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In the absence of explicit regularization, Kernel “Ridgeless” Regression
with nonlinear kernels has the potential to fit the training data perfectly. It has
been observed empirically, however, that such interpolated solutions can still
generalize well on test data. We isolate a phenomenon of implicit regulariza-
tion for minimum-norm interpolated solutions which is due to a combination
of high dimensionality of the input data, curvature of the kernel function and
favorable geometric properties of the data such as an eigenvalue decay of
the empirical covariance and kernel matrices. In addition to deriving a data-
dependent upper bound on the out-of-sample error, we present experimental
evidence suggesting that the phenomenon occurs in the MNIST dataset.

1. Introduction. According to conventional wisdom, explicit regularization should be
added to the least-squares objective when the Hilbert space H is high or infinite dimensional
[1, 11, 14, 15, 24, 25, 28]:

min
f ∈H

1

n

n∑
i=1

(
f (xi) − yi

)2 + λ‖f ‖2
H.(1.1)

The regularization term is introduced to avoid “overfitting” since kernels provide enough
flexibility to fit training data exactly (i.e., interpolate it). From the theoretical point of view,
the regularization parameter λ is a knob for balancing bias and variance, and should be chosen
judiciously. Yet, as noted by a number of researchers in the last few years,1 the best out-of-
sample performance, empirically, is often attained by setting the regularization parameter to
zero and finding the minimum-norm solution among those that interpolate the training data.
The mechanism for good out-of-sample performance of this interpolation method has been
largely unclear [5, 31].

As a concrete motivating example, consider the prediction performance of Kernel Ridge
Regression for various values2 of the regularization parameter λ on subsets of the MNIST
dataset. For virtually all pairs of digits, the best out-of-sample mean squared error is achieved
at λ = 0. Contrary to the standard bias-variance-tradeoffs picture we have in mind, the test
error is monotonically decreasing as we decrease λ (see Figure 1 and further details in Sec-
tion 6).

We isolate what appears to be a new phenomenon of implicit regularization for interpolated
minimum-norm solutions in Kernel “Ridgeless” Regression. This regularization is due to the
curvature of the kernel function and “kicks in” only for high-dimensional data and for “fa-
vorable” data geometry. We provide out-of-sample statistical guarantees in terms of spectral
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FIG. 1. Test performance of Kernel Ridge Regression on pairs of MNIST digits for various values of regulariza-
tion parameter λ, normalized by variance of y in the test set (for visualization purposes).

decay of the empirical kernel matrix and the empirical covariance matrix, under additional
technical assumptions.

Our analysis rests on the recent work in random matrix theory. In particular, we use a
suitable adaptation of the argument of [13] who showed that high-dimensional random kernel
matrices can be approximated in spectral norm by linear kernel matrices plus a scaled identity.
While the message of [13] is often taken as “kernels do not help in high dimensions,” we show
that such a random matrix analysis helps in explaining the good performance of interpolation
in Kernel “Ridgeless” Regression.

1.1. Literature review. Grace Wahba [28] pioneered the study of nonparametric regres-
sion in reproducing kernel Hilbert spaces (RKHS) from the computational and statistical
perspectives. One of the key aspects in that work is the role of the decay of eigenvalues of the
kernel (at the population level) in rates of convergence. The analysis relies on explicit regu-
larization (ridge parameter λ) for the bias-variance trade-off. The parameter is either chosen
to reflect the knowledge of the spectral decay at the population level [11] (typically unknown
to statistician), or by the means of cross-validation [15]. Interestingly, the explicit formula of
Kernel Ridge Regression has been introduced as “kriging” in the literature before, and was
widely used in Bayesian statistics [9, 28].

In the learning theory community, Kernel Ridge Regression is known as a special case
of Support Vector Regression [24, 26, 27]. Notions like metric entropy [10] or “effective di-
mension” [8] were employed to analyze the guarantees on the excess loss of Kernel Ridge
Regression, even when the model is misspecified. We refer the readers to [17] for more de-
tails. Again, the analysis leans crucially on the explicit regularization, as given by a careful
choice of λ, for the model complexity and approximation trade-off, and mostly focusing on
the fixed dimension and large sample size setting. However, to the best of our knowledge, the
literature stays relatively quiet in terms of what happens to the minimum norm interpolation
rules, that is, λ = 0. As pointed out by [4, 5], the existing bounds in nonparametric statis-
tics and learning theory do not apply to interpolated solution either in the regression or the
classification setting. In this paper, we aim to answer when and why interpolation in RKHS
works, as a starting point for explaining the good empirical performance of interpolation
using kernels in practice [5, 31].

2. Preliminaries.

2.1. Problem formulation. Suppose we observe n i.i.d. pairs (xi, yi), 1 ≤ i ≤ n, where xi

are the covariates with values in a compact domain � ⊂ R
d and yi ∈ R are the responses (or,

labels). Suppose the n pairs are drawn from an unknown probability distribution μ(x, y). We
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are interested in estimating the conditional expectation function f∗(x) = E(y|x = x), which
is assumed to lie in a Reproducing Kernel Hilbert Space (RKHS) H. Suppose the RKHS is
endowed with the norm ‖·‖H and corresponding positive definite kernel K(·, ·) : �×� →R.
The interpolation estimator studied in this paper is defined as

f̂ = arg min
f ∈H

‖f ‖H, s.t. f (xi) = yi, ∀i.(2.1)

Let X ∈R
n×d be the matrix with rows x1, . . . , xn and let Y be the vector of values y1, . . . , yn.

Slightly abusing the notation, we let K(X,X) = [K(xi, xj )]ij ∈ R
n×n be the kernel matrix.

Extending this definition, for x ∈ � we denote by K(x,X) ∈ R
1×n the matrix of values

[K(x, x1), . . . ,K(x, xn)]. When K(X,X) is invertible, solution to (2.1) can be written in the
closed form

f̂ (x) = K(x,X)K(X,X)−1Y.(2.2)

In this paper, we study the case when K(X,X) is full rank, taking (2.2) as the starting
point. For this interpolating estimator, we provide high-probability (with respect to a draw of
X) upper bounds on the integrated squared risk of the form

E
(
f̂ (x) − f∗(x)

)2 ≤ φn,d

(
X,f ∗)

.(2.3)

Here, the expectation is over x ∼ μ and Y |X, and φn,d is a data-dependent upper bound.
We remark that upper bounds of the form (2.3) also imply prediction loss bounds for excess
square loss with respect to the class H, as E(f̂ (x)−f∗(x))2 = E(f̂ (x)−y)2 −E(f∗(x)−y)2.

2.2. Notation and background on RKHS. For an operator A, its adjoint is denoted by A∗.
For real matrices, the adjoint is the transpose. For any x ∈ �, let Kx :R→ H be such that

f (x) = 〈Kx,f 〉H = K∗
x f.(2.4)

It follows that for any x, z ∈ �

K(x, z) = 〈Kx,Kz〉H = K∗
xKz.(2.5)

Let us introduce the integral operator Tμ : L2
μ → L2

μ with respect to the marginal measure
μ(x):

Tμf (z) =
∫

K(z, x)f (x) dμ(x),(2.6)

and denote the set of eigenfunctions of this integral operator by e(x) = {e1(x), e2(x), . . . ,

ep(x)}, where p could be ∞. We have that

Tμei = tiei, and
∫

ei(x)ej (x) dμ(x) = δij .(2.7)

Denote T = diag(t1, . . . , tp) as the collection of nonnegative eigenvalues. Adopting the spec-
tral notation,

K(x, z) = e(x)∗T e(z).

Via this spectral characterization, the interpolation estimator (2.1) takes the following form:

f̂ (x) = e(x)∗T e(X)
[
e(X)∗T e(X)

]−1
Y.(2.8)

Extending the definition of Kx , it is natural to define the operator KX : Rn → H. Denote the
sample version of the kernel operator to be

T̂ := 1

n
KXK∗

X(2.9)
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and the associated eigenvalues to be λj (T̂ ), indexed by j . The eigenvalues are the same as
those of 1

n
K(X,X). It is sometimes convenient to express T̂ as the linear operator under the

basis of eigenfunctions, in the following matrix sense:

T̂ = T 1/2
(

1

n
e(X)e(X)∗

)
T 1/2.

We write Eμ[·] to denote the expectation with respect to the marginal x ∼ μ. Furthermore,
we denote by

‖g‖2
L2

μ
=

∫
g2 dμ(x) = Eμg2(x)

the squared L2 norm with respect to the marginal distribution. The expectation EY |X[·] de-
notes the expectation over y1, . . . , yn conditionally on x1, . . . , xn.

3. Main result. We impose the following assumptions:

(A.1) High dimensionality: there exists universal constants c,C ∈ (0,∞) such that c ≤
d/n ≤ C. Denote by �d = Eμ[xix

∗
i ] the covariance matrix, assume that the operator norm

‖�d‖op ≤ 1.

(A.2) (8 + m)-moments: zi := �
−1/2
d xi ∈ R

d , i = 1, . . . , n, are i.i.d. random vectors.
Furthermore, the entries zi(k),1 ≤ k ≤ d are i.i.d. from a distribution with Ezi(k) = 0,

Var(zi(k)) = 1 and |zi(k)| ≤ C · d 2
8+m , for some m > 0.

(A.3) Noise condition: there exists a σ > 0 such that E[(f∗(x) − y)2|x = x] ≤ σ 2 for all
x ∈ �.

(A.4) Nonlinear kernel: for any x ∈ �, K(x,x) ≤ M . Furthermore, we consider the inner
product kernels of the form

K
(
x, x′) = h

(
1

d

〈
x, x′〉)(3.1)

for a nonlinear smooth function h(·) :R →R in a neighborhood of 0.

While we state the main theorem for inner product kernels, the results follow under suitable
modifications3 for Radial Basis Function (RBF) kernels of the form

K
(
x, x′) = h

(
1

d

∥∥x − x′∥∥2
)
.(3.2)

We postpone the discussion of the assumptions until after the statement of the main theorem.
Let us first define the following quantities related to curvature of h:

α := h(0) + h′′(0)
Tr(�2

d)

d2 ,

β := h′(0),(3.3)

γ := h

(
Tr(�d)

d

)
− h(0) − h′(0)

Tr(�d)

d
.

3We refer the readers to [13] for explicit extensions to RBF kernels.
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THEOREM 1. Define

φn,d(X,f∗) = V + B

:= 8σ 2‖�d‖op

d

∑
j

λj (
XX∗

d
+ α

β
11∗)

[γ
β

+ λj (
XX∗

d
+ α

β
11∗)]2

(3.4)

+ ‖f∗‖2
H inf

0≤k≤n

{
1

n

∑
j>k

λj

(
KXK∗

X

) + 2M

√
k

n

}
.

Under the assumptions (A.1)–(A.4) and for d large enough, with probability at least 1−2δ−
d−2 (with respect to a draw of design matrix X), the interpolation estimator (2.2) satisfies

EY |X‖f̂ − f∗‖2
L2

μ
≤ φn,d(X,f∗) + ε(n, d).(3.5)

Here, the remainder term ε(n, d) = O(d− m
8+m log4.1 d) + O(n− 1

2 log0.5(n/δ)).

A few remarks are in order. First, the upper bound is data-dependent and can serve as a
certificate (assuming that an upper bound on σ 2,‖f∗‖2

H can be guessed) that interpolation
will succeed. The bound also suggests the regimes when the interpolation method should
work. The two terms in the estimate of Theorem 1 represent upper bounds on the variance
and bias of the interpolation estimator, respectively. Unlike the explicit regularization analysis
(e.g., [8]), the two terms are not controlled by a tunable parameter λ. Rather, the choice of
the nonlinear kernel K itself leads to an implicit control of the two terms through curvature
of the kernel function, favorable properties of the data and high dimensionality. We remark
that for the linear kernel (h(a) = a), we have γ = 0, and the bound on the variance term can
become very large in the presence of small eigenvalues. In contrast, curvature of h introduces
regularization through a nonzero value of γ . We also remark that the bound “kicks in” in the
high-dimensional regime: the error term decays with both d and n.

We refer to the favorable structure of eigenvalues of the data covariance matrix as favor-
able geometric properties of the data. The first term (variance) is small when the data matrix
enjoys certain decay of the eigenvalues, thanks to the implicit regularization γ . The second
term (bias) is small when the eigenvalues of the kernel matrix decay fast or the kernel ma-
trix is effectively low rank. Note that the quantities α, β are constants, and γ scales with
(Tr(�d)/d)2. We will provide a detailed discussion on the trade-off between the bias and
variance terms for concrete examples in Section 4.

We left the upper bound of Theorem 1 in a data-dependent form for two reasons. First, an
explicit dependence on the data tells us whether interpolation can be statistically sound on
the given dataset. Second, for general spectral decay, current random matrix theory falls short
of characterizing the spectral density nonasymptotically except for special cases [7, 13].

Discussion of the assumptions.

• The assumption in (A.1) that c ≤ d/n ≤ C emphasizes that we work in a high-dimensional
regime where d scales on the order of n. This assumption is used in the proof of [13], and
the particular dependence on c, C can be traced in that work if desired. Rather than doing
so, we “folded” these constants into mild additional power of logd . The same goes for the
assumption on the scaling of the trace of the population covariance matrix.

• The assumption in (A.2) that Zi(k) are i.i.d. across k = 1, . . . , d is a strong assumption
that is required to ensure the favorable high-dimensional effect. Relaxing this assumption
is left for future work.
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• The existence of (8 + m)-moments for |zi(k)| is enough to ensure |zi(k)| ≤ C · d 2
8+m for

1 ≤ i ≤ n, 1 ≤ k ≤ d almost surely (see Lemma 2.2 in [30]). Remark that the assumption
of existence of (8 + m)-moments in (A.2) is relatively weak. In particular, for bounded or
sub-Gaussian variables, m = ∞ and the error term ε(n, d) scales as d−1 +n−1/2, up to log
factors. See Lemma B.1 [21] for an explicit calculation in the Gaussian case.

• Finally, as already mentioned, the main result is stated for the inner product kernel, but can
be extended to the RBF kernel using an adaptation of the analysis in [13].

4. Behavior of the data-dependent bound. In this section, we estimate, both numer-
ically and theoretically, the nonasymptotic data-dependent upper bound in Theorem 1 in
several regimes. To illustrate the various trade-offs, we divide the discussion into two main
regimes: n > d and n < d . Without loss of generality, we take as an illustration the non-
linearity h(t) = exp(2t) and K(x, x′) = exp(2〈x, x′〉/d), with the implicit regularization
r := γ /β � (Tr(�d)/d)2. In our discussion, we take both n and d large enough so that the
residuals in Theorem 1 are negligible. The main theoretical results in this section, Corollaries
4.1 and 4.2, are direct consequences of the data-dependent bound in Theorem 1.

Case n > d . We can further bound the variance and the bias, with the choice k = 0, as

V � 1

d

∑
j

λj (
XX∗

d
)

[r + λj (
XX∗

d
)]2

= 1

n

d∑
j=1

λj (
XX∗

n
)

[d
n

r + λj (
XX∗

n
)]2

,(4.1)

B � 1

n

n∑
j=1

λj

(
KXK∗

X

) � r + 1

d

d∑
j=1

λj

(
XX∗

n

)
.(4.2)

We first illustrate numerically the bias-variance trade-off by varying the geometric prop-
erties of the data in terms of the population spectral decay of x. We shall parametrize the
eigenvalues of the covariance, for 0 < κ < ∞, as

λj (�d) = (
1 − (

(j − 1)/d
)κ)1/κ

, 1 ≤ j ≤ d.

The parameter κ controls approximate “low-rankness” of the data: the closer κ is to 0, the
faster does the spectrum of the data decay. This is illustrated in the top row of Figure 6 on
page 1344. By letting κ → 0, r can be arbitrary small as

Tr(�d)

d
�

∫ 1

0

(
1 − tκ

)1/κ
dt = 
(1 + 1/κ)2


(1 + 2/κ)
∈ [0,1].

We will focus on three cases, κ ∈ {e−1, e0, e1}, for the decay parameter, and values d = 100,
n ∈ {500,2000}. The data-dependent upper bounds on V and B are summarized in Table 1.
More detailed plots are postponed to Figure 6 (in this figure, we plot the ordered eigenvalues
and the spectral density for both the population and empirical covariances). Table 1 shows
that as κ increases (a slower spectral decay), the implicit regularization parameter becomes
larger, resulting in a decreasing variance and an increasing bias.

We also perform simulations to demonstrate the trade-off between bias and variance in
the generalization error. The result is shown in Figure 2. For each choice of (n, d) pair,
we vary the spectral decay of the kernel by changing gradually κ ∈ [e−2, e2], and plot the
generalization error on the log scale. We postpone the experiment details to Section 6.2, but
point out important phenomena observed in Figures 2–3: (1) an extremely fast spectral decay
(small κ) will generate insufficient implicit regularization that would hurt the generalization
performance due to a large variance term; (2) a very slow spectral decay (large κ) will result



GENERALIZATION OF KERNEL INTERPOLATION 1335

TABLE 1
Case n > d : variance bound V (4.1), bias bound B (4.2)

n/d = 5 n/d = 20

Spectral Decay Implicit Reg V B V B

κ = e−1 0.005418 14.2864 0.07898 9.4980 0.07891
κ = e0 0.2525 0.4496 0.7535 0.1748 0.7538
κ = e1 0.7501 0.1868 1.6167 0.05835 1.6165

in a large bias, which can also hurt the generalization performance; (3) certain favorable
spectral decay achieves the best trade-off, resulting in the best generalization error.

We now theoretically demonstrate scalings within the n > d regime when both V and B
vanish. For simplicity, we consider Gaussian x.

COROLLARY 4.1 (General spectral decay: n > d). Consider general eigenvalue decay
with ‖�d‖op ≤ 1. Then with high probability,

V � Tr(�−1
d )

n
, B � r + Tr(�d)

d
.

To illustrate the behavior of the estimates in Corollary 4.1, consider the following assump-
tions on the population covariance matrix.

EXAMPLE 4.1 (Low rank). Let �d = diag(1, . . . ,1,0, . . . ,0) with εd ones, ε ∈ (0,1). In
this case, r = ε2 and λj (XX∗/n) ≥ (1 − √

εd/n)2 with high probability by standard results
in random matrix theory. Then

V � εd

n

(1 − √
εd/n)2

(ε2d/n + (1 − √
εd/n)2)2

� d

n
ε, B � ε2 + ε.

Therefore, as ε → 0, both terms vanish for n > d .

EXAMPLE 4.2 (Approximately low rank). Let �d = diag(1, ε, . . . , ε) for small ε > 0. In
this case, r = ε2 and λj (XX∗/n) ≥ ε(1 − √

d/n)2 with high probability. Then

V � d

n

ε(1 − √
d/n)2

(ε2d/n + ε(1 − √
d/n)2)2

� d

n

1

ε
, B � ε2 + ε.

For instance, for ε � (d/n)1/2, both terms vanish for n � d .

FIG. 2. Generalization error as a function of varying spectral decay. Here, d = 200, n = 400,1000,2000,4000.
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FIG. 3. Generalization error as a function of varying spectral decay. Here, n = 200, d = 400,1000,2000,4000.

EXAMPLE 4.3 (Nonparametric slow decay). Consider λj (�d) = j−α for 0 < α < 1.
Then r � d−2α . One can bound w.h.p. (see (B.4))

V � 1

n

∫ d

0
tα dt � dα+1

n
, B � d−2α + d−α.

Balancing the two terms, one obtains a nonparametric upper bound n− α
2α+1 . A similar analysis

can be carried out for α ≥ 1.

Case d > n. In this case, we can further bound the variance and the bias, with the choice
k = 0, as

V � 1

d

n∑
j=1

λj (
XX∗

d
)

[r + λj (
XX∗

d
)]2

,(4.3)

B � 1

n

n∑
j=1

λj

(
KXK∗

X

) � r + 1

n

n∑
j=1

λj

(
XX∗

d

)
.(4.4)

We first numerically illustrate the trade-off between the variance and the bias upper
bounds. We consider three cases κ ∈ {e−1, e0, e1}, and d = 2000, n ∈ {400,100}. As be-
fore, we find a trade-off between V and B with varying κ ; the results are summarized in
Table 2. Additionally, Figure 7 provides a plot of the ordered eigenvalues, as well as spec-
tral density for both the population and empirical covariances. As one can see, for a general
eigenvalue decay, the spectral density of the population and the empirical covariance can be
quite distinct. We again plot the generalization error in Figure 3 as a function of κ .

We now theoretically showcase an example in the d � n regime where both V and B
vanish. Again consider x being Gaussian for simplicity.

TABLE 2
Case d > n: variance bound V (4.3), bias bound B (4.4)

d/n = 5 d/n = 20

Spectral Decay Implicit Reg V B V B

κ = e−1 0.005028 3.9801 0.07603 0.7073 0.07591
κ = e0 0.2503 0.1746 0.7513 0.04438 0.7502
κ = e1 0.7466 0.06329 1.6106 0.01646 1.6102
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COROLLARY 4.2 (General spectral decay: d > n). With high probability, it holds that

V � n

d

1

4r
, B � r + Tr(�d)

d
.

The variance bound follows from the fact that t
(r+t)2 ≤ 1

4r for all t .

EXAMPLE 4.4 (Favorable spectral decay for d � n). Recall Tr(�d)/d = r1/2. With the
choice r = (n/d)2/3, both terms vanish for d � n as

V � n

d

1

4r
, B � r1/2.

In this case, the spectrum satisfies Tr(�d)/d = O((n/d)1/3).

5. Proofs. To prove Theorem 1, we decompose the mean square error into the bias and
variance terms (Lemma 5.1), and provide data-dependent bound for each (Sections 5.2 and
5.3).

5.1. Bias-variance decomposition. The following is a standard bias-variance decompo-
sition for an estimator. We remark that it is an equality, and both terms have to be small to
ensure the desired convergence.

LEMMA 5.1. The following decomposition for the interpolation estimator (2.2) holds:

EY |X‖f̂ − f∗‖2
L2

μ
= V + B,(5.1)

where

V :=
∫

EY |X
∣∣K∗

xKX

(
K∗

XKX

)−1(
Y − E[Y |X])∣∣2 dμ(x),(5.2)

B :=
∫ ∣∣K∗

x

[
KX

(
K∗

XKX

)−1
K∗

X − I
]
f∗

∣∣2 dμ(x).(5.3)

PROOF OF LEMMA 5.1. Recall the closed form solution of the interpolation estimator:

f̂ (x) = K∗
xKX

(
K∗

XKX

)−1
Y = K(x,X)K(X,X)−1Y.

Define E = Y − E[Y |X] = Y − f∗(X). Since EY |XE = 0, we have

f̂ (x) − f∗(x) = K∗
xKX

(
K∗

XKX

)−1
E + K∗

x

[
KX

(
K∗

XKX

)−1
K∗

X − I
]
f∗,

EY |X
(
f̂ (x) − f∗(x)

)2 = EY |X
(
K∗

xKX

(
K∗

XKX

)−1
E

)2

+ ∣∣K∗
x

[
KX

(
K∗

XKX

)−1
K∗

X − I
]
f∗

∣∣2.
Using Fubini’s theorem,

EY |X‖f̂ − f∗‖2
L2

μ
=

∫
EY |X

(
f̂ (x) − f∗(x)

)2
dμ(x)

=
∫

EY |X
∣∣K∗

xKX

(
K∗

XKX

)−1
E

∣∣2 dμ(x)

+
∫ ∣∣K∗

x

[
KX

(
K∗

XKX

)−1
K∗

X − I
]
f∗

∣∣2 dμ(x). �
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5.2. Variance. In this section, we provide upper estimates on the variance part V in (5.2).

THEOREM 2 (Variance). Let δ ∈ (0,1). Under the assumptions (A.1)–(A.4), with proba-
bility at least 1 − δ − d−2 with respect to a draw of X,

V ≤ 8σ 2‖�d‖
d

∑
j

λj (
XX∗

d
+ α

β
11∗)

[γ
β

+ λj (
XX∗

d
+ α

β
11∗)]2

+ 8σ 2

γ 2 d−(4θ−1) log4.1 d,(5.4)

for θ = 1
2 − 2

8+m
and for d large enough.

REMARK 5.1. Let us discuss the first term in equation (5.4) and its role in implicit regu-
larization induced by the curvature of the kernel, eigenvalue decay and high dimensionality.
In practice, the data matrix X is typically centered, so 1∗X = 0. Therefore, the first term is
effectively ∑

j

fr

(
λj

(
XX∗

d

))
, where fr(t) := t

(r + t)2 ≤ 1

4r
.

This formula explains the effect of implicit regularization, and captures the “effective rank”
of the training data X. We would like to emphasize that this measure of complexity is distinct
from the classical notion of effective rank for regularized kernel regression [8], where the
“effective rank” takes the form

∑
j gr(tj ) with gr(t) = t/(r + t), with tj is the eigenvalue of

the population integral operator T .

PROOF OF THEOREM 2. From the definition of V and E[Y |X] = f∗(X),

V =
∫

EY |X Tr
(
K∗

xKX

(
K∗

XKX

)−1(
Y − f∗(X)

)(
Y − f∗(X)

)∗
× (

K∗
XKX

)−1
K∗

XKx

)
dμ(x)

≤
∫ ∥∥(

K∗
XKX

)−1
K∗

XKx

∥∥2∥∥EY |X
[(

Y − f∗(X)
)(

Y − f∗(X)
)∗]∥∥dμ(x).

Due to the fact that EY |X[(Yi − f∗(Xi))(Yj − f∗(Xj ))] = 0 for i �= j , and EY |X[(Yi −
f∗(Xi))

2] ≤ σ 2, we have that ‖EY |X[(Y − f∗(X))(Y − f∗(X))∗]‖ ≤ σ 2, and thus

V ≤ σ 2
∫ ∥∥(

K∗
XKX

)−1
K∗

XKx

∥∥2
dμ(x) = σ 2Eμ

∥∥K(X,X)−1K(X,x)
∥∥2

.

Let us introduce two quantities for the ease of derivation. For α, β , γ defined in (3.3), let

K lin(X,X) := γ I + α11T + β
XX∗

d
∈ R

n×n,(5.5)

K lin(X,x) := β
Xx∗

d
∈ R

n×1,(5.6)

and K lin(x,X) being the transpose of K lin(X,x). By Proposition A.2, with probability at
least 1 − δ − d−2, for θ = 1

2 − 2
8+m

the following holds:∥∥K(X,X) − K lin(X,X)
∥∥ ≤ d−θ (

δ−1/2 + log0.51 d
)
.

As a direct consequence, one can see that∥∥K(X,X)−1∥∥ ≤ 1

γ − d−θ (δ−1/2 + log0.51 d)
≤ 2

γ
,(5.7)
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∥∥ ≤ 1 + ∥∥K(X,X)−1∥∥

· ∥∥K(X,X) − K lin(X,X)
∥∥(5.8)

≤ γ

γ − d−θ (δ−1/2 + log0.51 d)
≤ 2,

provided d is large enough, in the sense that

d−θ (
δ−1/2 + log0.51 d

) ≤ γ /2.

By Lemma B.2 (for Gaussian case, Lemma B.1),

Eμ

∥∥K(x,X) − K lin(x,X)
∥∥2 ≤ d−(4θ−1) log4.1 d.(5.9)

Let us proceed with the bound

V ≤ σ 2Eμ

∥∥K(X,X)−1K(X,x)
∥∥2

≤ 2σ 2Eμ

∥∥K(X,X)−1K lin(X,x)
∥∥2

+ 2σ 2∥∥K(X,X)−1∥∥2 · Eμ

∥∥K(X,x) − K lin(X,x)
∥∥2

≤ 2σ 2∥∥K(X,X)−1K lin(X,X)
∥∥2Eμ

∥∥K lin(X,X)−1K lin(X,x)
∥∥2

+ 8σ 2

γ 2 d−(4θ−1) log4.1 d

≤ 8σ 2Eμ

∥∥K lin(X,X)−1K lin(X,x)
∥∥2 + 8σ 2

γ 2 d−(4θ−1) log4.1 d,

where the the third inequality relies on (5.9) and (5.7), and the fourth inequality follows from
(5.8).

One can further show that

Eμ

∥∥K lin(X,X)−1K lin(X,x)
∥∥2

= Eμ Tr
([

γ I + α11∗ + β
XX∗

d

]−1

× β
Xx
d

β
x∗X∗

d

[
γ I + α11∗ + β

XX∗

d

]−1)

= Tr
([

γ I + α11∗ + β
XX∗

d

]−1

× β2 X�dX∗

d2

[
γ I + α11∗ + β

XX∗

d

]−1)

≤ 1

d
‖�d‖Tr

([
γ I + α11∗ + β

X∗X
d

]−1

× β2 X∗X
d

[
γ I + α11∗ + β

X∗X
d

]−1)

≤ 1

d
‖�d‖Tr

([
γ I + α11∗ + β

X∗X
d

]−1
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×
[
β2 X∗X

d
+ αβ11∗

][
γ I + α11∗ + β

X∗X
d

]−1)

= 1

d
‖�d‖∑

j

λj (
XX∗

d
+ α

β
11∗)

[γ
β

+ λj (
XX∗

d
+ α

β
11∗)]2

.

We conclude that with probability at least 1 − δ − d−2,

V ≤ 8σ 2Eμ

∥∥K lin(X,X)−1K lin(X,x)
∥∥2 + 8σ 2

γ 2 d−(4θ−1) log4.1 d(5.10)

≤ 8σ 2‖�d‖
d

∑
j

λj (
XX∗

d
+ α

β
11∗)

[γ
β

+ λj (
XX∗

d
+ α

β
11∗)]2

+ 8σ 2

γ 2 d−(4θ−1) log4.1 d(5.11)

for d large enough. �

5.3. Bias.

THEOREM 3 (Bias). Let δ ∈ (0,1). The bias, under the only assumptions that K(x,x) ≤
M for x ∈ �, and Xi’s are i.i.d. random vectors, is upper bounded as

B ≤ ‖f∗‖2
H · inf

0≤k≤n

{
1

n

∑
j>k

λj

(
K(X,X)

) + 2

√
k

n

√∑n
i=1 K(xi, xi)2

n

}

+ 3M

√
log 2n/δ

2n
,

(5.12)

with probability at least 1 − δ.

PROOF OF THEOREM 3. In this proof, when there is no confusion, we use f (x) =∑p
i=1 ei(x)fi where fi denotes the coefficients of f under the basis ei(x). Adopting this

notation, we can write f (x) = e(x)∗f where f = [f1, f2, . . . , fp]T also denotes a possibly
infinite vector. For the bias, it is easier to work in the frequency domain using the spectral
decomposition. Recalling the spectral characterization in the preliminary section,

B =
∫ ∣∣e∗(x)T 1/2[

T 1/2e(X)
(
e(X)∗T e(X)

)−1
e(X)∗T 1/2 − I

]
T −1/2f∗

∣∣2 dμ(x)

≤
∫ ∥∥[

T 1/2e(X)
(
e(X)∗T e(X)

)−1
e(X)∗T 1/2 − I

]
T 1/2e(x)

∥∥2
dμ(x)

· ∥∥T −1/2f∗
∥∥2

= ‖f∗‖2
H

∫ ∥∥[
T 1/2e(X)

(
e(X)∗T e(X)

)−1
e(X)∗T 1/2 − I

]
T 1/2e(x)

∥∥2
dμ(x).

Here, we use the fact that T −1/2f∗ = ∑
i t

−1/2
i f∗,iei and ‖T −1/2f∗‖2 = ∑

i f
2∗,i/ti = ‖f∗‖2

H.
Next, recall the empirical Kernel operator with its spectral decomposition T̂ = Û�̂Û∗, with
�̂jj = 1

n
λj (K(X,X)). Denote the top k columns of Û to be Ûk , and P ⊥̂

Uk
to be projection to

the eigenspace orthogonal to Ûk . By observing that T 1/2e(X)(e(X)∗T e(X))−1e(X)∗T 1/2 is
a projection matrix, it is clear that for all k ≤ n,

B ≤ ‖f∗‖2
H

∫ ∥∥P ⊥̂
U

(
T 1/2e(x)

)∥∥2
dμ(x)

≤ ‖f∗‖2
H

∫ ∥∥P ⊥̂
Uk

(
T 1/2e(x)

)∥∥2
dμ(x).

(5.13)
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We continue the study of the last quantity using techniques inspired by [24]. Denote the
function g indexed by any rank-k projection Uk as

gUk
(x) := ∥∥PUk

(
T 1/2e(x)

)∥∥2 = Tr
(
e∗(x)T 1/2UkU

T
k T 1/2e(x)

)
.(5.14)

Clearly, ‖UkU
T
k ‖F = √

k. Define the function class

Gk := {
gUk

(x) : UT
k Uk = Ik

}
.

It is clear that gÛk
∈ Gk . Observe that gÛk

is a random function that depends on the data X,
and we will bound the bias term using the empirical process theory. It is straightforward to
verify that

Ex∼μ

∥∥P ⊥̂
Uk

(
T 1/2e(x)

)∥∥2 =
∫ ∥∥P ⊥̂

Uk

(
T 1/2e(x)

)∥∥2
dμ(x),

Ên

∥∥P ⊥̂
Uk

(
T 1/2e(x)

)∥∥2 = 1

n

n∑
i=1

∥∥P ⊥̂
Uk

(
T 1/2e(xi)

)∥∥2

= Tr
(
P ⊥̂

Uk
T̂ P ⊥̂

Uk

) = ∑
j>k

�̂jj = 1

n

∑
j>k

λj

(
K(X,X)

)
.

Using symmetrization Lemma B.4 with M = supx∈� K(x, x), with probability at least
1 − 2δ, ∫ ∥∥P ⊥̂

Uk

(
T 1/2e(x)

)∥∥2
dμ(x) − 1

n

∑
j>k

λj

(
K(X,X)

)
= Eμ

∥∥P ⊥̂
Uk

(
T 1/2e(x)

)∥∥2 − Ên

∥∥P ⊥̂
Uk

(
T 1/2e(x)

)∥∥2

≤ sup
Uk :UT

k Uk=Ik

(E − Ên)
∥∥P ⊥

Uk

(
T 1/2e(x)

)∥∥2

≤ 2Eε sup
Uk :UT

k Uk=Ik

1

n

n∑
i=1

εi

(∥∥T 1/2e(xi)
∥∥2 − ∥∥PUk

(
T 1/2e(xi)

)∥∥2)

+ 3M

√
log 1/δ

2n

by the Pythagorean theorem. Since εi ’s are symmetric and zero-mean and ‖T 1/2e(xi)‖2 does
not depend on Uk , the last expression is equal to

2Eε sup
g∈Gk

1

n

n∑
i=1

εig(xi) + 3M

√
log 1/δ

2n
.

We further bound the Rademacher complexity of the set Gk ,

Eε sup
g∈Gk

1

n

n∑
i=1

εig(xi) = Eε sup
Uk

1

n

n∑
i=1

εigUk
(xi)

= Eε

1

n
sup
Uk

〈
UkU

T
k ,

n∑
i=1

εiT
1/2e(xi)e

∗(xi)T
1/2

〉

≤
√

k

n
Eε

∥∥∥∥∥
n∑

i=1

εiT
1/2e(xi)e

∗(xi)T
1/2

∥∥∥∥∥
F
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by the Cauchy–Schwarz inequality and the fact that ‖UkU
T
k ‖F ≤ √

k. The last expression is
can be further evaluated by the independence of εi ’s,

√
k

n

{
Eε

∥∥∥∥∥
n∑

i=1

εiT
1/2e(xi)e

∗(xi)T
1/2

∥∥∥∥∥
2

F

}1/2

=
√

k

n

{
n∑

i=1

∥∥T 1/2e(xi)e
∗(xi)T

1/2∥∥2
F

}1/2

=
√

k

n

√∑n
i=1 K(xi, xi)2

n
.

Therefore, for all k ≤ n, with probability at least 1 − 2nδ,

B ≤ ‖f∗‖2
H · inf

0≤k≤n

{
1

n

∑
j>k

λj

(
K(X,X)

) + 2

√
k

n

√∑n
i=1 K(xi, xi)2

n

+ 3M

√
log 1/δ

2n

}
. �

REMARK 5.2. Let us compare the bounds obtained in this paper to those one can ob-
tain for classification with a margin. For classification, Theorem 21 in [2] shows that the
misclassification error is upper bounded with probability at least 1 − δ as

E1
(
yf̂ (x) < 0

) ≤ Eφγ

(
yf̂ (x)

) ≤ Ênφγ

(
yf̂ (x)

) + Cδ

γ
√

n

√∑n
i=1 K(xi, xi)

n
,

where φγ (t) := max(0,1 − t/γ ) ∧ 1 is the margin loss surrogate for the indicator loss 1(t <

0). By tuning the margin γ , one obtains a family of upper bounds.
Now consider the noiseless regression scenario (i.e., σ = 0 in (A.1)). In this case, the

variance contribution to the risk is zero, and

EY |X‖f̂ − y‖2
L2

μ
= EY |X‖f̂ − f∗‖2

L2
μ

= E
[
P ⊥

n f∗
]2

≤ E
[
P ⊥

k f∗
]2

≤ Ên

[
P ⊥

k f∗
]2 + C′

δ

√
k

n

√∑n
i=1 K(xi, xi)2

n
,

where Pk is the best-rank k projection (based on X) and P ⊥
k denotes its orthogonal projection.

By tuning the parameter k (similar as the 1/γ in classification), one can balance the RHS to
obtain the optimal trade-off.

However, classification is easier than regression in the following sense: f̂ can present a
nonvanishing bias in estimating f∗, but as long as the bias is below the empirical margin
level, it plays no effect in the margin loss φγ (·). In fact, for classification, under certain
conditions, one can prove exponential convergence for the generalization error [18].
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FIG. 4. Test error, normalized as in (6.1). The y-axis is on the log scale.

6. Experiments.

6.1. MNIST. In this section, we provide full details of the experiments on MNIST [19].
Our first experiment considers the following problem: for each pair of distinct digits (i, j),
i, j ∈ {0,1, . . . ,9}, label one digit as 1 and the other as −1, then fit the Kernel Ridge Regres-
sion with Gaussian kernel k(x, x′) = exp(−‖x − x′‖2/d), where d = 784 is the dimension
as analyzed in our theory (also the default choice in the Scikit-learn package [23]). For each
of the

(10
2

) = 45 pairs of experiments, we chose λ = 0 (no regularization, interpolation esti-
mator), λ = 0.1 and λ = 1. We evaluated the performance on the out-of-sample test dataset,
with the error metric ∑

i (f̂ (xi) − yi)
2∑

i(ȳ − yi)2 .(6.1)

Remarkably, among all 45 experiments, no-regularization performs the best. We refer to the
table in Section B for a complete list of numerical results. For each experiment, the sample
size is roughly n ≈ 10,000.

The second experiment is to perform the similar task on a finer grid of regularization
parameter λ ∈ {0,0.01,0.02,0.04,0.08,0.16,0.32,0.64,1.28}. Again, in all but one pair, the
interpolation estimator performs the best in out-of-sample prediction. We refer to Figure 4 for
details.

To conclude this experiment, we plot the eigenvalue decay of the empirical kernel matrix
and the sample covariance matrix for the 5 experiments shown in the Introduction. The two
plots are shown in Figure 5. Both plots exhibit a fast decay of eigenvalues, supporting the
theoretical finding that interpolation performs well on a test set in such situations.

On the other hand, it is easy to construct examples where the eigenvalues do not decay
and interpolation performs poorly. This is the case, for instance, if Xi are i.i.d. from spherical

FIG. 5. Spectral decay. The y-axis is on the log scale.
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Gaussian. One can show that in the high-dimensional regime, the variance term itself (and
not just the upper bound on it) is large. Since the bias-variance decomposition is an equality,
it is not possible to establish good L2

μ convergence.

6.2. A synthetic example. In this section, we provide the details of the synthetic experi-
ments mentioned in Section 4 for Tables 1–2 and Figures 2–3. We choose the RBF kernel as
the nonlinearity with h(t) = exp(−t). Again, we consider a family of eigenvalue decays for
the covariance matrix parametrized by κ , with the small κ describing fast spectral decay

λj (�d,κ) = (
1 − (

(j − 1)/d
)κ)1/κ

, 1 ≤ j ≤ d.

We set a target nonlinear function f∗ in the RKHS with kernel K(x, x′) = h(‖x − x′‖2/d) as

f∗(x) =
100∑
l=1

K(x, θl), θl
i.i.d.∼ N(0, Id).

For each parameter triplet (n, d, κ), we generate data in the following way:

xi ∼ N(0,�d,κ), yi = f∗(xi) + εi

for 1 ≤ i ≤ n where εi ∼ N(0, σ 2) is independent noise, with σ = 0.1 (Figures 2–3) and
σ = 0.5 (Figures 8). Figures 6–7 contrast the difference between the population and empirical
eigenvalues for various parameter triplets (n, d, κ).

We now explain Figures 2–3, which illustrate the true generalization error in this synthetic
example, by varying the spectral decay κ , for a particular case of high dimensionality ratio
d/n. Here, we plot the out-of-sample test error for the interpolated min-norm estimator f̂ on
fresh new test data (xt , yt ) from the same data generating process, with the error metric

error =
∑

t (f̂ (xt ) − f∗(xt ))∑
t (yt − ȳ)2 .

The error plots are shown in Figure 2 (for n > d) and 3 (for d > n), and Figure 8 for the high
noise case. On the x-axis, we plot the log(κ), and on the y-axis the log(error). Each curve
corresponds to the generalization error behavior (and the bias and variance trade-off) as we
vary spectral decay from fast to slow (as κ increases) for a particular choice of d/n or n/d

ratio. Clearly, for a general pair of high dimensionality ratio d/n, there is a “sweet spot” of
κ (favorable geometric structure) such that the trade-off is optimized.

FIG. 6. Varying spectral decay: case n > d . Columns from left to right: κ = e−1, e0, e1. Rows from top to
bottom: ordered eigenvalues, and the histogram of eigenvalues. Here, we plot the population eigenvalues for �d ,
and the empirical eigenvalues for X∗X/n. In this simulation, d = 100, n = 500,2000.
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FIG. 7. Varying spectral decay: case d > n. Columns from left to right: κ = e−1, e0, e1. Rows from top to
bottom: ordered eigenvalues, and the histogram of eigenvalues. Here, we plot the population eigenvalues for �d ,
and the empirical eigenvalues for XX∗/d . In this simulation, d = 2000, n = 400,100.

7. Further discussion. This paper is motivated by the work of [5] and [31], who, among
others, observed the good out-of-sample performance of interpolating rules. This paper con-
tinues the line of work in [3, 4, 6] on understanding theoretical mechanisms for the good
out-of-sample performance of interpolation. We leave further investigations on the connec-
tion between kernel ridgeless regression and two-layer neural networks as a future work [12].

From an algorithmic point of view, the minimum-norm interpolating solution can be found
either by inverting the kernel matrix, or by performing gradient descent on the least-squares
objective (starting from 0). Our analysis can then be viewed in the light of recent work on
implicit regularization of optimization procedures [16, 20, 22, 29].

The paper also highlights a novel type of implicit regularization. In addition, we dis-
cover that once we parametrize the geometric properties—the spectral decay—we discover
the familiar picture of the bias-variance trade-off, controlled by the implicit regularization
that adapts to the favorable geometric property of the data. Moreover, if one explicitly
parametrizes the choice of the kernel by, say, the bandwidth, we are likely to see the familiar
picture of the bias-variance trade-off, despite the fact that the estimator is always interpolat-
ing. Whether one can achieve optimal rates of estimation (under appropriate assumptions) for
the right choice of the bandwidth appears to be an interesting and difficult statistical ques-
tion. Another open question is whether one can characterize situations when the interpolating

FIG. 8. Varying spectral decay: generalization error for high noise case. Left: d = 200, n = 4000,2000,

1000,240. Right: n = 200, d = 4000,2000,1000,240.



1346 T. LIANG AND A. RAKHLIN

minimum-norm solution is dominating the regularized solution in terms of expected perfor-
mance.
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