prove level guarantees, as well as uniform power results against a wide class
of alternatives. Thus while independence testing remains a hard problem in that it is only
possible to have uniform power against certain subsets of alternatives, this is different to
conditional independence testing where we can only hope to control the size uniformly over
certain subsets of the null hypothesis.

REMARK 4. Inspection of the proof shows that Theorem 2 also holds in the case where
the variables X and Y have marginal distributions that are absolutely continuous with respect
to counting measure, for example. Theorem 2 therefore contains an impossibility result for
testing the equality of two conditional distributions (by taking Y to be an indicator specifying
the distribution). The continuity of Z, however, is necessary. If Z only takes values in {1,2},
for example, one can reduce the problem of conditional independence testing to unconditional
independence testing by combining the tests for X ⊥⊥ Y | Z = 1 and X ⊥⊥ Y | Z = 2.

The null hypothesis being dense with respect to TV distance among the alternative hypoth-
esis is a sufficient condition for the problem to be untestable [45]. Proposition 5, proved in
the supplementary material, illustrates that this is not the case here: at least for M ∈ (0,∞),
there exists an alternative, for which there is no distribution from the null that is arbitrarily
close.

PROPOSITION 5. For P,Q ∈ E0, the total variation distance is given by

‖P − Q‖TV := sup
A∈B

∣∣PP

(
(X,Y,Z) ∈ A

) − PQ

(
(X,Y,Z) ∈ A

)∣∣,
where B is the Borel σ -algebra on R

dX+dY +dZ . For each M ∈ (0,∞), there exists Q ∈ Q0,M

satisfying

inf
P∈P0,M

‖P − Q‖TV ≥ 1/24.

In Proposition 16 in the Appendix, we also show that the null and alternative hypotheses
are well separated in the sense of KL divergence. On the other hand, it is known that if a
problem is untestable, the convex closure of the null must contain the alternative [31], [8],
Theorem 5 and Corollary 1, resp. The problem of conditional independence testing therefore
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FIG. 1. Illustration of the main idea of the proof of Theorem 2. Left: We start with a distribution Q ∈Q0,M over
(X,Y,Z). In general, the Q is Markov only to a fully connected graphical model. Middle: After discretising X to
X̊, we are able to “hide” variable X̊ in Z̊ = f (Z, X̊) such that variable Z̊ is close to Z in �∞-norm and X̊ can
be reconstructed from Z̊. Thus, X̊, does not contain any “additional information” about Y when conditioning on
Z̊. Right: We then consider noisy versions of the variables to guarantee that the new distribution P (over X̃, Ỹ ,
Z̃) is absolutely continuous with respect to Lebesgue measure, and has X̃ ⊥⊥ Ỹ | Z̃. (The noise in Z̃ is such that it
still allows us to reconstruct X̊ from Z̃.)

has the interesting property of the null being separated from the alternative, but its convex
hull is TV-dense in the alternative.

A practical implication of the negative result of Theorem 2 is that domain knowledge is
needed to select a conditional independence test appropriate for the data at hand. However,
guessing the form of the entire joint distribution in order to apply a test with the appropriate
type I error control seems challenging. In Section 3, we introduce a form of test that instead
relies on selecting regression methods that have sufficiently low prediction error when re-
gressing Y(n) and X(n) on Z(n), thereby converting the problem of finding an appropriate test
to the more familiar task of prediction. Before discussing this methodology, we first sketch
some of the main ideas of the proof of Theorem 2 below.

2.1. Proof ideas of Theorem 2. Consider the case where dX = dY = dZ = 1 and where
the test is required to be nonrandomised. First, suppose that for Q ∈ Q0,M , we have a test
with rejection region R := ψ−1

n (1) ⊆ R
3·n such that PQ((X(n),Y(n),Z(n)) ∈ R) > α. Let us

suppose for now that R has the particularly simple form of a finite union of boxes. Our
argument now proceeds by showing that one can construct a distribution P ∈ P0,M from the
null such that there is a coupling of P n and Qn where samples from each distribution are ε

close in �∞-norm. For a sufficiently small ε, we will have PP ((X(n),Y(n),Z(n)) ∈ R) > α as
well, giving the result.

Figure 1 sketches the main components in our construction of P , which is laid out formally
in Lemmas 13 and 14 in the Appendix. The key idea is as follows. Given (X,Y,Z) ∼ P ,
we consider a binary expansion of (X,Y,Z), which we truncate at some point to obtain
(X̊, Y̊ , Z̊). We then concatenate the digits of X̊ and Z̊ placing the former at the end of the
binary expansion, thereby embedding X̊ within Z̊. This way, X̊ can be reconstructed from Z̊,
and adding noise gives a distribution that is absolutely continuous with respect to Lebesgue
measure. By making the truncation point sufficiently far down the expansions, we can ensure
the ε proximity required.

For a general rejection region, we first approximate it using a finite union of boxes R
. The
argument sketched above gives us PP ((X(n),Y(n),Z(n)) ∈ R
) > α, but in order to conclude
the final result, we must argue that we can construct P such that PP ((X(n),Y(n),Z(n)) ∈
R
 \ R) is sufficiently small. To do this, we consider a large number of potential embeddings
for which the supports of the resulting distributions have little overlap. Using a probabilistic
argument, we can then show that at least one embedding yields a distribution P such that the
above is satisfied.

3. The generalised covariance measure. We have seen how conditional independence
testing is not possible without restricting the null hypothesis. In this section, we give a general
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construction for a conditional independence test based on regression procedures for regress-
ing Y(n) and X(n) on Z(n). In the case where dX = dY = 1, which we treat in the next section,
the basic form of our test statistic is a normalised covariance between the residuals from
these regressions. Because of this, we call our test statistic the generalised covariance mea-
sure (GCM). In Section 3.2, we show how to extend the approach to handle cases where more
generally dX, dY ≥ 1.

3.1. Univariate X and Y . Given a distribution P for (X,Y,Z), we can always decom-
pose

X = fP (Z) + εP , Y = gP (Z) + ξP ,

where fP (z) = EP (X|Z = z) and gP (z) = EP (Y |Z = z). Similarly, for i = 1,2, . . ., we de-
fine εP,i and ξP,i by xi − fP (zi) and yi − gP (zi), respectively. Also let uP (z) = EP (ε2

P |Z =
z) and vP (z) = EP (ξ2

P |Z = z).
Let f̂ (n) and ĝ(n) be estimates of the conditional expectations fP and gP formed, for

example, by regressing X(n) and Y(n) on Z(n). For i = 1, . . . , n, we compute the product
between residuals from the regressions:

(2) Ri = {
xi − f̂ (zi)

}{
yi − ĝ(zi)

}
.

Here, and in what follows, we have sometimes suppressed dependence on n and P for sim-
plicity of presentation. We then define T (n) to be a normalised sum of the Ri ’s:

(3) T (n) =
√

n · 1
n

∑n
i=1 Ri

( 1
n

∑n
i=1 R2

i − ( 1
n

∑n
r=1 Rr)2)1/2

=: τ
(n)
N

τ
(n)
D

.

Our final test can be based on |T (n)| with large values suggesting rejection. Note that the
introduction of notation for the numerator and denominator in the definition of T (n) are for
later use in Theorem 8.

In the case where f̂ and ĝ are formed through linear regressions, the test is similar to
one based on partial correlation, and would be identical were the denominator in (3) to be
replaced by the the product of the empirical standard deviations of the vectors (xi − f̂ (zi))

n
i=1

and (yi − ĝ(zi))
n
i=1. This approach however would fail for Example 1 despite f and g being

linear (in fact both equal to the zero function) as the product of the variances of the residuals
would not in general equal the variance of their product. Indeed, the reader may convince
herself using pcor.test from the R package ppcor [29], for example, that common tests
for vanishing partial correlation do not yield the correct size in this case.

The following result gives conditions under which when the null hypothesis of conditional
independence holds, we can expect the asymptotic distribution of T (n) to be a standard nor-
mal.

THEOREM 6. Define the following quantities:

Af := 1

n

n∑
i=1

{
fP (zi) − f̂ (zi)

}2
, Bf := 1

n

n∑
i=1

{
fP (zi) − f̂ (zi)

}2
vP (zi),

Ag := 1

n

n∑
i=1

{
gP (zi) − ĝ(zi)

}2
, Bg := 1

n

n∑
i=1

{
gP (zi) − ĝ(zi)

}2
uP (zi).

We have the following results:
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(i) If for P ∈ P0, Af Ag = oP (n−1), Bf = oP (1), Bg = oP (1) and also 0 < EP (ε2
P ξ2

P ) <

∞, then

sup
t∈R

∣∣PP

(
T (n) ≤ t

) − (t)
∣∣ → 0.

(ii) Let P ⊂ P0 be a class of distributions such that Af Ag = oP(n−1), Bf = oP(1),
Bg = oP(1). If in addition infP∈P E(ε2

P ξ2
P ) ≥ c1 and supP∈P EP {|εP ξP |2+η} ≤ c2 for some

c1, c2 > 0 and η > 0, then

sup
P∈P

sup
t∈R

∣∣PP

(
T (n) ≤ t

) − (t)
∣∣ → 0.

REMARK 7. Applying the Cauchy–Schwarz inequality and Markov’s inequality, we see
the requirement that Af Ag = oP (n−1) is fulfilled if

(4) nEP

(
1

n

n∑
i=1

{
fP (zi) − f̂ (zi)

}2

)
EP

(
1

n

n∑
i=1

{
gP (zi) − ĝ(zi)

}2

)
→ 0.

Thus if in addition we have EP Bf ,EP Bg → 0, this is sufficient for all conditions required in
(i) to hold.

If EP Bf , EP Bg and the left-hand side of (4) converges to 0 uniformly over all P ∈ P ,
then the conditions in (ii) will hold provided the moment condition on εP ξP is also satisfied.

A proof is given in the supplementary material. We see that under conditions largely to do
with the mean squared prediction error (MSPE) of f̂ and ĝ, T (n) can be shown to be asymp-
totically standard normal (i), and if the prediction error is uniformly small, the convergence
to the Gaussian limit is correspondingly uniform (ii). A key point is that the requirement on
the predictive properties of f̂ and ĝ is reasonably weak: for example, provided their MSPEs
are o(n−1/2), we have that the condition on Af Ag is satisfied. If in addition maxn

i=1 |vP (zi)|
and maxn

i=1 |uP (zi)| are OP (
√

n), then the conditions on Bf and Bg will be automatically
satisfied. The latter conditions would hold if EP u2

P (Z) < ∞ and EP v2
P (Z) < ∞, for exam-

ple.
Note that the rate of convergence requirement on Af and Ag is a slower rate of conver-

gence than the rate obtained when estimating Lipschitz regression functions when dZ = 1,
for example. Furthermore, we show in Section 4 that f and g being in a reproducing kernel
Hilbert space (RKHS) is enough for them to be estimable at the required rate.

In the setting where Z is high-dimensional and f and g are sparse and linear, standard
theory for the Lasso [10, 49] shows that it may be used to obtain estimates f̂ and ĝ satisfying
the required properties under appropriate sparsity conditions. In fact, in this case our test
statistic is closely related to that involved in the ANT procedure of Ren et al. [41] and the so-
called RP test introduced in Shah and Bühlmann [46], which amount to a regularised partial
correlation. A difference is that the denominator in (3) means the GCM test would not require
εP ⊥⊥ ξP unlike the ANT test and the RP test.

We now briefly sketch the reason for the relatively weak requirement on the MSPEs. In
the following, we suppress dependence on P for simplicity of presentation. We have

(5)

1√
n

n∑
i=1

Ri = 1√
n

n∑
i=1

{
f (zi) − f̂ (zi) + εi

}{
g(zi) − ĝ(zi) + ξi

}

= (b + νg + νf ) + 1√
n

n∑
i=1

εiξi,
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where

b := 1√
n

n∑
i=1

{
f (zi) − f̂ (zi)

}{
g(zi) − ĝ(zi)

}
,

νg := 1√
n

n∑
i=1

εi

{
g(zi) − ĝ(zi)

}
, νf := 1√

n

n∑
i=1

ξi

{
f (zi) − f̂ (zi)

}
.

The summands in the final term in (5) are i.i.d. with zero mean provided P ∈ P0, so the
central limit theorem dictates that these converge to a standard normal. We also see that the
simple form of the GCM gives rise to the term b involving a product of bias-type terms from
estimating f and g, so each term is only required to converge to 0 at a slow rate such that their
product is of smaller order than the variance of the final term. The summands in νg are, under
the null, mean zero conditional on (Y(n),Z(n)). This term and similarly νf are therefore both
relatively well behaved, and give rise to the weak conditions on Bf and Bg .

3.1.1. Power of the GCM. We now present a result on the power of a version of the
GCM. We may view our test statistic as a normalised version of the conditional covariance
EP (εP ξP ) = EP covP (X,Y |Z), where covP (X,Y |Z) = EP (XY |Z) − EP (X|Z)EP (Y |Z).
This is always zero under the null; see equation (1), and does not necessarily need to be
nonzero under an alternative; we can only hope to have power against alternatives where this
conditional covariance is nonzero.

Control of the term b in (5) under the alternative can proceed in exactly the same way as
under the null. However, control of the terms νf and νg typically requires additional condi-
tions (e.g., Donsker-type conditions) on the estimators f̂ and ĝ as under the alternative both
the errors εi and ĝ can depend on Y(n). A notable exception is when f and g are sparse lin-
ear functions; in this setting, alternative arguments can be used to show the GCM with Lasso
regressions has optimal power when Z has a sparse inverse covariance [41, 46].

To state a general result avoiding additional conditions, here we will suppose that f̂

and ĝ have been constructed from an auxiliary training sample, independent of the data
(X(n),Y(n),Z(n)) (e.g., through sample-splitting); see, for example, [42, 52]. A drawback
however, compared to the original GCM, is that the corresponding prediction error terms Af

and Ag are here out-of-sample prediction errors. These are typically more sensitive to the
distribution of Z and larger than the in-sample prediction errors featuring in Theorem 6. For
this reason, we consider the sample splitting approach to be more of a tool to facilitate theo-
retical analysis and would usually recommend using the original GCM in practice due to its
typically better type I error control.

THEOREM 8. Consider the setup of Theorem 6 but with the following differences: f̂

and ĝ have been constructed using auxiliary data independent of (X(n),Y(n),Z(n)); the null
hypothesis P0 is replaced by E0 the set of all distributions absolutely continuous with respect
to Lebesgue measure; and conditions involving εP ξP are replaced by those involving the
centred version εP ξP −EP (εP ξP ). Define

ρP = EP covP (X,Y |Z) and σP = √
varP (εP ξP ).

Then under the conditions of (i) in Theorem 6 we have

sup
t∈R

∣∣∣∣PP

(
τ

(n)
N − √

nρP

τ
(n)
D

≤ t

)
− (t)

∣∣∣∣ → 0, τ
(n)
D − σP = oP (1),

with τ
(n)
N and τ

(n)
D defined as in (3).
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Under the conditions of (ii) in Theorem 6, we have

sup
P∈P

sup
t∈R

∣∣∣∣PP

(
τ

(n)
N − √

nρP

τ
(n)
D

≤ t

)
− (t)

∣∣∣∣ → 0, τ
(n)
D − σP = oP(1).

A proof is given in the supplementary material. We see that we achieve optimal
√

n rates
for estimating ρP .

3.1.2. Relationship to semiparametric models. In viewing τ
(n)
N /

√
n as an estimator of the

functional ρP , our GCM test connects to a vast literature in semiparametric statistics. In par-
ticular, the requirement of estimating nonparametric quantities (in our case

√
Af and

√
Ag)

at a o(n−1/4) rate is common for estimators of functionals based on estimating equations in-
volving influence functions [9]. Our requirement on prediction error necessitates that at least
one of fP and gP is Hölder β-smooth with β/(2β + dZ) ≥ 1/4. Estimators of the expected
conditional covariance functional requiring minimal possible smoothness conditions may be
derived using the theory of higher order influence functions [34, 42–44]; these estimators are
however significantly more complicated. Newey and Robins [36] study another approach to
estimation of the functional based on a particular spline-based regression method. The work
of Chernozhukov et al. [14] uses related ideas to ours here to obtain 1/

√
n convergent es-

timates and confidence intervals for parameters such as average treatment effects in causal
inference settings. A distinguishing feature of our work here is that we only require in-sample
prediction error bounds under the null of conditional independence, which is advantageous
in our setting for the reasons mentioned in the previous section.

3.2. Multivariate X and Y . We now consider the more general setting where dX, dY ≥ 1,
and will assume for technical reasons that dXdY ≥ 3. We let T

(n)
jk be the univariate GCM

based on data (X(n)
j ,Y(n)

k ,Z(n)) and regression methods f̂j and ĝk . (As described in Sec-
tion 1.4, the subindex selects a column.) More generally, we will add subscripts j and k

to certain terms defined in the previous subsection to indicate that the quantities are based
on Xj and Yk rather than X and Y . Thus, for example, εP,j is the difference of Xj and its
conditional expectation given Z.

We define our aggregated test statistic to be

Sn = max
j=1,...,dX,k=1,...,dY

∣∣T (n)
jk

∣∣.
There are other choices for how to combine the test statistics in T(n) := (T

(n)
jk )j,k ∈ R

dX·dY

into a single test statistic. Under similar conditions to those in Theorem 6, one can show
that if dX and dY are fixed, T(n) will converge in distribution to a multivariate Gaussian
limit with a covariance that can be estimated. The continuous mapping theorem can then be
used to deduce the asymptotic limit distribution of the sum of squares of T

(n)
jk , for example.

However, one advantage of the maximum is that the bias component of Sn will be bounded
by the maximum of the bias terms in T

(n)
jk . A sum of squares-type statistic would have a larger

bias component, and tests based on it may not maintain the level for moderate to large dX or
dY . Furthermore, Sn will tend to exhibit good power against alternatives where conditional
independence is only violated for a few pairs (Xj ,Yk), that is, when the set of (j, k) such that
Xj 
⊥⊥ Yk|Z is small.

In order to understand what values of Sn indicate rejection, we will compare Sn to

Ŝn = max
j=1,...,dX,k=1,...,dY

∣∣T̂ (n)
jk

∣∣
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where T̂(n) ∈ R
dX·dY is mean zero multivariate Gaussian with a covariance matrix �̂ ∈

R
dX·dY ×dX·dY determined from the data as follows. Let Rjk ∈ R

n be the vector of products of

residuals (2) involved in constructing the test statistic T
(n)
jk . We set �̂jk,lm to be the sample

correlation between Rjk ∈ R
n and Rlm:

�̂jk,lm = RT
jkRlm − R̄jkR̄lm

(‖Rjk‖2
2/n − R̄2

jk)
1/2(‖Rlm‖2

2/n − R̄2
lm)1/2

.

Here, R̄jk is the sample mean of the components of Rjk .
Let Ĝ be the quantile function of Ŝn. This is a random function that depends on the data

(X(n),Y(n),Z(n)) through �̂. Note that given the Rjk , we can approximate Ĝ to any degree
of accuracy via Monte Carlo.

The ground-breaking work of Chernozhukov et al. [15] gives conditions under which Ĝ

can well approximate the quantile function of a version of Sn where all bias terms, that is,
terms corresponding to b, νg and νf are all equal to 0. We will require that those conditions
are met by εP,j ξP,k for all j = 1, . . . , dX , k = 1, . . . , dY . Below, we lay out these conditions,
which take two possible forms. Let d = max(dX, dY ); note that d and P are permitted to
change with n, though we suppress this in the notation.

(A1a) maxr=1,2 EP (|εP,j ξP,k|2+r/Cr
n) +EP (exp(|εP,j ξP,k|/Cn)) ≤ 4;

(A1b) maxr=1,2 EP (|εP,j ξP,k|2+r/C
r/2
n ) +EP (maxj,k |εP,j ξP,k|4/C2

n) ≤ 4;
(A2) C2

n(log(dn))7/n ≤ Cn−c and EP (ε2
P,j ξ

2
P,k) ≥ c1.

The result below shows that under the moment conditions above, provided the prediction
error following the regressions goes to zero sufficiently fast, Ĝ closely approximates the
quantile function of Sn and, therefore, may be used to correctly calibrate our test.

THEOREM 9. Suppose that for P ⊂ P0, the following is true: there are constants
C,c, c1 > 0 such that for each n and P ∈ P , there exists Cn ≥ 1 such that one of (A1a)
and (A1b) hold, and that (A2) holds. Suppose that

max
j,k

Af,jAg,k = oP(n−1 log(d)−2).(6)

Suppose further that there exist sequences (τf,n)n∈N, (τg,n)n∈N such that

max
i,j

|εP,ij | = OP(τg,n), max
k

Ag,k = oP(τ−2
g,n log(d)−4)(7)

max
i,k

|ξP,ik| = OP(τf,n), max
j

Af,j = oP(τ−2
f,n log(d)−4).(8)

Then

sup
P∈P

sup
α∈(0,1)

∣∣PP

{
Sn ≤ Ĝ(α)

} − α
∣∣ → 0.

A proof is given in the supplementary material.

REMARK 10. If the errors {εP,j }dX

j=1 and {ξP,k}dY

k=1 are all sub-Gaussian with parameters
bounded above by some constant M uniformly across P ∈ P , we may easily see that both
(A1a) and (A1b) are satisfied with Cn a constant; see Chernozhukov et al. [15] for further
discussion.

If additionally we have Af,j ,Ag,k = oP
(

log(d)−1 min{n−1/2, log(d)−4}), (6), (7) and (8)
will all be satisfied.
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Theorem 9 allows for dX and dY to be large compared to n. However, the result can be of
use even when faced with univariate data. In this case, or more generally when dX and dY are
small, one can consider mappings fX : RdX+dZ → R

d̃X and fY : RdY +dZ → R
d̃Y where d̃X

and d̃Y are potentially large. Provided these mappings are not determined from the data, we
will have for X̃ := fX(X,Z) and Ỹ := fY (Y,Z) that X̃ ⊥⊥ Ỹ | Z if X ⊥⊥ Y | Z (see equation
(1)). Thus we may apply the methodology above to the mapped data, potentially allowing the
test to have power against a more diverse set of alternatives. In view of Theorem 8, successful
mappings should have the equivalent of ρP large, but also E(X̃|Z = ·) and E(Ỹ |Z = ·) should
not be so complex that it is impossible to estimate them well. We leave further investigation
of this topic to further work.

4. GCM based on kernel ridge regression. We now apply the results of the previous
section to a GCM based on estimating the conditional expectations via kernel ridge regres-
sion. For simplicity, we consider only the univariate case where dX = dY = 1. In the follow-
ing, we make use of the notation introduced in Section 3.1.

Given P ⊂ P0, suppose that the conditional expectations fP , gP satisfy fP ,gP ∈ H for
some RKHS (H,‖ · ‖H) with reproducing kernel k : RdZ × R

dZ → R. Let K ∈ R
n×n have

ij th entry Kij = k(zi, zj )/n and denote the eigenvalues of K by μ̂1 ≥ μ̂2 ≥ · · · ≥ μ̂n ≥ 0.
We will assume that under each P ∈ P , k admits an eigen-expansion of the form

(9) k
(
z, z′) =

∞∑
j=1

μP,j eP,j (z)eP,j

(
z′)

with orthonormal eigenfunctions {eP,j }∞j=1, so EP eP,j eP,k = 1{k=j}, and summable eigen-
values μP,1 ≥ μP,2 ≥ · · · ≥ 0. Such an expansion is guaranteed under mild conditions by
Mercer’s theorem.

Consider forming estimates f̂ = f̂ (n) and ĝ = ĝ(n) through kernel ridge regressions of
X(n) and Y(n) on Z(n) in the following way. For λ > 0, let

f̂λ = argmin
h∈H

{
1

n

n∑
i=1

{
xi − h(zi)

}2 + λ‖h‖2
H

}
.

We will consider selecting a final tuning parameter λ̂ in the following data-dependent way:

λ̂ = argmin
λ>0

{
1

n

n∑
i=1

μ̂2
i

(μ̂i + λ)2 + λ

}
.

The term minimised on the RHS is an upper bound on the mean-squared prediction error
omitting constant factors depending on σ 2 (defined below in Theorem 11) and ‖fP ‖2

H or
‖gP ‖2

H. Because of the hidden dependence on these quantities, this is not necessarily a prac-
tically effective way of selecting λ: our use of it here is simply to facilitate theoretical analy-
sis. Finally, define f̂ = f̂

λ̂
, and define ĝ analogously. We will write T (n) for the test statistic

formed as in (3) with these choices of f̂ and ĝ.

THEOREM 11. Let P be such that uP (z), vP (z) ≤ σ 2 for all z and P ∈ P .

(i) For any P ∈ P , supt∈R |PP (T (n) ≤ t) − (t)| → 0.
(ii) Suppose supP∈P EP {|εP ξP |2+η} ≤ c for some c ≥ 0 and η > 0. Suppose further that

supP∈P max(‖fP ‖H,‖gP ‖H) < ∞ and

(10) lim
λ↓0

sup
P∈P

∞∑
j=1

min(μP,j , λ) = 0.
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Then

sup
P∈P

sup
t∈R

∣∣PP

(
T (n) ≤ t

) − (t)
∣∣ → 0.

A proof is given the supplementary material.

REMARK 12. An application of dominated convergence theorem shows that a sufficient
condition for (10) to hold is that

∑∞
j=1 supP∈P μP,j < ∞.

The proof proceeds by first showing that the ridge regression estimators f̂ and ĝ sat-
isfy Af Ag = oP (n−1) and then applies Theorem 6. The requirement that fP and gP lie
in a RKHS satisfying (9) is a rather weak regularity condition on the conditional expecta-
tions. For example, taking the first-order Sobolev kernel shows that it is enough that the
conditional expectations are Lipschitz when dZ = 1, P(Z ∈ [0,1]) = 1 and the marginal
density of Z is bounded above [1]. However, the uniformity offered by (ii) above requires
L := supP∈P max(‖fP ‖H,‖gP ‖H) < ∞ and a large value of L will require a large sample
size in order for T (n) to have a distribution close to a standard normal. We investigate this,
and evaluate the empirical performance of the GCM in the next section.

5. Experiments. Section 3 proposes the generalised covariance measure (GCM). Al-
though we provide detailed computations for kernel ridge regression in Section 4, the tech-
nique can be combined with any regression method. In practice, the choice may depend on ex-
ternal knowledge of the specific application the user has in mind. In this section, we study the
empirical performance of the GCM with boosted regression trees as the regression method. In
particular, we use the R package xgboost [12, 13] with a ten-fold cross-validation scheme
over the parameter maxdepth.

5.1. No-free-lunch in conditional independence testing. Theorem 2 states that if a condi-
tional independence test has power against an alternative at a given sample size, then there is
a distribution from the null that is rejected with probability larger than the significance level.
We now illustrate the no-free-lunch theorem empirically.

Let us fix a RKHS H that corresponds to a Gaussian kernel with bandwidth σ = 1. We
now compute for different sample sizes the rejection rates for data sets generated from the
following model: Z = NZ , Y = fa(Z) + NY , and X = fa(Z) + NX , with NX,NY ,NZ ∼
N (0,1), i.i.d., and fa(z) := exp(−z2/2) sin(az) defining a function fa ∈ H. Figure 2 shows
a plot of fa for a = 6 and a = 18. Clearly, for any a, we have X ⊥⊥ Y | Z, but for large
values of a the independence will be harder to detect from data. We now fix three different
sample sizes n = 100, n = 1000 and n = 10,000. For any of such sample size n, we can
find an a, that is, a distribution from the null, such that the probability of (falsely) rejecting
X ⊥⊥ Y | Z is larger than the prespecified level α. Figure 3 shows the results for the GCM test
with boosted regression trees and the significance level α = 0.05: for any sample size, there

FIG. 2. Graphs of the function fa for a = 6 (left) and a = 18 (right). This function is used as the conditional
mean that needs to be estimated from data. The RKHS norm increases exponentially with a; see (11).
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FIG. 3. Illustration of the no-free-lunch theorem; see Section 5.1. No sample size is large enough to ensure the
correct level for all distributions from the null: there is always a distribution from the null which yields a type I
error that is larger than the pre-specified significance level of 0.05. The shaded area indicates the area in which
we accept the null hypothesis that the size of the test is less than 0.05.

exists a distribution from the null, for which the test rejects the null hypothesis of conditional
independence. For n = 100, we can choose a = 6, for n = 1000, we choose a = 12, and for
n = 10,000, a = 18.

This sequence of distributions violates one of the assumptions that we require for the GCM
test to obtain uniform asymptotic level guarantee. Intuitively, for large a, the conditional
expectations z �→ E[X|Z = z] and z �→ E[Y |Z = z] are too complex to be estimated reliably
from the data. More formally, the RKHS norm of the functions fa are defined as

(11) ‖fa‖2
H =

∫ ∞
−∞

Fa(ω)2 exp
(
σ 2ω2/2

)
dω = √

8π · (
exp

(
a2) + exp

(−a2))
,

where

Fa(ω) = exp
(−(ω − a)2/2

) + exp
(−(ω + a)2/2

)
is the Fourier transform of fa . Equation (11) shows that a null hypothesis P containing all of
the above models for a > 0, violates one of the assumptions in Theorem 11: for this choice of
RKHS and null hypothesis, there is no M such that supP∈P max(‖fP ‖H,‖gP ‖H) < M . (Note
that not all sequences of functions with growing RKHS norm also yield a violation of level
guarantees: some functions with large RKHS norm, for example, modifications of constant
functions, can be easily learned from data.) Other conditional independence tests fail on the
examples in Figure 3, too, for a similar reason. However, most of these other methods are
less transparent in the underlying assumptions, since they do not come with uniform level
guarantees.

5.2. On level and power. It is of course impossible to provide an exhaustive simulation-
based level and power analysis. We therefore concentrate on a small choice of distributions
from the null and the alternative. In the following, we compare the GCM with three other
conditional independence tests: KCI [51] with its implementation from CondIndTests
[26], and the residual prediction test [26, 46]. We also compare to a test that performs the
same regression as GCM, but then tests for independence between the residuals, rather than
vanishing correlation, using HSIC [25]. (This procedure is similar to the one that Fan et al.
[20] propose to use in the case of additive noise models.) As we discuss in Example 1, we do
not expect this test to hold level in general. We then consider the following distributions from
the null:
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FIG. 4. Level analysis: the GCM can hold the level if the sample size is large enough to reliably estimate the
conditional mean. Testing for independence between residuals does not hold the level (third plot).

(a) Z ∼N (0,1), X = fa(Z) + 0.3N (0,1), Y = fa(Z) + 0.3N (0,1), a = 2;
(b) the same as (a) but with a = 4;
(c) Z1,Z2 ∼ N (0,1) independent, X = f1(Z1) − f1(Z2) + 0.3N (0,1), Y = f1(Z1) +

f1(Z2) + 0.3N (0,1);
(d) Z ∼ N (0,1), X1 = f1(Z) + 0.3N (0,1), X2 = f1(Z) + X1 + 0.3N (0,1), Y1 =

f1(Z) + 0.3N (0,1), Y2 = f1(Z) + Y1 + 0.3N (0,1); and
(e) Z ∼ N (0,1), Y = f2(Z) ·N (0,1), X = f2(Z) ·N (0,1).

In the remainder of this section, we refer to these settings as (a) “a = 2”, (b) “a = 4”, (c) “biv.
Z”, (d) “biv. X, Y ”, and (e) “multipl. noise”, respectively. For each of the sample sizes 50,
100, 200, 300 and 400, we first generate 100 data sets, and then compute rejection rates of the
considered conditional independence tests. The results are shown in Figure 4. For rejection
rates below 0.11, the hypothesis “the size of the test is less than 0.05” is not rejected at level
0.01 (pointwise). The GCM indeed has promising behaviour in terms of type I error control.
As expected, however, it requires the sample size to be big enough to obtain a reliable estimate
for the conditional mean.

We then investigate the tests’ power by altering the data generating processes (a)–(e),
described above. Each equation for Y receives an additional term +0.2X, which yields
X 
⊥⊥ Y | Z (for (d), we add the term +0.2X2 to the equation of Y2). Figure 5 shows em-
pirical rejection rates. All methods, except for RPT, are able to correctly reject the hypothesis

FIG. 5. Power analysis: most of the methods are able to detect if the distribution does not satisfy conditional
independence, in particular if the sample size increases.
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that the distribution is from the null, particularly with increasing sample size. In our experi-
mental setup, it is the level analysis that poses a greater challenge for the methods other than
GCM.

6. Discussion. A key result of this paper is that conditional independence testing is hard:
nontrivial tests that maintain valid level over the entire class of distributions satisfying con-
ditional independence and that are absolutely continuous with respect to Lebesgue measure
cannot exist. In unconditional independence testing, control of type I error is straightforward
and research efforts have focussed on power properties of tests. Our result indicates that in
conditional independence testing, the basic requirement of type I error control deserves fur-
ther attention. We argue that as domain knowledge is necessary in order to select a conditional
independence test appropriate for a particular setting, there is a need to develop conditional
independence tests whose suitability is reasonably straightforward to judge.

In this work, we have introduced the GCM framework to address this need. The ability for
the GCM to maintain the correct level relies almost exclusively on the predictive properties
of the regression procedures upon which it is based. Selecting a good regression procedure,
whilst mathematically an equally impossible problem, can at least be usefully informed by
domain knowledge. We hope to see further applications of GCM-based tests in the future. On
the theoretical side, it would be interesting to understand more precisely the tradeoff between
the type I and type II errors in conditional independence testing. Often, work on testing fixes
a null and then considers what sorts of classes of alternative distributions it is possible, or
impossible to maintain power against. In the context of conditional independence testing, the
problem set is even richer, in that one must also consider subclasses of null distributions, and
can then study power properties associated with that null.

APPENDIX A: PROOF OF THEOREM 2

The proof of Theorem 2 relies heavily on Lemma 13 in Section A.2, which shows that
given any distribution Q where (X,Y,Z) ∼ Q, one can construct (X̃, Ỹ , Z̃) with X̃ ⊥⊥ Ỹ | Z̃
where (X̃, Ỹ , Z̃) and (X,Y,Z) are arbitrarily close in �∞-norm with arbitrarily high proba-
bility.

In the proofs of Theorem 2 and Lemma 13 below, we often suppress dependence on n

to simplify the presentation. Thus, for example, we write X for X(n). We use the following
notation. We write s = (dX + dY + dZ) and will denote by V ∈ R

s the triple (X,Y,Z).
Furthermore, V := (X,Y,Z). We denote by pX,Y,Z the density of (X,Y,Z) with respect to
Lebesgue measure. We will use μ to denote Lebesgue measure on R

ns+1 and write � for the
symmetric difference operator.

A.1. Proof of Theorem 2. Suppose, for a contradiction, that there exists a Q with sup-
port strictly contained in a �∞-ball of radius M under which X 
⊥⊥ Y | Z but PQ(ψn(V;U) =
1) = β > α. We will henceforth assume that V ∼ Q and V := (X,Y,Z) are i.i.d. copies of
V . Thus we may omit the subscript Q applied to probabilities and expectations in the sequel.
Denote the rejection region by

R = {
(x,y, z;u) ∈R

ns × [0,1] : ψn(x,y, z;u) = 1
}
.

Our proof strategy is as follows. Using Lemma 13, we will create Ṽ := (X̃, Ỹ , Z̃) such
that X̃ ⊥⊥ Ỹ | Z̃ but Ṽ is suitably close to V such that a corresponding i.i.d. sample Ṽ :=
(X̃, Ỹ, Z̃) ∈ R

ns satisfies P((Ṽ,U) ∈ R) > α, contradicting that ψn has valid level α. How
close Ṽ needs to be to V in order for this argument to work depends on the rejection region
R. As an arbitrary Borel subset of Rns ×[0,1], R can be arbitrarily complex. In order to get a
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handle on it, we will construct an approximate version R
 of R that is a finite union of boxes;
see Lemma 15.

Let η = (β −α)/7 > 0. Since {(x, y, z) : pX,Y,Z(x, y, z) > m} =: Bm ↓ ∅ as m ↑ ∞, there
exists M1 such that P((X,Y,Z) ∈ Bc

M1
) > 1−η/n. Let �1 be the event that (xi, yi, zi) ∈ Bc

M1
for all i = 1, . . . , n. (Here and below, an event refers to an element in the underlying σ -
algebra. Recall that xi , yi , and zi denote rows of X, Y, and Z, respectively, that is, they are
random vectors.) Then by a union bound we have P(�1) ≥ 1 − η.

Let M2 be such that P(‖V‖∞ > M2) < η and let �2 be the event that ‖V‖∞ ≤ M2. Further
define

Ř = {
(x,y, z, u) ∈ R : ∥∥(x,y, z)

∥∥∞ ≤ M2
}
.

Note that

P
(
(V,U) ∈ Ř

) ≥ β − P
(
(V,U) ∈ R \ Ř

)
> β − η.(12)

Let L = L(η) be as defined in Lemma 13 (taking δ = η). From Lemma 15 applied to Ř,
we know there exists a finite union R
 of hypercubes each of the form∏

k=1,...,ns+1

(ak, bk]

such that μ(R
�Ř) < η/max(L,Mn
1 ). Now on the region Bc

M1
defining �1 we know that

the density of (V,U) is bounded above by Mn
1 . Thus we have that

(13) P
({

(V,U) ∈ Ř \ R
} ∩ �1
)
< η.

Now for r ≥ 0 and v ∈ R
ns+1 let Br(v) ⊂ R

ns+1 denote the �∞ ball with radius r > 0 and
center v. Define

Rr = {
v ∈ R : Br(v) ⊆ R
}.

Then since Rr ↑ R
 as r ↓ 0, there exists r0 > 0 such that μ(R
 \ Rr0) < η/Mn
1 .

For ε = r0 and B = R
 \ Ř, the statement of Lemma 13 provides us with Ṽ := (X̃, Ỹ, Z̃)

which satisfies P((Ṽ,U) ∈ R
 \ Ř) < Lμ(R
 \ Ř) < η and with which we argue as follows.
Let �3 be the event that ‖V − Ṽ‖∞ < r0, so P(�3) ≥ 1 − η.

P
(
(Ṽ,U) ∈ R

) ≥ P
(
(Ṽ,U) ∈ Ř

) ≥ P
(
(Ṽ,U) ∈ R
) − P

(
(Ṽ,U) ∈ R
 \ Ř

)
> P

({
(Ṽ,U) ∈ R
} ∩ �3

) − η > P
(
(V,U) ∈ Rr0

) − 2η

≥ P
(
(V,U) ∈ R
) − P

({
(V,U) ∈ R
 \ Rr0

} ∩ �1
) − P

(
�c

1
) − 2η

> P
(
(V,U) ∈ R
) − 4η.

Now

P
(
(V,U) ∈ R
) ≥ P

(
(V,U) ∈ Ř

) − P
({

(V,U) ∈ Ř \ R
} ∩ �1
) − P

(
�c

1
)

> P
(
(V,U) ∈ Ř

) − 2η > β − 3η

using (13) and (12). Putting things together, we have P((Ṽ,U) ∈ R) > β − 7η > α, complet-
ing the proof.
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A.2. Auxiliary lemmas.

LEMMA 13. Let (X,Y,Z) have a (dX + dY + dZ)-dimensional distribution in Q0,M

for some M ∈ (0,∞]. Let (X(n),Y(n),Z(n)) be a sample of n i.i.d. copies of (X,Y,Z). Given
δ > 0, there exists L = L(δ) such that for all ε > 0 and all Borel subsets B ⊆ R

n·(dX+dY +dZ)×
[0,1], it is possible to construct n i.i.d. random vectors (X̃(n), Ỹ(n), Z̃(n)) with distribution
P ∈ P0,M where the following properties hold:

(i) P(‖(X(n),Y(n),Z(n)) − (X̃(n), Ỹ(n), Z̃(n))‖∞ < ε) > 1 − δ;
(ii) If U ∼ U [0,1] independently of (X̃(n), Ỹ(n), Z̃(n)) then

P
((

X̃(n), Ỹ(n), Z̃(n),U
) ∈ B

) ≤ Lμ(B).

PROOF. We will first describe the construction of Ṽ := (X̃, Ỹ , Z̃) from V := (X,Y,Z).
The corresponding n-sample Ṽ := (X̃(n), Ỹ(n), Z̃(n)) will have observation vectors formed in
the same way from the corresponding observation vectors in V. The proof proceeds in three
steps. We begin by creating a bounded version V̌ = (X̌, Y̌ , Ž) of V supported on a grid 2−r

Z,
for which we can control an upper bound on the probability mass function. Next, we apply
Lemma 14 to obtain transforms V̊ (1), . . . , V̊ (K!) of V̌ for arbitrarily large K where X̌ has
been ‘embedded’ in the last component. Then we create noisy versions {Ṽ (m)}K!

m=1 by adding
uniform noise such that truncation of their binary expansions yields the discrete versions
{V̊ (m)}K!

m=1. Each of these are potential candidates for the random vector Ṽ , but we must
ensure that the corresponding n-fold product obeys (ii). This is problematic as the embedding
procedure necessarily creates near-degenerate random vectors that fall within small regions
with large probability. To overcome this issue, we employ in the final step, a probabilistic
argument that exploits the property, supplied by Lemma 14, that the K! embeddings have
supports with little overlap.

Step 1: Define s := dX + dY + dZ . Since {(x, y, z) ∈ R
s : pX,Y,Z(x, y, z) > t} =: Bt ↓ ∅

as t ↑ ∞, there exists M1 such that the event �1 = {(X,Y,Z) ∈ Bc
M1

} has P(�1) ≥ 1 −
δ/(2n). Next, let M2 < M be such that P(‖V ‖∞ > M2) < δ/(2n), and let �2 be the event
that ‖V ‖∞ ≤ M2. For later use, we define the events

�1 = {
(xi, yi, zi) ∈ Bc

M1
for all i = 1, . . . , n

}
and �2 = {‖V‖∞ ≤ M2

}
.

Note that union bounds give P((�1 ∩ �2)
c) < δ.

Let E(1) be uniformly distributed on [−M2,M2]s . Let r ∈ N be such that 2−r <

min(ε/3, (M − M2)/3,1/n) and define

V̌ := (X̌, Y̌ , Ž) := 2−r⌊2r(V 1�1∩�2 + E(1)1(�1∩�2)
c

)⌋
.

Here, the floor function is applied componentwise. Note that V̌ takes values in a grid (2−r
Z)s

and satisfies

(14)
∥∥(V̌ − V )1�1∩�2

∥∥∞ ≤ 2−r < ε/3.

The choice of r ensures that V̌ ∈ (−M ′,M ′)s where M ′ = M − 2(M − M2)/3. Furthermore,
the inclusion of the 1�1∩�2 term and E(1) ensures that the probability it takes any given value
is bounded above by M32−sr where M3 := max(M1, (M2/2)−s) is independent of ε. Indeed
for any fixed k ∈ Z

s , writing A = [k2−r , (k + 1)2−r ) we have

P(V ∈ A|�1 ∩ �2) ≤ M12−rs and P
(
E(1) ∈ A|(�1 ∩ �2)

c) = 2−rs/(2M2)
s .

As P(V̌ = k2−r ) is a convex combination of these probabilities, it must be at most their
maximum.

Step 2: We can now apply Lemma 14 with W = (Y̌ , Ž) and N = X̌. This gives us
K! random vectors V̊ (1), . . . , V̊ (K!) where K > 2r > n; for each m = 1, . . . ,K!, V̊ (m) =
(X̊(m), Y̊ (m), Z̊(m)) satisfies
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(a) P(|V̊ (m)
s − V̌s | ≤ 2−r ) = 1 and V̊

(m)
j = V̌j for j ≤ s − 1;

(b) X̊(m) may be recovered from Z̊(m) via X̊(m) = g̊m(Z̊(m)) for some function g̊m;
(c) V̊

(m)
s takes values in K−22−r

Z and the probability it takes any given value is bounded
above by 2−srK−1M3;

and, additionally,

(d) the supports S̊1, . . . , S̊K! of V̊ (1), . . . , V̊ (K!) obey the following structure: there exists
a collection of K2 disjoint sets {G̊jk}Kj,k=1 and an enumeration π1, . . . , πK! of the permu-

tations of {1, . . . ,K} such that S̊m = ⋃K
k=1 G̊kπm(k) and P(V̊ (m) ∈ G̊jπm(j)) = K−1 for all

m = 1, . . . ,K! and j = 1, . . . ,K .

We now create a noisy version of the V̊ (m) that obeys similar properties to the above,
but is absolutely continuous with respect to Lebesgue measure. To this end, we introduce
E(2) = (EX,EY ,EZ) ∈ (0,1)s with independent U(0,1) components. Then let Ṽ (m) ∈ R

s

be defined by

Ṽ
(m)
j =

{
K−22−rE(2)

s + V̊ (m)
s for j = s,

2−rE
(2)
j + V̊

(m)
j otherwise.

This obeys

(a′) P(‖Ṽ (m) − V̊ (m)‖∞ ≤ 2−r ) = 1;
(b′) X̊(m) may be recovered from Z̃(m) via X̃(m) = gk(Z̃

(m)) for some function gm, which
depends on K and r ;

(c′) the density of Ṽ (m) with respect to Lebesgue measure is bounded above by KM3
(indeed, using (c), we have that it is bounded by 2rsK2 · 2−srK−1M3 = KM3);

(d′) the supports S1, . . . , SK! of the {Ṽ (m)}K!
m=1 obey property (d) with the disjoint sets

G̊jk above replaced by the Minkowski sum Gjk = G̊jk + 2−r ((0,1)s−1 × (0,K−2)).

Note that (b′) holds as we can first construct Z̊(m) from Z̃(m) and then apply (b). The for-
mer is done by removing the additive noise component by truncating the binary expansion
appropriately: Z̊(m) := K−22−r�K22r Z̃(m)�. A consequence of this property is that decom-
posing (X̃(m), Ỹ (m), Z̃(m)) = Ṽ (m), we have X̃(m) ⊥⊥ Ỹ (m) | Z̃(m). To see this, we argue as
follows. Let us write pA and pA|B for the densities of A and A given B , respectively, when A

and B are random vectors. Suppressing dependence on m temporarily, we have that for any
z̃ with p

Z̃
(z̃) > 0,

p
X̃,Ỹ ,Z̃

(x̃, ỹ|z̃) = p
EX,Ỹ |Z̃

(
x̃ − g(z̃), ỹ|z̃) = pEX

(
x̃ − g(z̃)

)
p

Ỹ |Z̃(ỹ|z̃)
= p

X̃|Z̃(x̃|z̃)p
Ỹ |Z̃(ỹ|z̃),

so X̃ ⊥⊥ Ỹ | Z̃.
Property (d′) follows as the support of each V̊ (m) is contained in 2−r (Zs−1 × K−2

Z) (see
(a) and (c)).

From (a′), by the triangle inequality we have that

(15) P
(∥∥(

Ṽ (m) − V
)
1{�1∩�2}

∥∥∞ ≤ ε
) = 1

and Ṽ (m) ∈ (−M,M)s . Let {Ṽ(m)}K!
m=1 be the corresponding n-sample versions of {Ṽ (m)}K!

m=1.
Then for any m, (15) gives P(‖(Ṽ(m) −V)1�1∩�2‖∞ ≤ ε) = 1. Thus P(‖Ṽ(m) −V‖∞ ≤ ε) >

1 − δ. We see that any Ṽ(m) satisfies all requirements of the result except potentially (ii).
Step 3: In order to pick an m for which (ii) is satisfied, we use the so-called probabilistic

method. First, note we may assume 0 < μ(B) < ∞ or otherwise any m will do. Define
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Tm := Sn
m × [0,1] to be the support set of (Ṽ(m),U) where U ∼ U [0,1] independently of

{Ṽ(m)}K!
m=1.

For j ∈ {1, . . . ,K}, let Gj := ⋃K
k=1 Gjk . Let J be the set of n-tuples (j1, . . . , jn) of dis-

tinct elements of {1, . . . ,K}. Now define

(16) C := ⋃
(j1,...,jn)∈J

n∏
l=1

Gjl

and let D = C × [0,1]. Fix (jl)
n
l=1 ∈ J and (kl)

n
l=1 ∈ {1, . . . ,K}n, and set G := ∏n

l=1 Gjlkl
.

Then G has nonempty intersection with a given Sn
m if and only if kl = πm(jl) for all l. Thus

if (kl)
n
l=1 /∈ J , G is disjoint from all Sn

m. On the other hand if (kl)
n
l=1 ∈ J , the number of

Sn
m that intersect G is (K − n)!, the number of permutations of {1, . . . ,K} whose outputs are

fixed at n points. We therefore have that all but at most (K − n)! of the support sets Tm are
disjoint from G × [0,1], whence

K!∑
m=1

μ
{(

G × [0,1]) ∩ B ∩ Tm

} ≤ (K − n)!μ{(
G × [0,1]) ∩ B

}
.

Now the set C is the disjoint union of all sets
∏n

l=1 Gjlkl
with (jl)

n
l=1 ∈ J and (kl)

n
l=1 ∈

{1, . . . ,K}n. Thus summing over all such sets we obtain

K!∑
m=1

μ(D ∩ B ∩ Tm) ≤ (K − n)!μ(D ∩ B) ≤ (K − n)!μ(B).

This gives that there exists at least one m = m∗ with

μ(B ∩ D ∩ Tm∗) ≤ (K − n)!
K! μ(B).

Next, observe that the number of cells
∏n

l=1 Gkl
where at least two of k1, . . . , kn are the

same is Kn − K(K − 1) · · · (K − n + 1). As P(Ṽ (m) ∈ Gj) = K−1 for all j , using (16) we
have

P
((

Ṽ(m),U
)

/∈ D
) = K−n{

Kn − K(K − 1) · · · (K − n + 1)
} = O

(
K−1)

for every m. Putting things together, we have that there must exist a m∗ with

P
((

Ṽ(m∗),U
) ∈ B

) ≤ P
((

Ṽ(m∗),U
) ∈ B ∩ D

) + P
((

Ṽ(m∗),U
)

/∈ D
)

≤ KnMn
3
(K − n)!

K! μ(B) + O
(
K−1) ≤ 2Mn

3 μ(B)

for K sufficiently large, which can be arranged by taking r sufficiently large. �

LEMMA 14. Let W ∈ R
l , N ∈ R

d be random vectors. Suppose that N is bounded and
there is some r ∈ N such that both W and N have components taking values in the grid 2−r

Z.
Suppose further that the probability that (N,W) takes any particular value is bounded by
2−(m+d)rM for some M > 0. Then there exists a K ∈ N with K > 2r and a set of K! functions
{f1, . . . , fK!} where

(Wl,N) �→ fm(Wl,N) =: W̊ (m)
l ∈ R

such that for each m = 1, . . . ,K!:
(i) P(|Wl − W̊

(m)
l | ≤ 2−r ) = 1;

(ii) there is some function gm : R→R
d such that N = gm(W̊

(m)
l );

(iii) W̊
(m)
l has components taking values in a grid K−22−r

Z.
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Moreover, defining W̊ (m) = (W1, . . . ,Wl−1, W̊
(m)
l ),

(iv) the probability that (N, W̊ (m)) takes any value is bounded above by K−12−(m+d)rM ;
(v) the supports S1, . . . , SK! of (N, W̊ (1)), . . . , (N, W̊ (K!)) obey the following structure:

there exists K2 disjoint sets {Gjk}Kj,k=1 and an enumeration π1, . . . , πK! of the permutations

of {1, . . . ,K} such that for all m, Sm = ⋃K
k=1 Gkπm(k), and for all m and k, P((N, W̊ (m)) ∈

Gkπm(k)) = K−1.

PROOF. As N is bounded, by replacing gm(·) by gm(·)+v where v ∈ R
d is appropriately

chosen with components in 2−r
Z, we may assume that N has nonnegative components. Let

t ∈ N be such that 2t > 2r max(1,‖N‖∞). We shall prove the result with K = 2dt .
Define the random variable N̊ by

N̊ = 2r
d−1∑
j=0

2tjNj+1.

This is a concatenation of the binary expansions of 2rNj ∈ {0,1,2, . . . ,2t − 1} for j =
1, . . . , d . Observe that N̊ ∈ {0,1, . . . ,K − 1} and that Nj may be recovered from N̊ by ex-
amining its binary expansion. Indeed, 2rNj is the residue modulo 2t of �N̊/2t (j−1)�.

For j = {0,1, . . . ,K − 1}, let Ñj be the residue of N̊ + j modulo K , so Ñj ∈
{0,1, . . . ,K − 1}. Also, for k = {0,1, . . . ,K − 1} let Ñj,k = Ñj + Kk. Note that Ñj,k

takes values in {0, . . . ,K2 − 1}. Let the random variable E be uniformly distributed on
{0,1, . . . ,K − 1} independently of all other quantities. Now let π1, . . . , πK! be an enumera-
tion of the permutations of {0, . . . ,K − 1}. Finally, let N̊m = ÑE,πm(E) for m = 1, . . . ,K!.

One important feature of this construction is that we can recover E from N̊m (and m)
via πm(E) = �N̊m/K�, and thereby determine E, which then reveals N̊ and each of the
individual Nj . In summary, this gives us K! different embeddings of the vector N into a
single random variable.

We may now define fm by

fm(Wl,N) = Wl + 2−rK−2N̊m.

It is easy to see that (i) and (iii) are satisfied. To deduce (ii), observe that we may recover
Wl via 2−r�2rfm(Wl,N)� =: cm(fm(Wl,N)), and thus also determine N̊m which, as dis-
cussed above, also gives us N and E. Let gm and hm be the functions that when applied to
fm(Wl,N), yield N and E, respectively. Let us introduce the notation that for a vector v ∈ R

s ,
v−j ∈ R

s−1 for j = 1, . . . , s is the subvector of v where the j th component is omitted. Then
we have

P
(
N = n, W̊ (m) = ẘ

)
= P

(
W−l = ẘ−l ,Wl = cm(ẘl),N = n,E = hm(ẘl)

)
1{gm(ẘl)=n}

= K−1
P

(
W−l = ẘ−l ,Wl = cm(ẘl),N = n

)
1{gm(ẘl)=n}

≤ K−12−(l+d)rM,

using the independence of E in the second line above. This gives (iv).
Note that the supports of the (N, Ñj,k) are all disjoint as (j, k) can be recovered from

(N, Ñj,k). For j, k = 0,1, . . . ,K − 1 let Gjk be the support set of

(N, W̃j,k) := (
N,W1, . . . ,Wl−1,Wl + 2−rK−2Ñj,k

)
.

From the above, we see that the {Gjk}K−1
j,k=0 are all disjoint. Property (v) follows from noting

that W̊ (m) = W̃E,πm(E). �
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The following well-known result appears for example in Weaver [50], Theorem 2.19.

LEMMA 15. Given any bounded Borel subset B of Rd and any ε > 0, there exists a finite
union of boxes of the form

B
 =
N⋃

i=1

d∏
k=1

(ai,k, bi,k]

such that μ(B�B
) ≤ ε, where μ denotes Lebesgue measure and � denotes the symmetric
difference operator.

APPENDIX B: KL-SEPARATION OF NULL AND ALTERNATIVE

For distributions P1,P2 ∈ E0, let KL(P1 ‖ P2) denote the KL divergence from P2 to P1,
which we define to be +∞ when P1 is not absolutely continuous with respect to P2. The
following result, which is proved in the supplementary material, shows that it is possible to
choose Q ∈ Q0 that is arbitrarily far away from P0 (by picking σ 2 > 0 to be sufficiently
small).

PROPOSITION 16. Consider the distribution Q over the triple (X,Y,Z) ∈R
3 defined in

the following way: Y = X + N with X ∼ N (0,1), N ∼ N (0, σ 2) and X ⊥⊥ N . The variable
Z ∼N (0,1) is independent of (X,Y ). Thus X 
⊥⊥ Y | Z, that is, Q ∈ Q0, and we have

inf
P∈P0

KL(Q ‖ P) = 1

2
log

(
1 + σ 2

σ 2

)
= inf

P∈P0
KL

(
P ‖ Q

)
.
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