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Given data from a Poisson point process with intensity (x,y)
nl(f(x) <y), frequentist properties for the Bayesian reconstruction of the
support boundary function f are derived. We mainly study compound Pois-
son process priors with fixed intensity proving that the posterior contracts
with nearly optimal rate for monotone support boundaries and adapts to
Holder smooth boundaries. We then derive a limiting shape result for a com-
pound Poisson process prior and a function space with increasing parameter
dimension. It is shown that the marginal posterior of the mean functional
performs an automatic bias correction and contracts with a faster rate than
the MLE. In this case, (1 — «)-credible sets are also asymptotic (1 — «)-
confidence intervals. As a negative result, it is shown that the frequentist
coverage of credible sets is lost for linear functions f outside the function
class.

1. Introduction. The estimation of support boundary functions does not only have nu-
merous applications, but also poses intriguing mathematical questions; see Gijbels et al. [17],
Chernozhoukov and Hong [6] as well as Korostelev and Tsybakov [22] for some overview.
Here, we consider the fundamental observation model of a Poisson point process (PPP) N on
[0,T] x R, T > 0, with intensity

(D Ax,y)=Ap(x,y) =nl(f(x) <y).

We thus observe points (X;, ¥;);>1 on the epigraph of the boundary function f : [0, T] — R.
The goals is to recover the support boundary f nonparametrically; see Figure 1. In a sim-
ilar way as the Gaussian white noise model is the continuous analogue of nonparametric
regression with centered errors, support boundary recovery occurs as the continuous limit of
nonparametric regression with one-sided errors; see Meister and Reif3 [25] for related asymp-
totic equivalence results. The fundamental difference is the model geometry: the Hellinger
distance for the Gaussian white noise model is induced by the L2-norm, whereas for support
boundary recovery the Hellinger geometry comes from the L!-norm and the laws are not mu-
tually absolutely continuous. As a consequence, not only convergence rates differ, but also the
asymptotic distributions of estimators are nonclassical. Moreover, the maximum-likelihood
estimator (MLE) is often not efficient and in parametric settings Bayesian methods are advo-
cated. At a methodological level, we explore here to what extent this remains true for non and
semiparametric problems. This is particularly interesting because for many function classes a
nonparametric MLE exists in the PPP model. In the related problem of boundary detection in
images under Gaussian noise, the Hellinger distance is also of L!-type (cf. Li and Ghosal [23]
for posterior contraction results) but the observation laws are mutually absolutely continuous
and a nonparametric MLE usually does not exist.
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F1G. 1. Two simulated data examples for the PPP model with true boundary (black) and observations (blue).
Left: MLE (red), posterior draws (gray). Right: shaded gray areas related to Definition 4.1 below.

A general goal is to understand the performance of compound Poisson processes (CPP)
as nonparametric priors. CPPs are probabilistically well understood, are easy to sample and
can be equivalently understood as piecewise constant priors, where the jump locations are
uniform, the jump sizes are i.i.d. random and the number of jumps is chosen by a Pois-
son hyperprior. For binary regression, CPP priors were studied by Coram and Lalley [8],
establishing nonparametric consistency, and they are often recommended in practice, for
example, as priors for monotone functions in Holmes and Heard [18] with applications to
gene expression data. We prove below that under CPP priors, optimal posterior contrac-
tion rates (sometimes up to logarithmic factors) are attained for Holder functions and for
monotone functions. They even adapt automatically to the unknown Holder smoothness.
Given that the jump intensity remains fixed, this shows how powerful and versatile simple
CPP priors are. The derivation of the contraction rates is based on the general theory devel-
oped in the companion paper [27]. The theory for monotone functions extends to subordi-
nator priors, that is, monotone Lévy processes, which have been studied in survival analy-
sis by Kim and Lee [20], but not yet in the context of nonparametric posterior contraction
rates.

Going beyond rate results, most effort is required to study limiting shape results for the
function f and its mean ¢ = [ f, a basic semiparametric functional. Concerning the fre-
quentist approach, the nonparametric MLE fMLE exists for Holder balls with smoothness
index B < 1 and monotone functions, possibly constrained to be piecewise constant, and
achieves each time the minimax estimation rate. For functionals such as ©#, however, the
MLE oMLE — i fMLE converges usually with a suboptimal rate. A rate-optimal estimator
can be obtained if we subtract a term that scales with the number of observations lying on the
boundary of the MLE and consider

FMLE
ST

2)

’

5_ / fMLE number of data points (X;, ¥;) on boundary of
n

see Reif’ and Selk [29]. This bias correction accounts for the fact that fMLE overshoots the

true boundary function f considerably. In the case of a constant function f and for more
general parametric setups, Bayes estimators correct the bias of the MLE by distributing the
posterior mass correctly below fMLE; cf. Kleijn and Knapik [21].

It is therefore natural to ask whether a nonparametric Bayesian approach also performs
this correction automatically. Here, we show that the answer is positive if the model is well
specified. For piecewise constant and monotone support boundaries under CPP priors, the
posterior concentrates around 9 with the optimal contraction rate. Optimal frequentist esti-
mation of piecewise constant and monotone functions in Gaussian noise has attracted a lot of
attention recently; see Gao et al. [12] and the references discussed there. Furthermore, we ob-
tain intervals which are simultaneously asymptotic (1 — «)-credible and (1 — «)-confidence
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intervals of rate-optimal length. The Bayesian approach clearly outperforms the MLE in this
case.

As a negative example, we consider a linear support boundary f. The posterior contracts
around the true support boundary f with the optimal rate, but the bias correction of the
marginal posterior for ¥ is of incorrect order. In this case, credible sets have asymptotically
no frequentist coverage. Conceptionally, we study a Bayesian model selection procedure for
increasing parameter dimensions, where the hyperprior on the number of jumps determines
the model dimension. For linear and exponential family models, such Bernstein—von Mises
results have been obtained by Ghosal [13, 14] and by Bontemps [1] for Gaussian regres-
sion. Panov and Spokoiny [26] explore the scope of Bernstein—von Mises phenomenon for
regular i.i.d. models of growing dimension and find a critical dimension related to ours; see
the discussion in Section C.1 of the supplementary material. A bias problem for functional
estimation by adaptive Bayesian methods has been exhibited by Castillo and Rousseau [2]
and Rivoirard and Rousseau [30], which bears some similarity with ours, but at a parametric
J/n-rate.

Related to CPP priors are many popular piecewise constant prior prescriptions. First of all,
there are priors on regression trees, such as Bayesian CART (Denison et al. [9]) and BART
(Chipman et al. [7]). Regression trees subdivide the space of covariates and then put a con-
stant value on each of the cells. These priors are henceforth supported on piecewise constant
functions. Posterior contraction for BART has been derived only recently by Rockova and
van der Pas [31]. For density estimation, histogram priors are well studied. Scricciolo [34]
considers random histograms with fixed bin width and the number of bins a hyperprior. It is
shown that near optimal contraction rates are obtained if the true density is either Holder with
index at most one or piecewise constant.

So far, only little theory has been developed for nonparametric Bayes under constraints on
the shape like monotonicity or convexity. Exceptions are Salomond [32] for monotone den-
sities and Mariucci et al. [24] for log-concave densities. In both cases, mixtures of Dirichlet
processes are taken as priors. To the best of our knowledge, the present paper is the first one
that derives Bernstein—von Mises-type results under monotonicity constraints.

In Section 2, contraction rates for compound Poisson process and subordinator priors are
investigated. In an interlude, Section 3 discusses a general description of the asymptotic pos-
terior shape, in which the results thereafter can be embedded. Bernstein-von Mises-type the-
orems and results on the frequentist coverage of credible sets for CPP priors can be found
in Section 4. Before, it is recommended to read Appendix C in the supplement where the
prototypical case of random histogram priors with fixed jump times is treated. Most proofs
are deferred to the supplementary material [28].

Notation. We write N =)_; §(x,,y;) for arandom point measure on [0, 1] x R and denote
the support points by (X;, Y¥;);. Whenever N is observed, it is natural to call the support points
observations. Moreover, we use the standard terminology 14 :=1(- € A), (x)+ := max(x, 0)
and || - ||, for the L7 ([0, 1])-norm.

2. Posterior contraction.

Bayes formula. Let us first recall the Bayes formula for the PPP model as derived in [27].
Let (®, d) be a Polish space equipped with its Borel o -algebra and d a stronger metric than
the L!-norm. For fo€ Ll([O, T]), aprior IT on ® and a Borel set B C ®, Lemma 2.2 in [27]



BAYESIAN ANALYSIS FOR SUPPORT BOUNDARY RECOVERY 1435

gives an explicit Bayes formula under the law Pg,:

[ B 1Y : f(X0) < Y dTI(f)

M(B|N)= -
Jo o T1(¥i : f(Xi) < Yi)dTI(f)

(3) T de\/f
[ge nJo (fo .f)+Tf(-)0(N)dn(f)

= Py -as.
T,z dPyy fo
Joe "o (fO_f)+#(N)dH(f)

The default is 7 = 1 but in Section 4 it is convenient to work with 7 > 1.

Compound Poisson process prior. We study posterior contraction for compound Poisson
process priors defined on the space ® = DJ0, 1] of cadlag functions, equipped with the Sko-
rokhod topology. A compound Poisson process Y on [0, 1] can be written as ¥; = vaz’l A;
with a Poisson process (N;);>¢o of intensity A > 0 and an i.i.d. sequence (A;) of random
variables, independent of the Poisson process. We denote the distribution of A| by G. We
randomize the starting value Xy = Ag according to a distribution H and consider

N, N,
4) Xi=Ao+ Y A=) A,
i=1 i=0

with Ag ~ H independent of (A;);>1 and (N;);>0.

A CPP can equivalently be viewed as a hierarchical prior on f in the spirit of [3, 4].
The hierarchical CPP construction picks in a first step a model dimension prior 7w ~ Pois(A).
The order statistics property of a Poisson process ([10], page 186) says that conditionally
on the event that the CPP jumps K times on [0, 1], the ordered jump locations (1, ..., tx),
to:=0<t <--- <tg <1, have the same distribution as the order statistic of K independent
U (10, 1])-random variables. The Lebesgue density of (¢, ...,7x)|K is therefore K!1(0 <
1 <t <---<tg <1). The last step is then to assign the starting value ag and the jump
sizes ay, ..., ag. Assuming that the distributions G, H have Lebesgue densities g and £,
respectively, we can write the CPP prior in closed form as a prior on K, t and b

K
(5) (K.t,a)—> e *2Xna) [[g@p10 <t <ty <--- <t <1)
j=1

generating random cadlag functions f = Zf{:o ajly; 1y with 1o :=0.

Since A is fixed, for most draws of the prior the number of jumps will be of order A. As
we show below, the CPP prior puts still enough mass around functions with an increasing
number of jumps to ensure nearly optimal posterior contraction rates for Holder functions.
Let us also mention that the CPP prior randomizes over the jump points and should therefore
be able to adapt to local smoothness.

Function classes. We denote by C#(R) the ball of g-Holder functions f :[0,1] - R
with Holder norm || f||-s bounded by R. The CPP prior allows to build in monotonicity as
prior knowledge by choosing a positive jump distribution. We define the space of monotone
functions, which are bounded by R, as

M(R) := {f : f monotone increasing and — R < f(0) < f(1) < R}.
The following result is proved in Appendix A.1.
THEOREM 2.1. Consider the CPP prior (4) with a positive and continuous Lebesgue

density h on R. If there are constants y, L > 0 such that P(|A;] > s) < L~ e for all
s > 0, then there exist positive constants M and c such that:
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(i) if g is positive and continuous on R™,

logn 3
sup Ef()|: (f ”f fO”l > M\/T‘N c nlogn
JoeM(R)

(ii) if g is positive and continuous on R and g <1,

logn\ B/(1+6) T
sup Efo[n(f If - fo||1>M< g ) \N>]<e cn(lo8n) T8

foeCB(R)

For bounded piecewise constant functions with K,, jumps at fixed jump times, the posterior
contraction rate under quite general CPP priors is similarly found to be % logn whenever
n® <K, < n'=¢ for some & > 0. Much finer limiting shape results for a similar class, how-
ever, will be obtained in the next section.

In all cases, the rate is optimal up to logarithmic factors. This follows from the lower bound
of Theorem 4.2 in [19] for Holder balls. The argument can also be extended from CHR) to
M(R) by adding a multiple of the identity to each test functions. Thus, n~!/? is also a lower
bound for the rate over monotone functions. Compound Poisson processes thus furnish a very
versatile prior adapting to unknown smoothness and possibly monotonicity.

The proof is based on a Ghosal-Ghosh—van der Vaart-type result from [27]. To check the
conditions, we derive lower bounds on the one-sided small ball probabilities of the CPP prior
for the function classes considered above. These bounds could be used to derive contraction
rates for other nonparametric models, also.

Subordinators. CPPs form the subclass of Lévy processes with finite jump intensity. Al-
lowing also for infinitely many jumps, subordinators, that is, Lévy processes with monotone
sample paths, generate a rich class of monotone function priors. We consider only subordi-
nators without drift, characterized by their characteristic function

¢ () =E[e'" ] = exp(t /W (e — 1)v(dx)>, t>0,

where the Lévy measure v is a o-finite measure on RT, satisfying [p+(x A 1)v(dx) < oco.
Its intensity is A = v(R™) € [0, oo] and in the finite intensity case a subordinator is just a
compound Poisson process of intensity A with jump distribution G = v/A.

Among subordinators of infinite intensity prominent examples are the Gamma and inverse
Gaussian processes; see [33] for a comprehensive treatment. Dirichlet processes belong to the
most frequently used priors in nonparametric Bayesian methods and can be viewed as time-
changed and normalized Gamma processes; see [16], Section 4.2.3. Subordinators as priors
have been studied in the context of survival models by [20]. There the target of estimation is
the cumulative hazard function, which can be estimated at the parametric rate n~!/2. Subor-
dinators as priors for monotone estimation problems in regression or density-type models do
not seem to have been analyzed yet so that the result below can be of independent interest.

The randomly initialized subordinator prior. As priors, we consider randomly initialized
subordinators of the form
X, =Yy+Y;, with(¥;);>0 asubordinator and Yy ~ H independent of (¥;);~0,

where H is assumed to have a positive and continuous Lebesgue density on R. Moreover,
we suppose that the Lévy measure v has a Lebesgue density which by some slight abuse of
notation is called v(x) and is assumed to be continuous and positive on RT.
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THEOREM 2.2. Consider the randomly initialized subordinator prior. If there exist con-

stants y, L > 0 such that v(x) < Lx—3/2 for all x > 0 and fsoo v(x)dx < Le L7l for all
s > 1, then there are constants M, ¢ > 0 such that

logn _
sup Efo[n(f I1f = fol = | = }N evmoen,
Soe M(R)

The theorem is proved in Appendix A.2.

3. On the generalized Bernstein—-von Mises phenomenon. Before we move on and
study the posterior limit for the CPP prior, we briefly discuss the extension of the Bernstein—
von Mises theorem beyond regular models. The classical Bernstein—von Mises theorem as-
sumes a parametric model (Py : ¢ € ©) that is differentiable in quadratic mean and has
nonsingular Fisher information Iy ,. Then, for a continuous and positive prior, the posterior
can be approximated in total variation distance by

N(ﬁMLE 119() n)

if the i.i.d. data are generated from P”O, Vo € O; see [36], Section 10.2 for a precise statement.
It can also be easily seen that if we observe Y¥; = 99 + ¢;, i = 1, ..., n, with independent
i ~ Exp(1), then ﬁMLE =min(Yy, ..., Y,) ~ ¥ + ¢ with ¢ ~ Exp(n). For a continuous and
posmve prior, we obtaln in the limit the posterior (z?MLE 7)|OMLE with & ~ Exp(n) and &
independent of ¢; see [21].
This suggests that a generalized Bernstein—von Mises theorem should be of the following
form: If there exists a MLE 9MLE such that

(6) OMLE — 50 + ¢, (90),

with &, (¥9) some random variable, then, under standard assumptions on the prior, the poste-
rior should be close to the conditional distribution of

(7) (OMLE _ %, (90))[OMLE,

where €,(¢9) has the same distribution as &, (%) but is independent of it. This unifies both
cases above and extends the general insight gained in [15] to not mutually absolutely contin-
uous distributions. For problems with increasing model dimension, we can additionally build
in a model selection prior such that the posterior concentrates on smaller models. If the pos-
terior puts asymptotically all mass on one model, then (6) and (7) have to be replaced by the
corresponding expressions in this model; see [3], Section 2.4 for an example. The posterior
limit distributions that occur in the subsequent chapters are exactly of this form.

4. Limiting shape of the posterior. We consider the CPP prior and study support
boundaries that are piecewise constant and monotone. This function class has received a
lot of attention recently in nonparametric statistics; see [5, 12]. Due to the imposed mono-
tonicity, the nonparametric MLE exists and we believe that this is crucial for the posterior
to have a tractable limit distribution; see also Section 3. For the model size, we show that
the full posterior concentrates on the true number of jumps under minimal signal strength
assumptions. The randomness of the jump locations and the function values on each piece
induce the randomness of the limiting shape.

A prior class which is easier to analyze and reveals already main features of the CPP
results are random histogram priors. They consist of piecewise constant functions with fixed
jump times and number K, of jumps possibly tending to infinity. In Appendix C of the
supplementary material, we show a limiting shape result for random histogram priors and
study the bias correction for estimation of a functional.
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4.1. The limiting shape of the full posterior. We first derive the limiting shape of the full
posterior and then study the marginal distribution for functionals.

Model. The likelihood taken over all increasing functions on [0, 7] is unbounded. This is
caused by functions that have an extremely steep jump close to the right boundary of the ob-
servation interval [0, T']. Similar boundary phenomena are well known in the nonparametric
maximum likelihood theory under shape constraints. The unboundedness of the likelihood
causes the Bayes formula to be extremely sensitive to values close to the right boundary.
Since we are interested in a framework that avoids these extreme spikes at the boundary, we
consider the PPP model (1) with 7 > 1, assuming that the true function is constant on the
interval [1, T']. For jump functions, this is the same as saying that all jumps occur before time
one.

Function class. We consider piecewise constant, right-continuous functions that are
monotone increasing, assuming that all jumps occur up to time one:

K
MK, R):=1f=> alyr:0<ay<RO<n <---<1g <1
=0

A discretized version of this class has been recently studied in [12]. For a generic function
in M(K, R), we write f = Zf:o ag1(- > t;) with ordered jump locations 0 =: 7y < f; <
<o <tg <1 <tg41:=T.We assume that there is a minimal signal strength. Without such a
constraint, one cannot exclude the case that the number of true jumps is consistently under-
estimated; see for instance [11], Section 2.1. Typically, conditions of this type occur when
there is an underlying model selection problem, compare with the f-min conditions for high-
dimensional problems.

DEFINITION 4.1. A function fy € M(K,, R) belongs to the subclass Mg(K,, R) if and
onlyifforallk=1,..., K,,

3

log”n

a1l = @) A (1) — 1)) = 2K log(eKn) ——,
21o 2
af = B (10— )= -

and the two last inequalities also hold for k£ = 0.

REMARK 4.2. Since Z,ﬁal(t,&rl - t,?) < 1, the last condition implies K, = O(n'/?).
In view of maxy a,(() < R, the first condition even implies K,% log(eK,) < Rn/ 10g3(n), in
particular K, = o(n'/?).

The expressions alo (tioJr | = tio) and alo (tl-o — tl.O 1) are the areas in Figure 1(right). Let us
briefly discuss the imposed lower bound on these areas. The PPP has intensity n on the
epigraph of the support boundary. In order to ensure that each of the K, sets contain at least
one support point of the PPP, all of them need to have an area of at least order log(K,)/n. One
might therefore wonder whether the factor K, in the lower bound for the areas is necessary
to ensure strong model selection. We shall see that the posterior has to choose among a huge
number of models; cf. the proof of Proposition 4.3. To find the correct model might therefore

indeed require a larger lower bound on the areas.
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Prior. By assumption all jumps occur before time one. We therefore draw the prior from
a CPP on [0, 1] and then extend it continuously to a prior on [0, T'] by appending a constant
function on (1, T']. The Lebesgue density of (¢1,...,tx)|K is K10 <t <tp <---<tg <
1); see Section 2. To model the monotonicity, the jump distribution should be supported
on the positive real line. It turns out that there is one natural prior on the jump sizes. The
construction is as follows: choose the random starting value of the CPP according to ag ~
Exp(1) and independently draw i.i.d. jump sizes ay ~T'(2,1) for £ =1, ..., K. With

K
8) gk (@ =e Ti0% [Jar, a=(ao,...,ax) eREY!
k=1

the prior (5) takes the more specific form
©) (K.ta)> e W gp@10<n<n<--<wx <.

We can also rewrite the prior as a prior on functions of the form f = "X b1, 4, +1- Under
this reparametrization, we obtain g (b) = e bk . ]_[f:1 (bx — br—1)+.

Since f(0) = ap, this means in particular that all paths generated by the prior are nonneg-
ative. To put different priors on ag and ag, £ > 1, turns out to be natural. For this specific
choice, the marginal posterior of any a; follows approximately an exponential distribution.
This is a crucial property that allows us to derive tight bounds for the numerator and denom-
inator in the Bayes formula; compare the proofs of Lemma D.1 and Lemma D.4 for more
details.

MLE. Over all monotone functions on [0, T'], T > 1, that are constant on [1, T'], there
exists a nonparametric MLE fMLE (unique almost surely). Existence follows from the gen-
eral theory because the class of monotone functions is closed under the maximum; see [29].
Almost surely, the MLE is piecewise constant with finitely many jumps and bounded. This
implies in particular, that fMLE is also the MLE over all piecewise constant monotone func-
tions with jumps on [0, 1]. Furthermore, f < fMLE for all piecewise constant and monotone
functions f satisfying f(X;) <Y; for all i. Denoting the number of jumps by M, we write

]?N[LE(I) — Z MLE]. ’MLE) te [0, T]
=0

with 0 =: %VILE < ?%VILE < ?%ILE < 1. This MLE should not be confused with the mono-
tone MLE on [0, T] w1th0ut the restriction that the functions are constant on [1, T°].

Construction of the majorant process f . We consider two sequences of observation
points that are close to the true jump points of the unknown regression function fj. Recall
that t(()) =0 and tl()<n+1 =T.Fork=0,1,..., K, consider

(10) (X5, Y7) = arg min Vi:Xie[t0, 1))
(Xi,Y;) observation point
and with
Ry :={(X;,Y;) observation : X; € [t,?fl, D), Y < fo(t,9)}
fork=1,..., K,

argmax{X; : (X;,Y;) € R¢}, if Rx #9,
(11) (X;, Y) =1 Xix)
1, fo(r)_ ), otherwise.



1440 M. REISS AND J. SCHMIDT-HIEBER

T T T T T T
0 0.5 1 0 0.5 1

FI1G. 2. Left: Data example with true boundary (black), the function fN (purple) and the sequences (X}, Y}),
(X» Y{). Right: If none of the observations fall into the gray areas, then the sequences (X}, Y;5), (X}, Y;) lie on
the MLE over monotone functions (red).

We also set X[, :=0 and X /Kn 41 := T. With probability one, the sequences are unique;
see also Figure 2. The assigned values for the case Ry = & do not affect the asymptotic
analysis, but are convenient choices giving the guarantee that the subsequent formulas are
well-defined. By construction and the properties of the PPP, we have for k =1, ..., K, that

Y = folt) ~ Exp(n(ty, —17)).

(12) 0 v 0 0 .0
e — Xi ~Exp(nag) A (4 — 1)

Here, Exp(8) At denotes a truncated exponential distribution with density %e‘ﬂx X

1j0,/1(x). The definition of Y’ is based on the set [t,? , t,? +1) X R. For different k, the sets are
disjoint and the random variables Y;* are independent. The same argument shows that X,

k=1,..., K, is a sequence of independent random variables and Y}, X, are independent if
k#€—1.
The key object for the limiting shape result of the posterior is the process
~ Kl‘l
(13) F=2Yx x
k=0

a realization of which is displayed in Figure 2. Since f > fo, we call f also the majorant
process (of fp). Observe that the majorant process is piecewise constant with K,, jumps. The
distribution of f can essentially be deduced from (12). As the support boundary is unknown,
the majorant process cannot be computed from the data alone. As proved in Appendix D .4,
f~ coincides asymptotically with the MLE over monotone functions with the correct number
of K, jumps.

PROPOSITION 4.3. If]/‘}}/iLE denotes the MLE in the space M(K,,, 00), then

inf  Pg(f= FMLE) .
foeMs(K,.R) lf=Tk,")

In particular, inf f,c pmg(k,, R) Py ( f is monotone) — 1.
For the construction, note that %LE is obtained as the monotone and piecewise constant
function f with at most K,, jumps that maximizes [ f under the constraint f(X;) <Y; for

all observations (X;, Y;). The upper jump points lie on the monotone MLE (corresponding to
K,, = 00), which is described explicitly in [29].

Limit distribution. We now describe the sequence of distributions that asymptotically
approximates the posterior. For convenience, we ignore the dependence on n and refer to this
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sequence as the limit distribution. Working conditionally on the sequences (X} )x and (Y,
the limit distribution 1'[‘]’%’ ,, 18 the distribution on the Skorokhod space D([0, T']) of

(14) f= Z Y — EQ x4 B x), +E), )

with independent E} ~ Exp(n (X
k < K,,and Ej —E}qﬂ =0.

The limit distribution is obtained from the majorant process f by moving each jump loca-
tion independently to the right by a (truncated) exponential distribution with scale parameter
n(Y} — Y ). Moreover, the function value on each piece is decreased by another inde-
pendently generated exponential random variable. In view of Proposition 4.3, it follows that
the limit is of the generalized form discussed in Section 3. In Appendix D.3, we show the
following.

i1 — X)) and Ep ~Exp(n(Y7 — Y- D) A (X — Xp),

THEOREM 4.4 (Limiting shape result for CPP prior). Let K,, < n'/>7% for some § > 0.
Then for the prior (8) and Hog’n as defined in (14)

o0 —
nli}ngof e/Vsl;l(pKn En[ITI¢IN) =TF | ry] =0.

Since we work with one specific prior, we call this a limiting shape result instead of a
Bernstein—von Mises theorem. Using (14), one can show that the posterior contracts with
rate K,,/n. We conjecture that the MLE only achieves the slower rate K, logn/n. One of
the heuristic reasons is that the MLE overshoots the true model dimension K, by choosing
a model with order K, logn many jumps; see Figure 2 and Lemma E.3. It is conceivable
that each of the additional jumps introduces an error of size 1/n which then gives the rate
K, logn/n. A similar phenomenon occurs in the nonparametric regression model; see Propo-
sition 2.1 in [12].

The proof is nonstandard. It follows immediately from the likelihood that the posterior only
puts mass on paths that lie below the monotone MLE fMLE. Let f be a piecewise constant
function with K jumps such that there exists a function f. with K — 1 jumps and such that
f<fa < fMLE. Interestingly, the posterior puts negligible mass on the union over all such
functions and all K. The remaining paths have more structure. We use this to introduce a
parametrization from which we can derive sufficiently sharp bounds over the corresponding
integrals in the Bayes formula. The proof also requires many properties of the monotone
MLE which might be of independent interest and are collected in Appendix E.

4.2. Posterior coverage for a functional. For the functional ¢ = fOT f, we have under the
limit distribution HCJ’% 0

T . K
V= A F=> Ei(Xiq1 — ZEk Ye—Y)
(15) k=0
Kn
B Z EZ(EI/<+1 - E//c)
k=0

We show the convergence to a normal distribution in Appendix D.5 of the supplementary ma-
terial. Given two probability measures P, Q on (R, B(R)), let us consider the Kolmogorov—
Smirnov distance

P — Qllxs := sup|P((—00, x]) = Q((—00, x])|.

xeR
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THEOREM 4.5. Consider the prior (8). Then, for any sequence K, — oo with K, <

n'27% for some § > 0,
T~ 2K,+1 2K,+1
| L LR U e M

SoeMs(Ky,R)

The asymptotic (1 — a)-credible interval

—_ T _ 2K, +1 2K, +1
uw=[ﬁ.f— LA el

n n

q1-a/2;
(16)

T . 2K,+1 2K, +1
/Of— " + 1

with the q1_q/2-quantile of N (0, 1) is moreover an honest asymptotic confidence set:

Pfo</ foGT(O{)) —(1 —06)‘ — 0.

sup
foeMs(Ky.R)

By Lemma 4.3, the majorant process f in the limit distribution can be replaced by f}}/iLE.
The result is formulated in terms of the Kolmogorov—Smirnov distance, which suffices to
describe asymptotic probabilities for credible intervals. It is not clear whether a total variation
version holds as well because point masses enter into the proof argument and are difficult to
control.

The observations that lie on the majorant process are (X ,’(, Y ,ﬁ), k=1,...,K, an(i
(X;, ), k=0,..., K,. This means that 2K, + 1 observations lie on the boundary of f
(almost surely). The bias correction term (2K, + 1)/n is consequently of the same form as
for the bias-corrected MLE in [29]. We can now argue as in Corollary C.2 to construct a
(1 — av)-credible interval that is also an asymptotic (1 — «)-confidence interval and shrinks
with the correct rate O (/K /n).

The proof of Theorem 4.5 can be adapted to treat other functionals. For linear functionals
¥ = [ f(u)w(u)du with a continuous function w, a much more complicated limit is ob-

. ) ) t) )
tained, involving w(t,?) as well as the local averages ft S wu) du) (t,? = t,?). We omit the
k

details.

4.3. A negative result on posterior coverage for functionals. We ask for the coverage
of credible sets if the support boundary function is not piecewise constant. For the specific
choice,

a7 fox)=(x+1/2)A3/2, x€l0,T],

of the support boundary function it is shown that the credible sets for ¥y = [ fy do not have
asymptotic coverage under a CPP prior. Notice that fj is constant on [1, T'].

Class of priors. Consider a (generalized) CPP prior. Given the number of jumps K, the
jump heights a = (agp, ai, . .., ag) are assumed to be independent, but not necessarily identi-
cally distributed and the prior is of the form

K
(18) gr@ =[] g(an).

k=0
For the marginal prior on the individual jumps, we assume that there exist constants ¢ > 0,
y > 0, such that

(19) gr(x)>cx?’, Vxe[0,1],k>0.
In particular, this is satisfied by the prior (8) withy =1 and c =¢~.
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\ \ \
0 0.5 1

F1G. 3. The argument for the lower bound with monotone MLE (red), true function (black) and a function
f}}/”s“E with few jumps (purple). The posterior puts asymptotically all mass on paths with much fewer jumps than

the monotone MLE. This creates a downwards bias of the posterior for the marginal posterior of the integral jol f.

The first result shows that under Py, the posterior concentrates on models with size
/n/logn. This is of a slightly smaller order than the MLE, which has of the order \/n many
jumps. This causes then a downwards bias of the posterior; compare Figure 3. Interestingly,
a similar phenomenon occurs in the Gaussian white noise model; cf. Proposition 2 in [2].

PROPOSITION 4.6.  Consider a CPP prior with jump distribution satisfying (18) and (19)
and fo from (17). Then there exists cy > 0 such that

n
EfO[H(K > ¢, /logn ‘N)} 0.

Proposition 4.6 is proved in Appendix B.1. The next theorem, proved in Appendix B.2,
shows that the entire posterior mass lies asymptotically below the true value. The distance
VIog(n)/n is much larger than the optimal estimation rate n~>/% obtained for the mean
of monotone functions in [29]. The main argument is that for piecewise constant functions
with K < cx(n/logn)'/? jumps the best approximation of the linear function fy has order
(n/logn)~'/2 in L'-norm, whereas the monotone MLE has approximation rate n~!/? and
forms an upper bound for fj and the posterior mass simultaneously.

THEOREM 4.7.  For fy from (17), there exists ¢ > 0 such that for the marginal posterior
on the functional ¥ = fol f

Efo[l_l<15‘2/01 fo(x)dx—E\/@‘N)}eO.

We conjecture that the negative result continues to hold if fj is a piecewise constant func-
tion with at least ,/n jumps because the posterior will put all asymptotic mass on models of
dimension O (y/n/logn), underestimating the number of true jumps by at least a logarithmic
factor.

APPENDIX A: PROOFS FOR SECTION 2

Denote by N (¢, F,d) the e-covering number of F C L'([0, 1]) with respect to the dis-
tance d. The one-sided bracketing number N[(8, F) is the smallest number M of functions
£1,...,8p € Ll([O, 1]) such that for any f € F there exists j € {1,..., M} with £; < f
(almost everywhere) and [(f — £;) <. The functions £; are not required to be in F.
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THEOREM A.1 (Theorem 2.3 and Corollary 2.6 in [27]). If for some ©,, C ®, some rate
&, = 0 and constants C,C',C" > 1, A > 0:

() Ni(en, ®,) <C"eC e,
(i) TI(f:If — folh < Aen. f < fo) = e ",

(iii) H(@C) < " ¢~ (C+A+D)ne,
n) — )
then there exists a constant M such that

Ef[T(f:1If — folh = Me, | N)] <3C"e"én.

A.1. Proof of Theorem 2.1. It is convenient to use the notation P(X € A) :=TI(f € A)
to prove generic properties of the compound Poisson process X defined in (4).

LEMMA A.2. Consider the CPP prior (4) with a positive and continuous Lebesgue den-
sity h on R.

(i) If g is positive and continuous on R, there exists a positive constant ¢ = c(R), such
that forany 0 <e < R A %,
inf P(||X — <26. X < f)> e (1 AN)HRIEgee™
ol e (X =Sl < <f)=e P AN

>ii) If g is positive and continuous on R, then for 0 < B < 1 there exists a positive constant

c =c(B, R) such that for any 0 < ¢ < RTM,

inf P(IX — flloo < &) = e (1 A Q)R geenlT,
feCP(R)

PROOF OF (i). For fixed f € M(R), we construct a deterministic step function f_ with
f- < fand | f- — fll1 <e.Itis then enough to show that forany 0 <& < R A 1/2,
(20) P(IX — f-l1<e. X < f-) = e (L an) /e,

If ¢ < R, there exists 6 such that ¢/(4R) <6 <e/(2R) and N := 1/§ is a positive integer.
Letr(j,8) := f(jé§) — f((j — 1)8) for j > 1. Define the step functions

N-1 N—1
== U s, j+ns = FO) + D r(j, H)1sa
Jj=0 Jj=1

and f} := Zyzl f(O)1j-1)s,js)- Since f is monotone increasing, f < f < fy and
If = f~llh =1 f+ = f=llh =8(f(1) — f(0)) < &. By the assumptions on g and h, co :=
inf_g_j<y<gh(x) Ainfo<y<gy1 g(y) is positive. Let D be the event that

k=N=1.  fO-es<a=fO) -3,
. . €d .. &b
r(],8)§aj§r(],8)+3, tj€|:]8,]8+7:|

holds forall j =1,..., N — 1. Then, due to (5) and e™*/A > ¢~ 2*,

) N S N-1
P(IX - fli<e,X<f)=P(XeD)> e_)‘AN_1<c0%) (%)

21 4R/ 2\
> e (1 AN e(.r_) .
>e 7( ) 0 p
This yields (20) and proves (i).
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PROOF OF (ii). The argument is very similar to (i). Let now § be such that (¢/ (4R)HV/F <
1(e/2R)YVP <5 < (¢/(2R))/P and N := 1/8 is a positive integer. With r(0, §) := f(0) and
r(j,8) = f(jd) — f((j — 1)J) for j > 1, define

N—1 N-1
foi= 0 FUDs e = D 1 O1pjs-
j=0 j=0

Now, 6 < (8/(2R))1/'B and f € CP(R) give || f — f-lloo < &/2. It is thus enough to prove
P(IX — f-lloo < &/2) = e 2*(1 A )»)(4R/8)1/ﬁ86871/ﬂ. By assumption, g and & are contin-

uous and positive and, therefore, cp :=inf_sp_1<x<2r (x) A h(x) is positive. Due to (5),
Ir(j,8)| <2Rand e * /1 > e~ %,

P(IX — f-lle </2)

1)
ZH(k:N—l,r(j,S)—%Eajfr(j,fs),

Lo .o 807 .
tje|:]8,]8+Ii|,]20,...,N—1>

o (ut)'(2)
4 4
2 22R/e)V/B (/€0 g, B\
> 72 (1 A 2)ZER/E) (?(21%)— /Be™p ) .
Choosing ¢ = ¢(8, R) large enough, the result follows. [
LEMMA A.3. Consider the randomly initialized CPP (4) and assume that there are con-
stants y, L > 0 such that P(|A;| > s) < L~ le—Ls" for all s > 0. Then for any M > 0, any

& >0, and any K > 1 there exists a Borel set ® and constants C', C" that only depend on
M, L, y, such that

K C'K
P(X ¢ ©) <C'KM& and Ni(e,0,]-h) < C”(—) .
3
PROOF. If N ~Pois(A), K > 1 and M > max(2Ae, 1), then, using Stirling’s formula,

XAk s ,\e)k

PNzMK) = 3 o= Y (7

k=[MK] k=[MK]
(2D
ad 1
<y (_) < K-MK
k=[MK] 2K

With 7 := (MK + 1)L~} log K YI/¥ and the assumption on the tail behavior of the jump
heights, we obtain

IP’({N > MK} U { max |A;] > t}) <P(N > MK) + MKP(|Ay| > 1)

(22) l=0,...,N
<(1+M/L)K MK,

Define ® as the space of piecewise constant functions f with | f(0)| < ¢, maximal jump

size bounded by ¢ and less than M K jumps. By the computations above, P(X ¢ ®) < (1 +
M/L)K MK,
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Next, we compute the bracketing number of ® with respect to the L'-norm. Let r, be such
that e/(4MKt) <r. <&/(2MKt) and 1/r, is an integer. Define x; := jr, for0 < j < 1/rs.
In y-direction, consider the grid points y; := £e/2, L = —S,, ..., S, with S; = |[2M Kt/¢].
Let ©° C © be the space of piecewise constant functions in ® with all jumps locations on the
grid points x;, and function values in the discrete set {y; : £ = —S,, ..., S¢}. We prove that
for any function f € ®, there exists a function s € ®Y such that h < fand |h— f1 <e.
Consider

1/re
h= Jg max{yz Ty < XE[)I;l;’liI;l,Xj] f(x)}l[xjflyxj).
Obviously, 1 € ® and h < f. Let us show ||k — f]|; < e. Observe that ||s — EHOO <eg/2
with 1 = Z}/:rj minxe[xj_l,ﬁ) F L,y xj- If f jumps k times on the interval [x;_1, x;)
then SUPyelx;_i.x)) | f(x) — h(x)| < kt. Since the total number of jumps is bounded by M K,
If =kl < MKtre = e/2 implying || f — hll; < e. There are at most ('}/)(2S, + 1)¢*!
functions in ®° with £ jumps. The cardinality of ®° is therefore bounded by

MK 1/}’5 MK
=0 =0

< C//<£)C K
- £

for suitable constants C’ and C”. O

PROOF OF THEOREM 2.1. For all both cases, we apply Lemma A.2 and Lemma A.3
to verify the conditions of Theorem A.1. For (i), we choose ¢ = (logn/ n)B/B+D and K =
(n/logn)/®B+D in Lemma A.3. (i) can be proved in the same way with § = 1. [

A.2. Proof of Theorem 2.2.

PROPOSITION A.4. Consider the randomly initialized subordinator prior. If v satisfies
v(x) < Cx73/2 for all x, then there exists a positive constant ¢ > 0 such that

inf  P(|X — <3g, X < > e foralle € 0,1/2).
P (I1X = follh < < fo) = f 0,1/2)

PROOF. We shall use the following small ball probability of an «-stable subordinator
around zero:
lim &%/~ Jog(P (|| X |00 < £)) € (=00, 0),
e—0
which follows from Proposition 1 in [35] noting that for nondecreasing functions starting in
zero the 1-variation equals the supremum norm. This result shows that the «-stable subordi-
nators satisfy the small ball probability in L°° with rate e~ ¢ ~ifand only if « < 1/2.
Introducing v~ (x) = (v(x) Av(1)1O0<x <1)+v(x)1(x > 1) and v. =v — v-, we can
decompose X as Xo+ X =+ X~ with two independent Lévy processes X =, X~ having Lévy
densities v, v, respectively. The small jump process X = is a subordinator whose Lévy
density is smaller than vy 2 (x) = C x 3 21(x > 0), the Lévy density of a stable subordinator
X1/ of index a = 1/2. We can thus couple X < and X1/?) such that X~ < X{"/* holds for
all + > 0 a.s. By the above result, this gives

log(P(|X <], <€) 2 &
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Because of A := [v= < v(1) + /v < 00, the process X~ is a CPP with jump distribution
G=v. /A If fy € M(R) and ¢ < R, then fy — & € M(2R) and by Lemma A.2(i),

inf P(|X +X>— —¢ <2, X< —¢ ze—ZAlAASR/egce*I'
foe M(R) (%o (fo—ol, fo—¢) ( )

By independence, we conclude for X = Xg+ X~ + X~
log(P(IX — folli <3e, X < fo))
> log(P(|Xo+ X~ = (fo— o), =26, Xo+ X~ < fo—e, X~ <¢))
> —e Mog(e™ ) —e .

This gives the result. [

LEMMA A.5. Consider the randomly initialized subordinator prior. Assume that there
are constants y, L > 0 such that v(x) < Lx_3/2for all x and fsoo v(x)+hx)+h(—x)dx <
L1e=Ls” for all s > 1. Then for any M, A > O there exist Borel sets (©,), and constants
C’, C”, such that for all sufficiently large n,

P(X ¢ ©,) < C"e™ M8 and - Ni(A(flogn/n), Oy, || - 1) < C"eCVrToen,

PROOF. Let § = 1/(2M\/nlogn). We can decompose the subordinator in X = X +
X+ X., where X_ and X. are subordinators with Lévy densities v (x) = v(x)1(x <)
and v> = v — v, respectively. Observe that by the Lévy—Khintchine formula, extended to
the moment-generating function,

E[66_1X<(1)]

8 1
— T = exp(/(; (&% — )v(x)dx — 5)

)
< exp(/o (e — 1);—Cv(x)dx - é)

2L(e — 1)8'/2 — 1)
8

P(X_()>1)<

< exp(
< e—M«/n logn

for all sufficiently large n. The process X is a CPP with intensity A = [{° v(x) <2L§ —1/2

and jump density v (x)/A. If N ~ Pois(A) denotes the number of jumps of X~ on [0, 1], we
find by (21), P(N > max(2re, 1)m) <m™". Let Ag := X and denote the jump heights of
the CPP X. by A;,i =1,.... Let ¢ :=inf,¢[1,2) v(x) and observe that cp > 0 because v is
continuous and positive. Arguing as for (22), with 7 := 1 v (L™ (m + 1) logm)'/7,
P max |A;]=1) <P(IAo| = 1) + mmax(2Ae, 1)& Fm
i=0,...,.N A - A

< (2 + %max(Ze, 1/c0)>e_Lty +m"

1
< (Z max(2e, 1/co) + 3)m_m.

Put m = 4M/n/logn and define ®, as the space of piecewise constant functions f with
| f(0)] <t, less than m jumps, minimal jump size § and maximal jump size bounded by ¢.
For all sufficiently large n,

mm Se—2M~/n/logn(logn—loglogn) Ee—M«/nlogn.
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From the computations above, P(X- ¢ ©>) < const. x e~ Mvrlogn Tet @005 = {g:
gmonotone, g < 1 and all jumps are <8} and O, ={f =g+ h:g € Onon,s, h € O, } then

also P(X ¢ ©,) < const. x e~ Mv71og7 due to the uniqueness of the decomposition f = g +h
in ®,.
Notice that

N[(87 ®n, “ ' ”1) = N[(8/25 ®mon,0, || ’ ||1)N[(8/27 ®;7 || : ”1)

It is well known ([37], 2.7.5 Theorem) that N[(¢/2, ®mon,0, || - [|1) < eX/¢ for some constant
K. A bound for the second factor follows from the proof of Lemma A.3 with K, = m. This
completes the proof. [J

PROOF OF THEOREM 2.2. Using Lemma A.2 with ¢ = {/logn/n and A.5 yield the
conditions of Theorem A.1 for contraction rate «/logn/n. [

APPENDIX B: PROOFS FOR SECTION 4.3
B.1. Proof of Proposition 4.6. The Bayes formula (3) gives for any m > 0,
Sicam e oD deVfo (N)dTI(f)

e VrlognTI(X 1 || X — fo||1<v10gn/n X = fo)

with X a CPP with intensity A. Bounding e /o=t <1 and taking expectation with re-
spect to fp yields

(K >m | N) <

e./nlogn (K >m)
(X : | X = folli <+/logn/n, X < fo)’
If m > 1, we find by Stirling’s approximation m™e™™" < 2xm™+1/2¢™™" < m! <m™ and
since K follows under the prior a Poisson distribution with intensity A,

m X0 5 { m
(K >m)<e~ )»)‘ )2’ :)‘_'S)Lm m—mlogm
m!

(23) Ef[TI(K =m | N)] <

as well as [T(K = m) > A™e 102" The latter inequality will be used to derive a lower
bound for the denominator. For any K > 1,

2k—1 k
Mg = 1->1) ¢t
K [ kX(:)ak (->t): kE[ 7K K)

3 k
Sfotes1) — 7K < Z(:)ae < fo(tk)}

3
X: || X — <—,X< ,
c { IX ~ foloo = 5 _fo}

where k =0, ..., K (except for tp :=0) and tx 41 := 1. On Mg, forany k=1,..., K,
k—1 -1 3
D ar < foltk1) < —— + 5 =< foltkt1) — 7K = Zaz,
=0 K
and subtracting Z e;o ay on both sides yields a > 0. The difference between the upper bound

and the lower bound for le=0 ag in the definition of Mg is fo(tx) — fo(tx+1) + 3/(2K) <
1/K. Each of the a; ranges therefore over an interval of length > 1/K in [0, 1]. For K, :=
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[v/n/logn], this gives with (19) the lower bound,

logn
H(X X = foll =[5 X < fo)

K,
MK =K,) & ([ 1]>
> =TT inf et —
QK K e =y S\ T g,

1 Kn p—r—KylogK,, c Ky+1
>
T QKpf ((y + 1)1(,?“)

where we used that x — x? is monotone for the last inequality. Consequently, there exists a

constant C = C(, ¢, y), such that with (23),
Ef()[H(K >m | N)] < eA+A~/nlogn-l—mlog)»—mlogm—km.

Choosing m = c¢*\/n/logn with ¢* large enough, the right-hand side converges to zero.
B.2. Proof of Theorem 4.7.

LEMMA B.1. If fo(x)=ax +bfora>0,becR, then
1
int [ 1ot = fooldr = o

feM(K, ) Jo

PROOF. For any real ¢ and r < s, we have frs | fo(x) —cldx = a(s — r)2/4, and hence
K

1 k
inf / | fo(x) — f(x)|dx > inf Z inf t | fo(x) — ck|dx

feM(K,00) Jo O0=:tp<t1 <---<tg:=1 =1 ceRJy
a a
. 2
>~ inf (k = —1)" = —,
4 0=:t()§l‘1§~~-§t](:=1]; 4K
where we use Jensen’s inequality for the last step. [

LEMMA B.2. For fy= (% +I)A % and any sequence M, — 00,

Py, (/Ol(fMLE(x) — fo(x)) dx > %) — 0.

PrROOF. By Markov inequality,

Py, (/OI(J?MLE — fo(x))dx > —) / [FMEE () — fo(x)]dx

The proof of Theorem 3.9 in [29], specifically the last equation display of the proof and
replacing [0, 1] by [0, T] with e = T — 1, yields [y E ;[ /M (x) — fo(x)]dx = O(n~'/?),
and thus the result. [

PROOF OF THEOREM 4.7. Lemma B.2 shows that it is enough to prove the existence of
a positive constant ¢/, such that

Efo[n<ﬂz[)1f0(x)dx—EW‘N)
- 1(/01(F“LE<x> — fot) dx < c\/@)] ~0.

By Proposition 4.6, we know that the posterior concentrates on models with K, <
c*s/n/logn for some positive constant ¢*. Applying Lemma B.1, this means that the poste-

(24)
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rior puts asymptotically all mass on paths f with

1 1 [logn
/0|fo<x)—f<x>|dx>— _

— 8c* n

Since the posterior also puts only mass on functions f with f < fMLE

asymptotically all mass on ¥ with

, the posterior puts

1 1
9= /O o) dx + /O (f() = fo))dx

< 1 dx +2 L e d 1 d
_/0 folx)dx + /O(f ™) — folx)) x—/o £ () — fox)| dx

1 1 1 J[logn
< [ pwdx+2 [(PUE) - foto)dx - o[22,
0 0 8c n
Choosing ¢’ = # in (24) yields the assertion for ¢ = % —2c' =1 616*. O
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Nonparametric Bayesian analysis of the compound Poisson prior
for support boundary recovery” (DOI: 10.1214/19-A0S1853SUPP; .pdf). The remaining
proofs are given in the supplement. The supplement contains also analogous results for ran-
dom histogram priors.
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