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While Bayesian methods are extremely popular in statistics and machine
learning, their application to massive data sets is often challenging, when
possible at all. The classical MCMC algorithms are prohibitively slow when
both the model dimension and the sample size are large. Variational Bayesian
methods aim at approximating the posterior by a distribution in a tractable
family F . Thus, MCMC are replaced by an optimization algorithm which is
orders of magnitude faster. VB methods have been applied in such compu-
tationally demanding applications as collaborative filtering, image and video
processing or NLP to name a few. However, despite nice results in practice,
the theoretical properties of these approximations are not known. We propose
a general oracle inequality that relates the quality of the VB approximation to
the prior π and to the structure of F . We provide a simple condition that al-
lows to derive rates of convergence from this oracle inequality. We apply our
theory to various examples. First, we show that for parametric models with
log-Lipschitz likelihood, Gaussian VB leads to efficient algorithms and con-
sistent estimators. We then study a high-dimensional example: matrix com-
pletion, and a nonparametric example: density estimation.

1. Introduction.

1.1. Motivation. In many applications of Bayesian statistics, the posterior is not tractable.
Markov Chain Monte Carlo algorithms (MCMC) were developed to allow the statistician to
sample from the posterior distribution even in situations where a closed-form expression is
not available. MCMC methods were successfully used in many applications, and are still one
of the most valuable tools in the statistician’s toolbox. However, many modern applications
of statistics and machine learning involve such massive datasets that sampling schemes such
as MCMC have become impractical. In order to allow the use of Bayesian approaches with
these datasets, it is actually much faster to compute variational approximations of the poste-
rior by using optimization algorithms. Variational Bayes (VB) has indeed become a corner
stone algorithm for fast Bayesian inference.

VB has been applied to many challenging problems: matrix completion for collaborative
filtering [26], NLP on massive datasets [21], video processing [25], classification with Gaus-
sian processes [17], among others. Chapter 10 in [7] is a good introduction to VB and [8]
provides an exhaustive survey.

Despite its practical success very little attention has been put toward theoretical guaranties
for VB. Asymptotic results in exponential models were provided in [38]. More recently, [39]
proposed a very nice asymptotic study of approximations in parametric models. The main
problem with these results is that by nature they cannot be applied to high-dimensional or
nonparametric models, or to model selection. In the machine learning community, [4] also
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studied VB approximations. In a distribution-free setting, there is actually no likelihood, but
a pseudo-likelihood can be defined through a suitable loss function, and thus it is possible
to define a pseudo-posterior. Thanks to PAC-Bayesian inequalities from [11, 12], [4] derived
rates of convergence for VB approximation of this pseudo-posterior. However, the tools used
in [4] are valid for bounded loss functions, so there is no direct way to adapt this method to
study VB approximations when the log-likelihood is unbounded.

In this paper, we propose a general way to derive concentration rates for approximations
of fractional posteriors. Concentration rates are the most natural way to assess “frequentist
guarantees for Bayesian estimators”: the objective is to prove that the posterior is asymp-
totically highly concentrated around the true value of the parameter. This approach is now
very well understood, we refer the reader to the milestone paper [15], an account of recent
advances can be found in in [16, 31]. Recently, [6] studied the situation where the likelihood
L(θ) is replaced by Lα(θ) for 0 < α < 1, leading to what is usually called a fractional or tem-
pered posterior. They proved that concentration of the fractional posterior requires actually
fewer hypothesis than concentration of the (true) posterior. Extending the technique of [6],
we analyze the concentration of VB approximations of (fractional) posteriors. Especially, we
derive a condition for the VB approximation to concentrate at the same rate as the fractional
posterior.

1.2. Definitions and notation. We observe a collection of n i.i.d. random variables
(X1, . . . ,Xn) = Xn

1 in a measured sample space (X,X ,P). Let {Pθ , θ ∈ �} be a statisti-
cal model (a collection of probability distributions). The objective here is to estimate the
distribution of the Xi ’s. Most results will be stated under the assumption that the model is
well specified, that is, there exists θ0 ∈ � such that P ≡ P ⊗n

θ0
. However, we will also provide

results in the case P ≡ (P ∗)⊗n where P ∗ does not belong to the model. Let us first assume
that P ≡ P ⊗n

θ0
(we will explicitly mention when this will no longer be the case).

Assume that Q is a dominating measure for this family of distributions, and put pθ =
dPθ

dQ
(θ). Let M+

1 (E) be the set of all probability distributions on a measurable space (E,E).

Assume � is equipped with some σ -algebra T . Let π ∈ M+
1 (�) denote the prior. The like-

lihood and the negative log-likelihood ratio will be denoted respectively1 by

∀(
θ, θ ′) ∈ �2, Ln(θ) =

n∏
i=1

pθ(Xi) and rn
(
θ, θ ′) =

n∑
i=1

log
pθ ′(Xi)

pθ (Xi)
.

DEFINITION 1.1. Let α ∈ (0,1). Let P and R be two probability measures. Let μ be
any measure such that P � μ and R � μ, for example, μ = P +R. The α-Rényi divergence
and the Kullback–Leibler (KL) divergence between two probability distributions P and R

are respectively defined by

Dα(P,R) = 1

α − 1
log

∫ (
dP

dμ

)α(
dR

dμ

)1−α

dμ,

K(P,R) =
∫

log
(

dP

dR

)
dP if P � R,+∞ otherwise.

REMARK 1.1. We remind the reader of a few properties proven in [37]. First, it is
obvious that Dα(P,R) does actually not depend on the choice of the reference mea-
sure μ. This is sometimes made explicit by the (informal) statement Dα(P,R) = (1/(α −

1In order to manipulate these quantities, we need to assume that (Xn
1 , θ) 
→ rn(θ, θ0) is measurable for the

product σ -field X ⊗ T . This imposes some regularity on � ×X that will be implicitly assumed in the rest of the
paper.
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1)) log
∫
(dP)α(dR)1−α . The measures P and R are mutually singular if and only if

Dα(P,R) = ( 1
α−1) log(0) = +∞.

We have limα→1 Dα(P,R) = K(P,R) which gives ground to the notation D1(P,R) =
K(P,R). For α ∈ (0,1], (α/2)d2

TV(P,R) ≤ Dα(P,R), dTV being the total variation dis-
tance – for α = 1 this is Pinsker’s inequality. The map α 
→ Dα(P,R) is nondecreasing.
Also, the authors of [6] note that the α-Rényi divergences are all equivalent for 0 < α < 1,
through the formula α

β
1−β
1−α

Dβ ≤ Dα ≤ Dβ for α ≤ β . Additivity holds: Dα(P1 ⊗ P2,R1 ⊗
R2) = Dα(P1,R1) + Dα(P2,R2), thus Dα(P ⊗n,R⊗n) = nDα(P,R); D1/2(P,R) ≥ 2[1 −
exp(−(1/2)D1/2(P,R))] = H 2(P,R) the squared Hellinger distance.

The fractional posterior, that will be our ideal estimator, is given by

πn,α

(
dθ |Xn

1
) := e−αrn(θ,θ0)π(dθ)∫

e−αrn(θ,θ0)π(dθ)
∝ Lα

n(θ)π(dθ),

using the notation of [6]. The variational approximation π̃n,α(dθ |Xn
1) of πn,α(dθ |Xn

1) is de-
fined as the projection in KL divergence onto a predefined family of distributions F .

DEFINITION 1.2 (Variational Bayes approximation). Let F ⊂ M+
1 (�),

π̃n,α

(·|Xn
1
) = arg min

ρ∈F
K

(
ρ,πn,α

(·|Xn
1
))

.

In Section 2, we state general theorems on the concentration of π̃n,α(·|Xn
1), for exam-

ple, Theorem 2.4. One of the key assumptions is that the prior gives enough mass to neigh-
borhoods of the true parameter, a condition also required to prove the concentration of the
posterior [6, 15, 31]. Here, an additional, but completely natural assumption is required: F
must actually contain distributions concentrated around the true parameter. The choice of F
has thus a strong influence on the quality of the approximation. On one end of the spectrum
F = M1+(�) leads to π̃n,α = πn,α and in this situation, our result exactly coincides with the
known results on πn,α . But this is of little interest when πn,α is not tractable. On the other end,
any family consisting of too few measures will not be rich enough to ensure concentration.

In Sections 3, 4 and 5, we apply our general results in various settings. In Section 3, we
study the parametric family of Gaussian approximations

F	 := {
	(dθ;m,
),m ∈ Rd,
 ∈ Sd+(R)

}
,

where 	(dθ;m,
) is the d dimensional Gaussian measure with mean m and covariance
matrix 
, Sd+(R) the cone of d × d symmetric positive definite matrices. We show that other
approximations are possible, that is, by constraining the variance of the approximation to be a
positive diagonal matrix 
 ∈ Diagd+(R). Gaussian approximations have been studied in [29,
35]. We specify those results in the case of a logistic regression in Section 3.2. There the VB
approximation actually turns out to be a convex minimization problem which can be solved
by gradient descent or more sophisticated iterative procedures. This is especially attractive as
it allows to prove the concentration of the VB approximation obtained after a finite number of
steps. In Section 4, we study the case of mean field approximations corresponding to block-
independent distributions

Fmf :=
{
ρ(dθ) =

p⊗
i=1

ρi(dθi) ∈ M+
1 (�),

∀i = 1, . . . , pρi ∈ M+
1 (�i),� = �1 × · · · × �p

}
,



1478 P. ALQUIER AND J. RIDGWAY

in the context of matrix completion. While the VB approximation leads to feasible approx-
imation algorithms [26], our theorem shows that π̃n,α concentrates at the minimax-optimal
rate. In Section 5, we provide a nonparametric example: density estimation. The more impor-
tant proofs are gathered in Section 7. The supplementary material [3] contains the remaining
proofs and additional comments.

2. Main results.

2.1. A PAC-Bayesian inequality. We start with a variant of a result of [6].

THEOREM 2.1. For any α ∈ (0,1), for any ε ∈ (0,1),

P

(
∀ρ ∈ M+

1 (�),

∫
Dα(Pθ ,Pθ0)ρ(dθ)

≤ α

1 − α

∫
rn(θ, θ0)

n
ρ(dθ) + K(ρ,π) + log(1

ε
)

n(1 − α)

)
≥ 1 − ε.

It is tempting to minimize the right-hand side of the inequality in order to ensure a good
estimation. The minimizer of the right-hand side can actually be explicitly given. In order to
do this, let us recall Donsker and Varadhan’s variational inequality (Lemma 1.1.3 in [12]).

LEMMA 2.2. For any probability π on (�,T ) and any measurable function h : � →R,

such that
∫

ehdπ < ∞,

log
∫

eh dπ = sup
ρ∈M+

1 (�)

[∫
hdρ −K(ρ,π)

]
,

with the convention ∞ − ∞ = −∞. Moreover, when h is upper bounded on the support of π

the supremum with respect to ρ in the right-hand side is reached by πh given by dπh/dπ(θ) =
exp(h(θ))/

∫
exp(h)dπ .

Using Lemma 2.2 with h(θ) = −αrn(θ, θ0) and the definition of πn,α , we obtain

πn,α

(·|Xn
1
) = arg min

ρ∈M1+(�)

{
α

∫
rn(θ, θ0)ρ(dθ) +K(ρ,π)

}

so the minimizer of the right-hand side of Theorem 2.1 is actually πn,α(dθ |Xn
1).

The statement of Theorem 2.1 for ρ = πn,α(dθ |Xn
1) is Theorem 3.5 in [6]. The proof of

Theorem 2.1 requires a straightforward extension, we provide it in Section 7 for the sake of
completeness. Our extension is crucial though as we will have to use it with ρ = π̃n,α(dθ |Xn

1).

REMARK 2.1. Theorem 2.1 can be used to study other approximations of the posterior.
For example, as suggested by one of the referees, we can use it to study distributions centered
around the maximum a posteriori (MAP) or the maximum likelihood estimate (MLE). For
example, Laplace approximations are Gaussian distributions centered at the MLE. However,
there are models (Pθ , θ ∈ �) where the MLE and the MAP are not defined, while the poste-
rior and some variational approximations are consistent. Such an example is provided in the
supplementary material [3].
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2.2. Concentration of VB approximations. We specialize the above results to the varia-
tional approximation. Elementary calculations show that

π̃n,α

(·|Xn
1
) = arg min

ρ∈F

{
α

∫
rn(θ, θ0)ρ(dθ) +K(ρ,π)

}

= arg min
ρ∈F

{
−α

∫ n∑
i=1

logpθ(Xi)ρ(dθ) +K(ρ,π)

}
.

As a consequence, we obtain the following corollary of Theorem 2.1.

COROLLARY 2.3. For any α ∈ (0,1) and ε ∈ (0,1), with probability at least 1 − ε,∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
)

≤ inf
ρ∈F

{
α

1 − α

∫
rn(θ, θ0)

n
ρ(dθ) + K(ρ,π) + log(1

ε
)

n(1 − α)

}
.

Obviously, when F = M+
1 (�), we have π̃n,α(dθ |Xn

1) = πn,α(dθ |Xn
1), so we recover as a

special case an upper bound on the risk of the tempered posterior. We are now in position to
state our main result.

THEOREM 2.4. Fix F ⊂ M+
1 (�). Assume that a sequence εn > 0 is such that there is a

distribution ρn ∈ F such that

(2.1)
∫

K(Pθ0,Pθ )ρn(dθ) ≤ εn,

∫
E

[
log2

(
pθ(Xi)

pθ0(Xi)

)]
ρn(dθ) ≤ εn

and

(2.2) K(ρn,π) ≤ nεn.

Then, for any α ∈ (0,1), for any (ε, η) ∈ (0,1)2,

P

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
) ≤

(α + 1)εn + α
√

εn

nη
+ log( 1

ε
)

n

1 − α

]
≥ 1 − ε − η.

This theorem is a consequence of Corollary 2.3, its proof is provided in Section 7. Let us
now discuss the main consequences of this theorem.

Note that the assumption involving a distribution ρn is not standard. This requires some
explanations. Consider first the case F = M+

1 (�). Define B(r), for r > 0, as

B(r) =
{
θ ∈ � : K(Pθ0,Pθ ) ≤ r,E

[
log2

(
pθ(Xi)

pθ0(Xi)

)]
≤ r

}
.

Then the choice ρn = π|B(εn), i.e., π restricted to B(εn), ensures immediately (2.1), and (2.2)
can be rewritten

− logπ
(
B(εn)

) ≤ nεn.

This assumption is standard to study concentration of the posterior; see Theorem 2.1 page
503 in [15] or Section 3.2 in [31]. Our message is that in the studies of concentration of the
posterior, the choice ρn = π|B(εn) was hidden. Other choices might lead to easier calcula-
tions in some situations. More importantly, in the relevant case F �M+

1 (�), π|B(εn) /∈ F in
general. Thus, − logπ(B(εn)) ≤ nεn is no longer sufficient, and (2.1) and (2.2) are natural
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extensions of this assumption to study VB. They provide an explicit condition on the family
F in order to ensure concentration of the approximation.

Choosing η = 1
nεn

and ε = exp(−nεn), we obtain a more readable concentration result. It
shows that, as soon as (1/n) � εn � 1, the sequence εn gives a concentration rate for VB.

COROLLARY 2.5. Under the same assumptions as in Theorem 2.4,

P

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
) ≤ 2(α + 1)

1 − α
εn

]

≥ 1 − 1

nεn

− exp(−nεn)

≥ 1 − 2

nεn

.

REMARK 2.2. As a special case, when α = 1/2, the theorem leads to a concentration
result in terms of the more classical Hellinger distance

P

[∫
H 2(Pθ ,Pθ0)π̃n,1/2

(
dθ |Xn

1
) ≤ 6εn

]
≥ 1 − 2

nεn

.

Also, with a general α ∈ (0,1), from the properties recalled in Remark 1.1, we have, for
0 < β ≤ α,

P

[∫
Dβ(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
) ≤ 2(α + 1)

1 − α
εn

]
≥ 1 − 2

nεn

,

and for α ≤ β < 1,

P

[∫
Dβ(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
) ≤ 2β(α + 1)

α(1 − β)
εn

]
≥ 1 − 2

nεn

.

2.3. A simpler result in expectation. It is possible to simplify the assumptions at the price
of stating a result in expectation instead of concentration.

THEOREM 2.6. Fix F ⊂ M+
1 (�). Then

E

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
)]

≤ inf
ρ∈F

{
α

1 − α

∫
K(Pθ0,Pθ )ρ(dθ) + K(ρ,π)

n(1 − α)

}
.

Assume that εn > 0 is such that there is distribution ρn ∈ F such that∫
K(Pθ0,Pθ )ρn(dθ) ≤ εn and K(ρn,π) ≤ nεn.

Then, for any α ∈ (0,1),

E

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
)] ≤ 1 + α

1 − α
εn.
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2.4. Extension of the result in expectation to the misspecified case. In this section, we do
not assume any longer that the true distribution is in {Pθ , θ ∈ �}. In order not to change all
the notation we define an extended parameter set � ∪ {θ0} where θ0 /∈ � and define Pθ0 as
the true distribution. Theorem 2.6 can be applied to this setting, and we obtain

E

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
)]

≤ inf
ρ∈F

{
α

1 − α

∫
K(Pθ0,Pθ )ρ(dθ) + K(ρ,π)

n(1 − α)

}
.

Now, rewriting, for θ∗ ∈ �,

K(Pθ0,Pθ ) = K(Pθ0,Pθ∗) +E

[
log

pθ∗(Xi)

pθ (Xi)

]
,

we obtain the following result.

THEOREM 2.7. Assume that, for θ∗ = arg minθ∈�K(Pθ0,Pθ ), there is εn > 0 and ρn ∈
F with ∫

Eθ0

[
log

pθ∗(Xi)

pθ (Xi)

]
ρn(dθ) ≤ εn and K(ρn,π) ≤ nεn,

then, for any α ∈ (0,1),

E

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
)] ≤ α

1 − α
min
θ∈�

K(Pθ0,Pθ ) + 1 + α

1 − α
εn.

In the well-specified case, θ∗ = θ0 and we recover Theorem 2.6. Otherwise, this result
takes the form of an oracle inequality. It is not a sharp oracle inequality as that the risk mea-
sure used in the left-hand side and the right-hand side are not the same, but remains informa-
tive when K(Pθ0,Pθ∗) is small. For example, in Section 5 below, we provide a nonparametric
example where K(Pθ0,Pθ∗) and Theorem 2.7 leads to the minimax rate of convergence.

3. Gaussian variational Bayes. In this section, we consider � ⊂ Rd and the class of
Gaussian approximations

F	 := {
	(dθ;m,
),m ∈Rd,
 ∈ Sd+(R)

}
,

thus the algorithm will consist in projecting onto the set of Gaussian distributions. Depending
on the hypotheses made on the covariance matrix, we can build different approximations. For
instance, define

F	
diag := {

	(dθ;m,
),m ∈ Rd,
 ∈ Diagd+(R)
}
,

F	
id := {

	
(
dθ;m,σ 2Id

)
,m ∈Rd, σ 2 ∈ R+


}
.

We have by definition F	
id ⊆F	

diag ⊆ F	.
The remarkable fact of Gaussian VB is that it allows to recast integration as a finite dimen-

sion optimization problem. The choice of a specific Gaussian is a trade-off between accuracy
and computational complexity. We will show in the following that, under some assumption
on the likelihood, the integrated α-Rényi divergence is convergent for most of the approxi-
mations.

To simplify the exposition of the results we will restrict our study to the case of Gaussian
priors: π = N (0, ϑ2Ip). One can readily see that in Theorem 2.4 the prior appears only in the
condition 1

n
K(ρ,π) ≤ εn; many other distribution could be used, providing different rates.

In the rest of the section, we assume that the density is log Lipschitz.
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ASSUMPTION 3.1. There is a measurable real function M(·) such that∣∣logpθ(X1) − logpθ ′(X1)
∣∣ ≤ M(X1)

∥∥θ − θ ′∥∥
2.

Furthermore, we assume that EM(X1) =: B1,EM2(X1) =: B2 < ∞.

An example is logistic regression; see Section 3.2 below.

THEOREM 3.1. Let the approximation family be F with F	
id ⊂ F as defined above and

that the model satisfies Assumption 3.1. We put

εn = B1

n
∨ B2

n2 ∨
{

d

n

[
1

2
log

(
ϑ2n2

√
d
) + 1

nϑ2

]
+ ‖θ0‖2

nϑ2 − d

2n

}
.

Then for any α ∈ (0,1), for any η, ε,

P

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
) ≤

(α + 1)εn + α
√

εn

nη
+ log( 1

ε
)

n

1 − α

]
≥ 1 − ε − η.

3.1. Stochastic variational Bayes. In many cases, the model is not conjugate, that is, the
VB objective does not have a closed-form solution. We can however use a full Gaussian
approximation and a stochastic gradient descent on the objective function defined by the KL
divergence. This approach has been studied in [35].

We may write our variational bound as the following minimization problem:

min
ρ∈F	

∫
ρ(dθ) log

dρ(θ)

dπn,α(θ |Xn)

or after dropping the constants,

min
m∈Rd ,
∈Sd+

{
−α

∫
logpθ

(
Yn)

	(dθ;m,
)

+
∫

log
d	(θ;m,
)

dπ(θ)
	(dθ;m,
)

}
.

(3.1)

In [35], the authors suggest using a parametrization of the problem where we replace the
optimization over 
 by a minimization over the matrix C where CCt = 
. To simplify the
notation in this section, define

F : x = (m,C) ∈ Rd ×Rd×d 
→ E
[
f (x, ξ)

]
to be the objective of the minimization problem (3.1), where ξ ∼N (0, Id) and

(3.2) f
(
(m,C), ξ

) := −α logpm+Cξ

(
Yn

1
) + log

d	m,CCt

dπ
(m + Cξ).

In order to be able to state nonasymptotic results on the stochastic gradient algorithms, we
restrict the parameter space to an Euclidean ball, that is, (3.1) is transformed into

min
x∈B∩Rd×Rd×d

E
[
f (x, ξ)

]
,

where B = {x ∈ Rd2+d,‖x‖2 ≤ B} for some B > 0. We will then let PB denote the orthog-
onal projection onto B. In addition, we can define the corresponding family of Gaussian
distributions

F	
B = {

	
(
dθ;m,CCt ), (m,C) ∈ B∩Rd ×Rd×d}

.

The objective can now be replaced by a Monte Carlo estimate and we can use stochastic
gradient descent as described in Algorithm 1.
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Algorithm 1 Stochastic Variational Bayes
Input: x0, Xn

1 , γT

For t ∈ {1, . . . , T },
a. Sample ξt ∼N (0, Id)

b. Update xt ← PB(xt−1 − γT ∇f (xt−1, ξt ))

End For .
Output: x̄T = 1

T

∑T
t=1 xt

ASSUMPTION 3.2. Assume that f , as defined in (3.2), is convex in its first component
x and that it has L-Lipschitz gradients.

Define π̃ k
n,α(dθ |Xn

1) to be the kth iterate of Algorithm 1, the Gaussian distribution with
parameters x̄k = (m̄k, C̄k).

THEOREM 3.2. Let Assumptions 3.2 and 3.1 be verified, and define εn as in Theorem 3.1.
Let B be such that B > ‖θ0‖2 + 1/n

√
d . Then for π̃T

n,α(dθ |Xn
1) obtained by Algorithm 1 with

γT = B

L
√

2T
, we get

E

[∫
Dα(Pθ ,Pθ0)π̃

T
n,α

(
dθ |Xn

1
)] ≤ 1

n(1 − α)

√
2BL

T
+ 1 + α

1 − α
εn.

REMARK 3.1. In most examples, the gradient is a sum of at least n components. If each
term is Lipschitz with constant Li , an estimate of the constant will be L ≤ nmaxi Li . The
additional term of the bound is therefore of the order (2B maxLi/(nT ))1/2/(1 − α), hence
a good choice is T = O(

√
n) to mitigate the impact of the numerical approximation on the

rate.

3.2. Example: Logistic regression. We consider the case of a binary regression model.
Although estimation of parameters is relatively simple for small datasets [13], it remains
challenging when the size of the dictionary is large. Furthermore, usual deterministic methods
do not come with theoretical guarantees as would a gradient descent algorithm for maximum
likelihood. Note that the logistic regression is not conjugate in the sense that we cannot find
an iterative scheme based on a mean field approximation, as will be done for the matrix
completion example in Section 4.

Let Xi = (Yi,Zi) ∈ {−1,1} ×Rd be such that

P{Y = y|Z = z, θ} = eyzt θ

1 + eyzt θ
.

We will consider the case of estimation with a Gaussian prior π(dθ) = 	(dθ;0, ϑId) on
(Rd,B(Rd)) (other cases are easily incorporated in the theory).

We will prove results in the case of random design where we suppose that the distribution
of Zn

1 does not depend on the parameter.

COROLLARY 3.3. Let the family of approximation be any F with F	
id ⊂ F as defined

above and assume that K1 := 2E‖X1‖,K2 := 4E‖X1‖2 < ∞. Put

εn = K1

n
∨ K2

n2 ∨
{
d

n

[
1

2
log

(
ϑ2n2

√
d
) + 1

nϑ2

]
+ ‖θ0‖2

nϑ2 − d

2n

}
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then for any α ∈ (0,1), for any η, ε,

P

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
) ≤

(α + 1)εn + α
√

εn

nη
+ log( 1

ε
)

n

1 − α

]
≥ 1 − ε − η.

To apply Theorem 3.2, we need to add some constraint on the covariance matrix. The
optimization will be written over Bψ := B∩ {C ∈ Rd×d,CCt � ψId×d} (this is done only to
ensure that log |
| has Lipschitz gradients).

COROLLARY 3.4. Let the family of approximation be any F with F	
id ⊂ F and assume

that K1 := 2E‖X1‖,K2 := 4E‖X1‖2 < ∞, let B be such that B > ‖θ0‖2 + 1
n
√

d
then for

πT
n,α(dθ |Xn

1) obtained by Algorithm 1 with γT = B

L
√

2T
and where B is replaced by Bψ for

any ψ ≤ 1
n
√

d
, we get

E

[∫
Dα(Pθ ,Pθ0)π̃

T
n,α

(
dθ |Xn

1
)]

≤ 1

(1 − α)n

√
2BL

T

+ 1 + α

1 − α

(
K1

n
∨ K2

n2 ∨
{
d

n

[
1

2
log

(
ϑ2n2

√
d
) + 1

nϑ2
√

d

]
+ ‖θ0‖2

nϑ2 − d

2n

})
.

Note that the only assumption on the distribution of X1 is that K2 < ∞. Still, it is interest-
ing to compute K1 and K2 on some examples. For example, when X1 is uniform on the unit
sphere, K1 ≤ 2 and K2 ≤ 4. When X1 ∼ N (0, s2Id), then K2 = 4s2d and K1 ≤ 2

√
s2d . In

both cases, the terms in K1 and K2 do not deteriorate the parametric rate of convergence d/n.
Furthermore, the Lipschitz constant can be bounded explicitly under additional assumptions
on the design matrix (e.g., bounded singular value) and leads to L = O(nd + d

ψ
). Hence tak-

ing ψ = 1/(n
√

d), one would get a bound in O(

√
d3/2

nT
+ (d/n) lognd). We can take T of the

order n
d1/4 in order not to deteriorate the rate.

4. Application to matrix completion.

4.1. Context. Challenging applications such as collaborative filtering made matrix com-
pletion one of the most important machine learning problems in the past few years. Let us de-
scribe briefly the model: in this case, our parameter θ is a matrix M ∈ Rm×p , with m,p ≥ 1.
For clarity, we will denote by M0 the true matrix θ0 and use M as a notation for a generic
parameter instead of θ . Under PM , the observations are random entries of this matrix with
possible noise

Yk = Mik,jk
+ ξk for 1 ≤ k ≤ n,

where the (ik, jk) are i.i.d. U({1, . . . ,m} × {1, . . . , p}). For the sake of simplicit, we will
assume that the ξk are i.i.d. N (0, σ 2), and that σ 2 is known, so we only have to estimate M .
Note that for α ≤ 1, Dα(N (μ1, σ

2),N (μ2, σ
2)) = α(μ1 − μ2)

2/(2σ 2); see (10) page 3800
in [37]. Thus, for 0 < α < 1,

Dα(PM,PN) = 1

α − 1
log

[
1

mp

m∑
i=1

p∑
j=1

exp
(

α(α − 1)(Mi,j − Ni,j )
2

2σ 2

)]
,
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which depends only on α, σ2 and the matrices M and N so we will use the notation
dα,σ (M,N) =Dα(PM,PN). In the case α = 1,

K(PM,PN) = 1

mp

m∑
i=1

p∑
j=1

(Mi,j − Ni,j )
2

2σ 2 = ‖M − N‖2
F

2σ 2mp
,

where ‖ · ‖F denotes the Frobenius norm. In the noiseless case σ 2 = 0, [10] proved that it
is possible to recover exactly M under the assumption that its rank is small enough. Various
extensions to noisy settings, approximately low-rank matrices, or other loss functions can
be found in [2, 9, 22, 23]. The main message of these papers is that the minimax rate of
convergence is (m + p)rank(M)/n, possibly up to log terms. Bayesian estimators were pro-
posed in [1, 24, 32, 42] using factorized Gaussian priors. Convergence of the posterior mean
was proven in [27] for a bounded prior, excluding the Gaussian prior used in practice. Simi-
larly, [34] proves concentration of a truncated version of the posterior. For very large datasets,
the MCMC algorithm proposed in [32] is too slow, a VB approximation was proposed in [26]
with very good results on the Netflix dataset. This approximation was re-used and extended
by many authors including [1, 5, 14, 28, 30]. But the consistency of the Bayesian estimator
with Gaussian priors and of its variational approximations are opened questions.

First, we will recall the Gaussian prior [32] and the VB approximation [26]. We will then
prove the concentration of the VB approximation, and as a consequence, the concentration of
the tempered posterior.

4.2. Definition of the prior and of the VB approximation. Fix K ∈ {1, . . . ,m ∧ p}. The
main idea of factorized priors is that, when rank(M) ≤ K , then we have

M = UV t

for some matrices U of dimension p × K and V of dimension m × K . Thus, we can define
a prior on M by specifying priors on U and V . A usual choice is that the entries Ui,k and
Vj,k are independent N (0, γk), and finally γk is inverse gamma, that is, 1/γk ∼ �(a, b). These
choices ensure conjugacy: put γ = (γ1, . . . , γK), it is then possible to compute the conditional
posteriors of U |V,γ , of V |U,γ and γ |U,V . This allows to use the Gibbs sampler [32]. For
large datasets, [26] proposed mean-field VB with F given by

ρ(dU,dV,dγ ) =
m⊗

i=1

ρUi
(dUi,·)

p⊗
j=1

ρVj
(dVj,·)

K⊗
k=1

ργk
(γk).

The minimization of the VB program is shown in many cited papers; see [1] and all the
references therein. Shortly: ρUi

is N (mt
i,·,Vi), ρVj

is N (nt
j,·,Wj ) and ργk

is �(a + (m1 +
m2)/2, βk) for some m × K matrix m whose rows are denoted by mi,·, some p × K matrix
n whose rows are denoted by nj , and some vector β = (β1, . . . , βK). The parameters are
updated iteratively through the formulae:

1. moments of U :

mt
i,· :=

2α

n
Vi

∑
k:ik=i

Yik,jk
nt

jk,·,

V−1
i := 2α

n

∑
k:ik=i

[
Wjk

+ njk,·nt
jk,·

] +
(
a + m1 + m2

2

)
diag(β)−1
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2. moments of V :

nt
j,· :=

2α

n
Wj

∑
k:jk=j

Yik,jk
mt

ik,·,

W−1
j := 2α

n

∑
k:jk=j

[
Vik + mik,·mt

ik,·
] +

(
a + m1 + m2

2

)
diag(β)−1

3. parameter of γ :

βk := 1

2

[
m1∑
i=1

(
m2

i,k + (Vi )k,k

) +
m2∑
j=1

(
n2

j,k + (Vj )k,k

)]

(where (Vi )k,k denotes the (k, k)th entry of the matrix Vi and (Wj )k,k denotes the (k, k)th
entry of the matrix Wj ).

4.3. Concentration of the posteriors. For r ≥ 1 and B > 0, we define M(r,B) as the set
of pairs of matrices (Ū , V̄ ) with dimensions m × K and p × K , respectively, satisfying the
following constraints: Ūi,� = 0 for i > r , ‖Ū‖∞ := maxi,� |Ūi,�| ≤ B , and similarly V̄j,� = 0
for j > r and ‖V̄ ‖∞ ≤ B .

THEOREM 4.1. Fix a as any constant. There is a small enough b > 0 such that

E

[∫
dα,σ (M,M0)π̃n,α

(
dM|Xn

1
)]

≤ inf
1≤r≤K

inf
(Ū ,V̄ )∈M(r,B)

{
α

1 − α

[‖M0 − Ū V̄ t‖F +
√

B
n

]2

2σ 2mp

+ 2(1 + α)(1 + 2a)r(m + p)[log(nmp) + C(a)]
n(1 − α)

}
,

where the constant C(a) = log(8
√

π�(a)210a+1) + 3. In particular, the result holds for the
choice b = B2/{512(nmp)4[(m ∨ p)K]2}.

In practice, it is important that b is small to ensure a good approximation of low-rank
matrices [1]. We do not claim that b = B2/{512(nmp)4[(m∨p)K]2} is the optimal value, [1]
recommends cross-validation to tune b.

Note as a special case that when M = Ū V̄ t for (Ū , V̄ ) ∈ M(r,B) then we have exactly

E

[∫
dα,σ (M,M0)π̃n,α

(
dM|Xn

1
)]

≤
2(1 + α)(1 + 2a)r(m + p)[log(nmp) + C(a) + αB

2σ 2mp
]

n(1 − α)
.

(4.1)

This result is the first consistency result for the VB approximation with Gaussian priors, that
is, used in practice. Still, it is stated for a “weak” distance criterion dα,σ (M,M0). Under
additional assumptions, it is actually possible to relate this criterion to the standard Frobe-
nius norm. Assume that there is a known C such that maxi,j |(M0)i,j | ≤ C. This assump-
tion is satisfied in many applications like collaborative filtering: in the Netflix data, the en-
tries are between 1 and 5. Then it is natural to project any estimator to the set of matrices
with bounded entries. Precisely, define for any M the matrix clipC(M) its (i, j)th entry:
min(max(Mi,j ,−C),C). A simple study of dα,σ , detailed in the proofs section, leads to the
following result.



CONCENTRATION OF VARIATIONAL APPROXIMATIONS 1487

COROLLARY 4.2. Under the assumptions of Theorem 4.1, and when in addition
maxi,j |(M0)i,j | ≤ C, then

E

[∫ ∥∥clipC(M) − M0
∥∥2
F π̃n,α

(
dM|Xn

1
)]

≤
8C2(1 + α)(1 + 2a)r(m + p)[log(nmp) + C(a) + αB

2σ 2mp
]

n[1 − exp(2C2α(α − 1)/σ 2)] .

Note that once the Gaussian approximation of the posterior is known, it is easy to sample
from it and to clip the samples to approximate the posterior mean of clip(M). So under
the boundedness assumption, we have a bound based on the Frobenius norm for an effective
procedure based on VB. It is known that for the squared Frobenius norm, the rate r(m+p)/n

is minimax optimal—maybe up to log terms [23].
Still assuming that M = Ū V̄ t for (Ū , V̄ ) ∈ M(r,B), it is also possible to state a proper

concentration result as an application of Corollary 2.5. We omit the proof as it is exactly
similar to the one of Theorem 4.1.

THEOREM 4.3. Assume M = Ū V̄ t for (Ū , V̄ ) ∈ M(r,B) and take b as in Theorem 4.1.
Then

P

[∫
dα,σ (M,M0)π̃n,α

(
dM|Xn

1
) ≤ 2(α + 1)

1 − α
εn

]
≥ 1 − 2

nεn

,

where for some explicit constant D(a, σ 2,B),

εn = D(a, σ 2,B)r(m + p) log(nmp)

n
.

5. Nonparametric regression estimation. In this section, we provide a nonparamet-
ric example. Thus, the parameter will actually be a function f . We assume that X1 =
(W1, Y1), . . . ,Xn = (Wn,Yn) are i.i.d. from a distribution Pf0 , and the model (Pf ) is given
by Wi ∼ U([−1,1]) and

Yi = f (Wi) + ξi,

where ξi ∼N (0,1). We will provide a prior and a mean-field approximation of the posterior.
We will show that we estimate the functions f belonging to a Sobolev ellipsoid W(r,C2)

at the minimax rate of convergence, up to log terms (the definitions of the ellipsoids will be
reminded below). The reader might think that this example is not the most striking application
of VB. On the other hand, it is an illustration of the generality of our method. We will estimate
f using projections on the Fourier basis and the choice of the number of coefficients will
be done by model selection. It appears that in this case, model selection can be seen as a
variational approximation where the constraint on the posterior is to give all its mass to only
one model. This leads to adaptation of the estimator, in the sense that it is not required to
know r nor C to compute the estimator.

5.1. Construction of the prior. First, we recall the definition of the trigonometric basis
(ϕk)

∞
k=1:

ϕ1(t) = 1, ϕ2k(t) = cos(πkt), ϕ2k+1(t) = sin(πkt), k = 1,2, . . . .

We now define a prior distribution π by describing how to draw from π : we first draw K from
a geometric distribution, π(K = k) = 2−k . We then draw β1, . . . , βK i.i.d. from a N (0,1)
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distribution. We finally put

f (x) =
K∑

k=1

βkϕk(x).

Note that when f0(·) = ∑∞
k=1 β0

k ϕk(·) and all the β0
k ’s are nonzero, such a function is never

“produced” by the prior. Still, we will see that the prior gives enough mass to functions in the
neighborhood of f0, ensuring consistency.

5.2. Construction of the variational approximation. Note that the support of π(·|K) has
dimension K , but the support of π is infinite-dimensional. Thus, we can expect the support
of the tempered posterior πn,α to be also infinite-dimensional, and πn,α to be intractable. We
define a variational approximation that will fix these problems.

First, for K ≥ 1 define FK as the set of probability measures ρm,s2 where m =
(m1, . . . ,mK) on functions f (·) = ∑K

k=1 βkϕk(·) such that under ρm,s2 , the βk’s are inde-
pendent and βk ∼ N (mk, s

2). We put F = ⋃∞
k=1 Fk . Note that the choice of a constant vari-

ance s2 was motivated by the fact that the estimator of βk studied, for example, in [36],
β̂k = (1/n)

∑n
i=1 Yiϕk(Xi), satisfies β̂k ∼N (βk, σ

2/n). Then

π̃n,α = arg min
ρ∈F

{
α

∫
rn(f, f0)ρ(df ) +K(ρ,π)

}

= arg min
K≥1

arg min
m,s2

{
α

∫ 1

2

n∑
i=1

(
Yi −

K∑
k=1

βkϕk(Wi)

)2

	
(
dβ;m, s2I

)

+
K∑

k=1

1

2

[
log

(
1

s2

)
+ s2 + m2

k − 1
]

+ K log(2)

}

= arg min
K≥1

arg min
m,s2

{
α

2

n∑
i=1

(
Yi −

K∑
k=1

mkϕk(Wi)

)2

+ s2α

2

n∑
i=1

K∑
k=1

ϕ2
k (Wi)

+
K∑

k=1

1

2

[
log

(
1

s2

)
+ s2 + m2

k − 1
]

+ K log(2)

}

(e.g., the approximated posterior mean is simply a ridge regression estimator).

5.3. Nonparametric rates of convergence. We remind the definition of the Sobolev ellip-
soid given (see, e.g., Chapter 1 in [36]) for C > 0 and r ≥ 2:

W
(
r,C2) =

{
f ∈ L2

([−1,1]) : f =
∞∑

k=1

βkϕk and
∞∑

k=1

k2rβ2
k ≤ C2

}
.

THEOREM 5.1. Fix α ∈ (0,1). Assume that there is an r ∈ [2,∞[ and a C > 0 such that
f0 ∈ W(r,C2). Then

E

[∫
Dα(Pf ,Pf0)π̃n,α

(
dθ |Xn

1
)] =O

((
log(n)

n

) 2r
2r+1

)
.

The proof is in Section 7. Note that on the contrary to previous sections, we only provide
an asymptotic statement here. However, from the proof of Theorem 5.1, it is clear that it is
possible to provide a nonasymptotic statement as well (with cumbersome constants).
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Here again, note that the distance criterion used in the left-hand side is not standard. We
actually have

Dα(Pf ,Pf0) = 1

α − 1
log

[
1

2

∫ 1

−1
exp

(
α(α − 1)(f (x) − f0(x))2

2

)
dx

]
.

However, when f0 ∈ Wr,C2 , f is bounded by a constant that depends on r and C2. If we
moreover assume that f0 is bounded by a known constant c0, we can as in Section 4 define a
clip operator: clipc0

(f )(x) = min(max(−c0, f (x)), c0) and obtain

E

[∫ ∥∥clipc0
(f ) − f0

∥∥2
2π̃n,α

(
dθ |Xn

1
)] = O

((
log(n)

n

) 2r
2r+1

)
.

The rate 1/n2r/(2r+1) is known to be minimax optimal on W(r,C2) for the squared ‖ · ‖2-
norm [36]. The additional log term is sometimes referred to as “the price to pay for adap-
tation.” In the case of the ‖ · ‖2-norm, this is misleading as it is actually possible to build
an adaptive estimator that reaches the minimax rate without the additional log, but up to our
knowledge this is not possible with a fully Bayesian estimator.

6. Conclusion. Based on PAC-Bayesian inequalities, we introduced a generic method
to study the concentration of variational Bayesian approximations. This is a very general ap-
proach that can be applied to many models. We studied applications to logistic regression,
matrix completion and density estimation. Still, some questions remain open. From a theo-
retical perspective, the oracle inequality in Theorem 2.7 compares a Rényi divergence to a
Kullback–Leibler divergence. It would be very interesting to obtain a result with the Kull-
back divergence on the left-hand side. This is probably more difficult, if possible at all. We
believe that tools from [20] could be of some help, but some work is needed to make explicit
assumptions of this paper in our context.

Also, since the first version of this work was submitted, extensions were proven by other
authors: [40] extended our results to models with hidden variables, such as mixture models,
and [41] proved results in the case α = 1 and study many nonparametric examples. Note that
while α = 1 remains the most popular choice in practice, these results require much stronger
assumptions and cannot in general be extended to the misspecified case [19].

An important open issue is the choice of the parameter α. It is clear that our results are not
helpful to solve this issue. Some previous work proposes to use cross-validation [4], but this
is computationally expensive. Moreover, no theoretical guarantees are known in this case. In
the misspecified case, [18] proposed an online adaptive tuning of this parameter. However, it
is not clear if this method could work in our context. This should be the object of a future
work.

Finally, it would be nice to get rid of the extra log in the rates. Catoni’s localization tech-
nique [12] is a nice tool to remove extra log factors in PAC-Bayesian bounds, but its adapta-
tion to our setting is not direct. It could be the object of future works.

7. Proofs.

7.1. Proof of Theorem 2.1. We adapt the proof given in [6]. Fix α ∈ (0,1), and θ ∈ �. It
is immediate to check that

E
[
exp

(−αrn(θ, θ0)
)] = exp

[−(1 − α)Dα

(
P ⊗n

θ ,P ⊗n
θ0

)]
.

Note that it might be that Dα(P ⊗n
θ ,P ⊗n

θ0
) = nDα(Pθ ,Pθ0) = +∞. Rewrite π(dθ) =

π(dθ)1{Dα(Pθ ,Pθ0 )<+∞} + π(dθ)1{Dα(Pθ ,Pθ0 )=+∞} = π1(dθ) + π2(dθ). First, when π = π2,
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π -almost surely, Pθ is singular to Pθ0 . But then, π -almost surely, Dα(Pθ ,Pθ0) = +∞ and
rn(θ, θ0) = +∞. This also holds ρ-almost surely for any ρ � π , and thus the statement of
the theorem is trivial: P(+∞ ≤ +∞) ≥ 1 − ε.

Assume now that π �= π2. This allows to define the renormalization π̃(·) = π1(·)/
π(Dα(Pθ ,Pθ0) < +∞), that is, a probability measure. On the support of π̃(·),

E
[
exp

(−αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)
)] = 1.

Integrate with respect to π̃ ,∫
E

[
exp

(−αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)
)]

π̃(dθ) = 1

and using Fubini’s theorem,

(7.1) E

[∫
exp

(−αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)
)
π̃ (dθ)

]
= 1.

The key argument here, introduced by [11], is to use Lemma 2.2. Note that almost surely with
respect to the sample, we know that

h(θ) := −αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)

satisfies
∫

exp(h)dπ̃ < ∞, otherwise, the expectation in (7.1) would be infinite. So, the con-
ditions of Lemma 2.2 are satisfied almost surely with respect to the sample, and we obtain

E

{
exp

[
sup

ρ∈M+
1 (�)

(∫ (−αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)
)
ρ(dθ)

−K(ρ, π̃)

)]}
= 1.

Multiply both sides by ε to get

E

{
exp

[
sup

ρ∈M+
1 (�)

(∫ (−αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)
)
ρ(dθ) −K(ρ, π̃)

)

− log
(

1

ε

)]}
= ε.

Using Markov’s inequality,

P

[
sup

ρ∈M+
1 (�)

(∫ (−αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)
)
ρ(dθ) −K(ρ, π̃)

)

− log
(

1

ε

)
≥ 0

]
≤ ε.

Taking the complementary event,

P

(
∀ρ ∈ M+

1 (�),

∫ (−αrn(θ, θ0) + (1 − α)nDα(Pθ ,Pθ0)
)
ρ(dθ)

−K(ρ, π̃) − log
(

1

ε

)
≤ 0

)
≥ 1 − ε.

Now, for a given ρ, it might be that
∫

nDα(Pθ ,Pθ0)ρ(dθ) = ∞ but then, the previous equa-
tion implies that

∫
rn(θ, θ0)ρ(dθ) + K(ρ, π̃) = ∞ and so the statement of the theorem is
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trivially satisfied as ∞ ≤ ∞. On the other hand, assuming that
∫

nDα(Pθ ,Pθ0)ρ(dθ) < ∞,
we rearrange terms to get

P

(
∀ρ ∈ M+

1 (�),

∫
Dα(Pθ ,Pθ0)ρ(dθ)

≤ α

1 − α

∫
rn(θ, θ0)

n
ρ(dθ) + K(ρ, π̃) + log(1

ε
)

n(1 − α)

)
≥ 1 − ε.

Now, we decompose ρ = ρ1 + ρ2 as we decomposed π . First, when ρ �= ρ1, we have:
ρ(Dα(Pθ ,Pθ0) = +∞) > 0. But then this means that ρ(rn(θ, θ0) = +∞) > 0, and once
again, the statement of the theorem is trivial: P(+∞ ≤ +∞) ≥ 1 − ε. So we can assume
that ρ = ρ1. But then K(ρ, π̃) = K(ρ,π) + logπ(Dα(Pθ ,Pθ0) < +∞) ≤ K(ρ,π), thus the
statement of the theorem also holds. This completes the proof.

7.2. Proof of Theorem 2.4. Fix η ∈ (0,1) and define

ρ∗ = arg min
ρ∈F

{
α

1 − α

∫
E[rn(θ, θ0)]

n
ρ(dθ)

+ α

n(1 − α)

√
Var[∫ rn(θ, θ0)ρ(dθ)]

η
+ K(ρ,π)

n(1 − α)

}
.

Chebyshev’s inequality leads to

P

{
α

1 − α

∫
rn(θ, θ0)

n
ρ∗(dθ) ≥ α

1 − α

∫
E[rn(θ, θ0)]

n
ρ∗(dθ)

+ α

n(1 − α)

√
Var[∫ rn(θ, θ0)ρ∗(dθ)]

η
+ K(ρ∗, π)

n(1 − α)

}
≤ η

and so

P

{
α

1 − α

∫
rn(θ, θ0)

n
ρ∗(dθ) ≥ α

1 − α

∫
K(Pθ0,Pθ )ρ

∗(dθ)

+ α

1 − α

√√√√∫
Var[log pθ (Xi)

pθ0 (Xi)
]ρ∗(dθ)

nη
+ K(ρ∗, π)

n(1 − α)

}
≤ η.

(7.2)

Now apply take the union bound of this inequality and of the inequality in Corollary 2.3. We
obtain, for any α ∈ (0,1), for any ε ∈ (0,1), with probability at least 1 − ε − η,∫

Dα(Pθ ,Pθ0)πn,α

(
dθ |Xn

1
)

≤ inf
ρ∈F

{
α

∫
rn(θ, θ0)ρ(dθ) +K(ρ,π) + log(1

ε
)

1 − α

}
by Cor. 2.3

≤ α
∫

rn(θ, θ0)ρ
∗(dθ) +K(ρ∗, π) + log(1

ε
)

1 − α

≤
α

∫ [K(Pθ0,Pθ ) +
√

1
nη

Var[∫ rn(θ, θ0)ρ∗(dθ)]]
1 − α

+ K(ρ∗, π) + log(1
ε
)

n(1 − α)
by (7.2)
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= inf
ρ∈F

{α
∫ [K(Pθ0,Pθ ) +

√
1
nη

Var[∫ rn(θ, θ0)]]ρ(dθ)

1 − α

+ K(ρ,π) + log(1
ε
)

n(1 − α)

}
by definition of ρ∗

≤ inf
ρ∈F

{α
∫ [K(Pθ0,Pθ ) +

√
1
nη
E[log2(

pθ (Xi)
pθ0 (Xi)

)]]ρ(dθ)

1 − α

+ K(ρ,π) + log(1
ε
)

n(1 − α)

}

≤
α

∫ [K(Pθ0,Pθ ) +
√

1
nη
E[log2(

pθ (Xi)
pθ0 (Xi)

)]]ρn(dθ)

1 − α

+ K(ρn,π) + log(1
ε
)

n(1 − α)

≤
α(εn +

√
εn

nη
)

1 − α
+ nεn + log(1

ε
)

n(1 − α)
,

where in the last step we use the assumptions on ρn.

7.3. Proof of Theorem 2.6. The beginning is as for Theorem 2.1. Fix α ∈ (0,1), then

E
[
exp

(−αrn(θ, θ0) − (1 − α)Dα

(
P ⊗n

θ ,P ⊗n
θ0

))] = 1.

Integrate with respect to π ,∫
E

[
exp

(−αrn(θ, θ0) − (1 − α)Dα

(
P ⊗n

θ ,P ⊗n
θ0

))]
π(dθ) = 1

and using Fubini’s theorem and Lemma 2.2,

E

{
exp

[
sup

ρ∈M+
1 (�)

(∫ (−αrn(θ, θ0) − (1 − α)Dα

(
P ⊗n

θ ,P ⊗n
θ0

))
ρ(dθ)

−K(ρ,π)

)]}
= 1.

This is where things change: we now use Jensen’s inequality to obtain

E

[
sup

ρ∈M+
1 (�)

(∫ (−αrn(θ, θ0) − (1 − α)Dα

(
P ⊗n

θ ,P ⊗n
θ0

))
ρ(dθ)

−K(ρ,π)

)]
= 0

and so as a special case

E

[∫ (−αrn(θ, θ0) − (1 − α)Dα

(
P ⊗n

θ ,P ⊗n
θ0

))
π̃n,α

(
dθ |Xn

1
)

−K
(
π̃n,α

(·|Xn
1
)
, π

)] = 0.
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Rearranging terms,

E

[∫
Dα

(
P ⊗n

θ ,P ⊗n
θ0

)
π̃n,α

(
dθ |Xn

1
)]

≤ E

[
α

1 − α

∫
rn(θ, θ0)π̃n,α

(
dθ |Xn

1
) + K(π̃n,α(·|Xn

1),π)

1 − α

]

= E

{
inf
ρ∈F

[
α

1 − α

∫
rn(θ, θ0)ρ(dθ) + K(ρ,π)

1 − α

]}
by dfn.

≤ inf
ρ∈F

{
E

[
α

1 − α

∫
rn(θ, θ0)ρ(dθ) + K(ρ,π)

1 − α

]}

= inf
ρ∈F

{
nα

1 − α

∫
K(Pθ0,Pθ )ρ(dθ) + K(ρ,π)

1 − α

}

and so

E

[∫
Dα(Pθ ,Pθ0)π̃n,α

(
dθ |Xn

1
)]

= E

[∫ Dα(P ⊗n
θ ,P ⊗n

θ0
)

n
π̃n,α

(
dθ |Xn

1
)]

≤ inf
ρ∈F

{
α

1 − α

∫
K(Pθ0,Pθ )ρ(dθ) + K(ρ,π)

n(1 − α)

}
.

7.4. Proof of Theorem 3.1. We start by defining a sequence ρn(dθ) := 	(dθ; θ0, σ
2
n I ) ∈

F id
	 indexed by a positive scalar σ 2

n to be later defined. As before, by proving the result
on the smallest family of distribution, it will remain true on larger ones using the fact that
minF id ≤ minFdiag ≤ minF full . Under Assumption 3.1, we can check the hypotheses on the
KL between the likelihood terms as required in Theorem 2.4. We have

K(Pθ0,Pθ ) = E
[
logpθ0(X) − logpθ(X)

] ≤ E
[
M(X)

]‖θ − θ0‖2

and

E

[
log2 pθ0

pθ

(X)

]
= E

[(
logpθ0(X) − logpθ(X)

)2] ≤ E
[
M(X)2]‖θ − θ0‖2.

When integrating with respect to ρn, we have∫
K(Pθ0,Pθ )ρn(dθ) ≤ B1σn

√
d and

∫
E

[
log2 pθ0

pθ

(X)

]
ρn(dθ) ≤ B2σ

2
n d.

To apply Theorem 2.4, it remains to compute the KL between the approximation of the
pseudo-posterior and the prior,

1

n
K(ρn,π) = d

n

[
1

2
log

(
ϑ2

σ 2

)
+ σ 2

ϑ2

]
+ ‖θ0‖2

nϑ2 − d

2n
.

To obtain an estimate of the rate εn of Theor,em 2.4 we put together those bounds. Choosing
σ 2

n = 1
n
√

d
, we can apply it with

εn = B1

n
∨ B2

n2 ∨
{

d

n

[
1

2
log

(
ϑ2n2

√
d
) + 1

nϑ2

]
+ ‖θ0‖2

nϑ2 − d

2n

}
.
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7.5. Proof of Theorem 3.2. From the proof of Theorem 2.6, we get

E

[∫
Dα

(
P ⊗n

θ ,P ⊗n
θ0

)
π̃ k

n,α

(
dθ |Xn

1
)]

≤ E

[
α

1 − α

∫
rn(θ, θ0)π̃

k
n,α

(
dθ |Xn

1
) + K(π̃k

n,α(·|Xn
1),π)

1 − α

]

= E

{
inf

ρ∈F	
B

[
α

1 − α

∫
rn(θ, θ0)ρ(dθ) + K(ρ,π)

1 − α

]}

+
{
E

[
α

1 − α

∫
rn(θ, θ0)π̃

k
n,α

(
dθ |Xn

1
) + K(π̃k

n,α(·|Xn
1),π)

1 − α

]

−E

{
inf

ρ∈F	
B

[
α

1 − α

∫
rn(θ, θ0)ρ(dθ) + K(ρ,π)

1 − α

]}}
.

By definition of f , we get

E

[∫
Dα

(
P ⊗n

θ ,P ⊗n
θ0

)
π̃ k

n,α

(
dθ |Xn

1
)]

= E

{
inf

ρ∈F	
B

[
α

1 − α

∫
rn(θ, θ0)ρ(dθ)

+ K(ρ,π)

1 − α

]}
+ 1

1 − α
E

{
Ef (x̄k, ξ) − inf

u∈BEf (u, ξ)
}

≤ inf
ρ∈F	

B

{
E

[
α

1 − α

∫
rn(θ, θ0)ρ(dθ) + K(ρ,π)

1 − α

]}

+ 1

1 − α
E

{
Ef (x̄k, ξ) − inf

u∈BEf (u, ξ)
}

= inf
ρ∈F	

B

{
nα

1 − α

∫
K(Pθ0,Pθ )ρ(dθ) + K(ρ,π)

1 − α

}

+ 1

1 − α
E

{
Ef (x̄k, ξ) − inf

u∈BEf (u, ξ)
}
.

Following the rest of the proof of 2.6, we get

E

[∫
Dα(Pθ ,Pθ0)π̃

k
n,α

(
dθ |Xn

1
)]

≤ inf
ρ∈F

{
α

1 − α

∫
K(Pθ0,Pθ )ρ(dθ) + K(ρ,π)

n(1 − α)

}

+ 1

n(1 − α)
E

{
Ef (x̄k, ξ) − inf

u∈BEf (u, ξ)
}
.

To bound the first term of the right hand-side, we use Assumption 3.1 and the proof of
Theorem 3.1. In particular, notice that 	(dθ; θ0,

1
n
√

d
Id) ∈ F	

B , we get straight away

E

[∫
Dα(Pθ ,Pθ0)π̃

k
n,α

(
dθ |Xn

1
)]

≤ 1 + α

1 − α
εn + 1

n(1 − α)
E

{
Ef (x̄k, ξ) − inf

u∈BEf (u, ξ)
}
.
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We now study the term inside the brackets on the right-hand side.
First, notice that the sequence (xt )t≥0 in Algorithm 1 is equivalent to that of an online gra-

dient descent on the sequence {f (x, ξt )}t . Hence under Assumption 1, we can apply Corol-
lary 2.7 of [33] with γT = B

L
√

2T
to get the following bound on the regret for any u ∈ B:

T∑
t=1

f (xt , ξt ) −
T∑

t=1

f (u, ξt ) ≤ √
2BLT .

Divide by T , take expectation with respect to (ξt )t ,

1

T

T∑
t=1

Ef (xt , ξt ) −Ef (u, ξ) ≤
√

2BL

T
.

Notice that xt belongs to the σ -algebra generated by (x1, . . . , xt−1). By a multiple use of the
tower property, we get

1

T

T∑
t=1

Ef (xt , ξ) −Ef (u, ξ) ≤
√

2BL

T
,

Ef (x̄, ξ) −Ef (u, ξ) ≤
√

2BL

T
, by Jensen and the convexity of f.

Putting everything together concludes the proof.

7.6. Proof of Corollary 3.3. Direct calculation shows that the log likelihood is 2‖X‖-
Lipschitz, hence satisfying Assumption 3.1. We conclude using Theorem 3.1 and the as-
sumption on the design matrix.

7.7. Proof of Corollary 3.4. Start by noticing that we can take f as

f
(
(m,C), ξ

) := α logpm+Cξ (x̃) +K(ρ,π),

where ρ(·) = 	(·;m,CCt) the likelihood part is convex with Lipschitz gradient as a com-
position of a convex and gradient Lipschitz function with a affine map. The Lipschitz con-
stant for this term is bounded by

∑n
i=1 ‖xix

t
i ‖. The KL part can be written as K(ρ,π) =

‖m‖2

2ϑ
+ ( 1

2ϑ
trace(CCt) − log |C|), which is convex for positive semidefinite C. We need to

check that the gradients of the objectives are also Lipschitz, the only problematic term is
log det(C). Denote (λi) the eigenvalues of 
 = CCt ,


 � ψId×d ⇒ ∀i ∈ {1, . . . , d}, 1

λi

≤ 1

ψ

⇒ trace
(

−1) ≤ d

ψ

⇒ trace
1
2
(
C−1C−T ⊗ C−1C−T ) ≤ d

ψ

⇒ trace
1
2
((

C−1 ⊗ C−T )(
C−1 ⊗ C−T )) ≤ d

ψ

⇒ ∥∥∇2
C log detC

∥∥
2 ≤ d

ψ
.

To apply Theorem 3.2, we also need to check that the new constraint contains the Gaussian
distribution used in the proof. This is the case as long as ψ ≤ σ 2 = 1

n
√

d
.
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Supplementary Material to “Concentration of tempered posteriors and of their vari-
ational approximations” (DOI: 10.1214/19-AOS1855SUPP; .pdf). The supplementary ma-
terial contains: the toy example mentioned in Remark 2.1 above; the proofs of Theorems 4.1
and 5.1 and of Corollary 4.2.

REFERENCES

[1] ALQUIER, P., COTTET, V., CHOPIN, N. and ROUSSEAU, J. (2014). Bayesian matrix completion: Prior
specification. Preprint. Available at arXiv:1406.1440.

[2] ALQUIER, P., COTTET, V. and LECUÉ, G. (2019). Estimation bounds and sharp oracle inequalities
of regularized procedures with Lipschitz loss functions. Ann. Statist. 47 2117–2144. MR3953446
https://doi.org/10.1214/18-AOS1742

[3] ALQUIER, P. and RIDGWAY, J. (2020). Supplement to “Concentration of tempered posteriors and of their
variational approximations.” https://doi.org/10.1214/19-AOS1855SUPP.

[4] ALQUIER, P., RIDGWAY, J. and CHOPIN, N. (2016). On the properties of variational approximations of
Gibbs posteriors. J. Mach. Learn. Res. 17 Paper No. 239, 41. MR3595173

[5] BABACAN, S. D., LUESSI, M. and MOLINA, R. and KATSAGGELOS, A. K. (2011). Low-rank matrix com-
pletion by variational sparse Bayesian learning. In IEEE International Conference on Audio, Speech
and Signal Processing 2188–2191. Prague.

[6] BHATTACHARYA, A., PATI, D. and YANG, Y. (2019). Bayesian fractional posteriors. Ann. Statist. 47 39–66.
MR3909926 https://doi.org/10.1214/18-AOS1712

[7] BISHOP, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer, New York. MR2247587 https://doi.org/10.1007/978-0-387-45528-0

[8] BLEI, D. M., KUCUKELBIR, A. and MCAULIFFE, J. D. (2017). Variational inference: A review for statis-
ticians. J. Amer. Statist. Assoc. 112 859–877. MR3671776 https://doi.org/10.1080/01621459.2017.
1285773

[9] CANDÈS, E. J. and PLAN, Y. (2010). Matrix completion with noise. Proc. IEEE 98 925–936.
[10] CANDÈS, E. J. and TAO, T. (2010). The power of convex relaxation: Near-optimal matrix completion. IEEE

Trans. Inform. Theory 56 2053–2080. MR2723472 https://doi.org/10.1109/TIT.2010.2044061
[11] CATONI, O. (2004). Statistical Learning Theory and Stochastic Optimization. Lecture Notes in Math. 1851.

Springer, Berlin. MR2163920 https://doi.org/10.1007/b99352
[12] CATONI, O. (2007). Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learn-

ing. Institute of Mathematical Statistics Lecture Notes—Monograph Series 56. IMS, Beachwood, OH.
MR2483528

[13] CHOPIN, N. and RIDGWAY, J. (2017). Leave Pima Indians alone: Binary regression as a benchmark for
Bayesian computation. Statist. Sci. 32 64–87. MR3634307 https://doi.org/10.1214/16-STS581

[14] COTTET, V. and ALQUIER, P. (2018). 1-bit matrix completion: PAC—Bayesian analysis of a variational
approximation. Mach. Learn. 107 579–603. MR3761297 https://doi.org/10.1007/s10994-017-5667-z

[15] GHOSAL, S., GHOSH, J. K. and VAN DER VAART, A. W. (2000). Convergence rates of posterior distribu-
tions. Ann. Statist. 28 500–531. MR1790007 https://doi.org/10.1214/aos/1016218228

[16] GHOSAL, S. and VAN DER VAART, A. (2017). Fundamentals of Nonparametric Bayesian Inference. Cam-
bridge Series in Statistical and Probabilistic Mathematics 44. Cambridge Univ. Press, Cambridge.
MR3587782 https://doi.org/10.1017/9781139029834

[17] GIBBS, M. N. and MACKAY, D. J. C. (2000). Variational Gaussian process classifiers. IEEE Trans. Neural
Netw. Learn. Syst. 11 1458–1464.

[18] GRÜNWALD, P. (2012). The safe Bayesian: Learning the learning rate via the mixability gap. In Algo-
rithmic Learning Theory. Lecture Notes in Computer Science 7568 169–183. Springer, Heidelberg.
MR3042889 https://doi.org/10.1007/978-3-642-34106-9_16

https://doi.org/10.1214/19-AOS1855SUPP
http://arxiv.org/abs/arXiv:1406.1440
http://www.ams.org/mathscinet-getitem?mr=3953446
https://doi.org/10.1214/18-AOS1742
https://doi.org/10.1214/19-AOS1855SUPP
http://www.ams.org/mathscinet-getitem?mr=3595173
http://www.ams.org/mathscinet-getitem?mr=3909926
https://doi.org/10.1214/18-AOS1712
http://www.ams.org/mathscinet-getitem?mr=2247587
https://doi.org/10.1007/978-0-387-45528-0
http://www.ams.org/mathscinet-getitem?mr=3671776
https://doi.org/10.1080/01621459.2017.1285773
http://www.ams.org/mathscinet-getitem?mr=2723472
https://doi.org/10.1109/TIT.2010.2044061
http://www.ams.org/mathscinet-getitem?mr=2163920
https://doi.org/10.1007/b99352
http://www.ams.org/mathscinet-getitem?mr=2483528
http://www.ams.org/mathscinet-getitem?mr=3634307
https://doi.org/10.1214/16-STS581
http://www.ams.org/mathscinet-getitem?mr=3761297
https://doi.org/10.1007/s10994-017-5667-z
http://www.ams.org/mathscinet-getitem?mr=1790007
https://doi.org/10.1214/aos/1016218228
http://www.ams.org/mathscinet-getitem?mr=3587782
https://doi.org/10.1017/9781139029834
http://www.ams.org/mathscinet-getitem?mr=3042889
https://doi.org/10.1007/978-3-642-34106-9_16
https://doi.org/10.1080/01621459.2017.1285773


CONCENTRATION OF VARIATIONAL APPROXIMATIONS 1497

[19] GRÜNWALD, P. and VAN OMMEN, T. (2017). Inconsistency of Bayesian inference for misspecified linear
models, and a proposal for repairing it. Bayesian Anal. 12 1069–1103. MR3724979 https://doi.org/10.
1214/17-BA1085

[20] GRÜNWALD, P. D. and MEHTA, N. A. (2016). Fast rates with unbounded losses. Preprint. Available at
arXiv:1605.00252.

[21] HOFFMAN, M. D., BLEI, D. M., WANG, C. and PAISLEY, J. (2013). Stochastic variational inference. J.
Mach. Learn. Res. 14 1303–1347. MR3081926

[22] KLOPP, O. (2014). Noisy low-rank matrix completion with general sampling distribution. Bernoulli 20 282–
303. MR3160583 https://doi.org/10.3150/12-BEJ486

[23] KOLTCHINSKII, V., LOUNICI, K. and TSYBAKOV, A. B. (2011). Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion. Ann. Statist. 39 2302–2329. MR2906869
https://doi.org/10.1214/11-AOS894

[24] LAWRENCE, N. D. and URTASUN, R. (2009). Non-linear matrix factorization with Gaussian processes. In
Proceedings of the 26th Annual International Conference on Machine Learning 601–608. ACM, New
York.

[25] LI, X. and ZHENG, Y. (2009). Patch-based video processing: A variational Bayesian approach. IEEE Trans-
actions on Circuits and Systems for Video Technology 19 27–40.

[26] LIM, Y. J. and TEH, Y. W. (2007). Variational Bayesian approach to movie rating prediction. In Proceedings
of KDD Cup and Workshop 7 15–21.

[27] MAI, T. T. and ALQUIER, P. (2015). A Bayesian approach for noisy matrix completion: Optimal rate
under general sampling distribution. Electron. J. Stat. 9 823–841. MR3331862 https://doi.org/10.1214/
15-EJS1020

[28] MARSDEN, A. and BACALLADO, S. (2017). Sequential matrix completion. Preprint. Available at
arXiv:1710.08045.

[29] OPPER, M. and ARCHAMBEAU, C. (2009). The variational Gaussian approximation revisited. Neural Com-
put. 21 786–792. MR2478318 https://doi.org/10.1162/neco.2008.08-07-592

[30] PAISLEY, J. and CARIN, L. (2010). A nonparametric Bayesian model for kernel matrix completion. In
Proceedings of ICASSP 2010, Dallas, USA.

[31] ROUSSEAU, J. (2016). On the frequentist properties of Bayesian nonparametric methods. Annual Review of
Statistics and Its Application 3 211–231.

[32] SALAKHUTDINOV, R. and MNIH, A. (2008). Bayesian probabilistic matrix factorization using Markov
chain Monte Carlo. In Proceedings of the 25th International Conference on Machine Learning 880–
887. ACM, New York.

[33] SHALEV-SHWARTZ, S. (2012). Online learning and online convex optimization. Found. Trends Mach.
Learn. 4 107–194.

[34] SUZUKI, T. (2015). Convergence rate of Bayesian tensor estimator and its minimax optimality. In ICML
1273–1282.

[35] TITSIAS, M. and LÁZARO-GREDILLA, M. (2014). Doubly stochastic variational Bayes for non-conjugate
inference. In Proceedings of the 31st International Conference on Machine Learning (ICML-14) 1971–
1979.

[36] TSYBAKOV, A. B. (2009). Introduction to Nonparametric Estimation. Springer Series in Statistics. Springer,
New York. MR2724359 https://doi.org/10.1007/b13794

[37] VAN ERVEN, T. and HARREMOËS, P. (2014). Rényi divergence and Kullback–Leibler divergence. IEEE
Trans. Inform. Theory 60 3797–3820. MR3225930 https://doi.org/10.1109/TIT.2014.2320500

[38] WANG, B. and TITTERINGTON, D. M. (2004). Convergence and asymptotic normality of variational
Bayesian approximations for exponential family models with missing values. In Proceedings of the
20th Conference on Uncertainty in Artificial Intelligence 577–584. AUAI Press.

[39] WANG, Y. and BLEI, D. M. Frequentist consistency of variational Bayes. J. Amer. Statist. Assoc. To appear.
https://doi.org/10.1080/01621459.2018.1473776.

[40] YANG, Y., PATI, D. and BHATTACHARYA, A. In α-variational inference with statistical guarantees. Ann.
Statist. To appear.

[41] ZHANG, F. and GAO, C. (2018). Convergence rates of variational posterior distributions. Preprint. Available
at arXiv:1712.02519.

[42] ZHOU, M., WANG, C., CHEN, M., PAISLEY, J., DUNSON, D. and CARIN, L. (2010). Nonparametric
Bayesian matrix completion. In Proc. IEEE SAM.

http://www.ams.org/mathscinet-getitem?mr=3724979
https://doi.org/10.1214/17-BA1085
http://arxiv.org/abs/arXiv:1605.00252
http://www.ams.org/mathscinet-getitem?mr=3081926
http://www.ams.org/mathscinet-getitem?mr=3160583
https://doi.org/10.3150/12-BEJ486
http://www.ams.org/mathscinet-getitem?mr=2906869
https://doi.org/10.1214/11-AOS894
http://www.ams.org/mathscinet-getitem?mr=3331862
https://doi.org/10.1214/15-EJS1020
http://arxiv.org/abs/arXiv:1710.08045
http://www.ams.org/mathscinet-getitem?mr=2478318
https://doi.org/10.1162/neco.2008.08-07-592
http://www.ams.org/mathscinet-getitem?mr=2724359
https://doi.org/10.1007/b13794
http://www.ams.org/mathscinet-getitem?mr=3225930
https://doi.org/10.1109/TIT.2014.2320500
https://doi.org/10.1080/01621459.2018.1473776
http://arxiv.org/abs/arXiv:1712.02519
https://doi.org/10.1214/17-BA1085
https://doi.org/10.1214/15-EJS1020

	Introduction
	Motivation
	Deﬁnitions and notation

	Main results
	A PAC-Bayesian inequality
	Concentration of VB approximations
	A simpler result in expectation
	Extension of the result in expectation to the misspeciﬁed case

	Gaussian variational Bayes
	Stochastic variational Bayes
	Example: Logistic regression

	Application to matrix completion
	Context
	Deﬁnition of the prior and of the VB approximation
	Concentration of the posteriors

	Nonparametric regression estimation
	Construction of the prior
	Construction of the variational approximation
	Nonparametric rates of convergence

	Conclusion
	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.4
	Proof of Theorem 2.6
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Corollary 3.3
	Proof of Corollary 3.4

	Acknowledgments
	Supplementary Material
	References

