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THE BLUE IN CONTINUOUS-TIME REGRESSION MODELS WITH
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In this paper, the problem of best linear unbiased estimation is investi-
gated for continuous-time regression models. We prove several general state-
ments concerning the explicit form of the best linear unbiased estimator
(BLUE), in particular when the error process is a smooth process with one
or several derivatives of the response process available for construction of the
estimators. We derive the explicit form of the BLUE for many specific mod-
els including the cases of continuous autoregressive errors of order two and
integrated error processes (such as integrated Brownian motion). The results
are illustrated on many examples.

1. Introduction. Consider a continuous-time linear regression model of the
form

(1.1) y(t) = θT f (t) + ε(t), t ∈ T ⊆ [A,B],
where θ ∈ R

m is a vector of unknown parameters, f (t) = (f1(t), . . . , fm(t))T

is a vector of linearly independent functions on T , and ε = {ε(t)|t ∈ [A,B]}
is a random error process with E[ε(t)] = 0 for all t ∈ [A,B] and covariances
E[ε(t)ε(s)] = K(t, s). We will assume that ε has continuous (in the mean-square
sense) derivatives ε(i) (i = 0,1, . . . , q) up to order q , where q is a nonnegative
integer. Finally, T is the set where the observations of y(t) and perhaps derivatives
of y(t) are available. This often occurs in practice, in particular, in the geophysical
determination of gravity anomalies and the satellite gradiometry [Freeden (1999)],
computer experiments [Morris, Mitchell and Ylvisaker (1993), Stein (2012)] and
global optimization [Osborne, Garnett and Roberts (2009)]. For a detailed discus-
sion on different types of derivatives of random processes, we refer to Yaglom
(1987).

The main aim of this paper is studying the best linear unbiased estimator
(BLUE) of the parameters θ in the general setting and in many specific instances.
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Understanding of the explicit form of the BLUE has profound significance on gen-
eral estimation theory and on asymptotically optimal design for (at least) three rea-
sons. First, the efficiency of the ordinary least squares estimator, the discrete BLUE
and other unbiased estimators can be computed exactly. Second, as pointed out in
a series of papers [Sacks and Ylvisaker (1966, 1968, 1970)], the explicit form of
the BLUE is the key ingredient for constructing the (asymptotically) optimal exact
designs in the regression model

(1.2) y(ti) = θT f (ti) + ε(ti), A ≤ t1 < t2 . . . < tN−1 < tN ≤ B,

with E[ε(ti)ε(tj )] = K(ti, tj ). Third, simple and very efficient estimators for the
parameter θ in the regression model (1.2) can be derived from the continuous
BLUE, like the extended signed least squares estimator investigated in Dette, Pe-
pelyshev and Zhigljavsky (2013, 2016) and the estimators based on approximation
of stochastic integrals proposed in Dette, Konstantinou and Zhigljavsky (2017).
In contrast to our previous work, which had its focus on the construction of op-
timal designs, this paper concentrates on the specific properties of BLUE in the
continuous time model (1.1); more discussion can be found in Section 2.8.

There are many classical papers dealing with construction of the BLUE, mainly
in the case of a nondifferentiable error process; that is, in model (1.1) with q = 0.
In this situation, it is well understood that solving specific instances of an equation
of Wiener–Hopf type

(1.3)
∫
T

K(t, s)ζ(dt) = f (s) ∀s ∈ T ,

for an m-dimensional vector ζ of signed measures implies an explicit construction
of the BLUE in the continuous-time model (1.1). This equation was first consid-
ered in a seminal paper of Grenander (1950) for the case of the location-scale
model y(t) = θ + ε(t), that is, m = 1, f1(t) = 1. For a general regression model
with m ≥ 1 regression functions (and q = 0), the BLUE was extensively discussed
in Grenander (1954) and Rosenblatt (1956) who considered stationary processes
in discrete time, where the spectral representation of the error process was heavily
used for the construction of the estimators. In this and many other papers includ-
ing Kholevo (1969) and Hannan (1975), the subject of the study was concentrated
around the spectral representation of the estimators, and hence the results in these
references are only applicable to very specific models. A more direct investiga-
tion of the BLUE in the location scale model (with q = 0) can be found in Hájek
(1956), where equation (1.3) for the BLUE was solved for a few simple kernels.
The most influential paper on properties of continuous BLUE and its relation to the
reproducing kernel Hilbert spaces (RKHS) is Parzen (1961). A relation between
discrete and continuous BLUE has been further addressed in Anderson (1970). An
excellent survey of classical results on the BLUE is given in the book of Näther
(1985), Section 2.3 and Chapter 4 (for the location scale model). Formally, The-
orem 2.3 of Näther (1985) includes the case when the derivatives of the process
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y(t) are available (q ≥ 0); this is made possible by the use of generalized functions
which may contain derivatives of the Dirac delta-function. This theorem, however,
provides only a sufficient condition for an estimator to be the BLUE. The exam-
ples, where the explicit form of the BLUE was known before the publication of
the monograph by Näther (1985), are listed in Section 2.3 of his book. In most of
these examples, either a Markovian structure of the error process is assumed or the
one-dimensional location scale model is studied. Section 2.6 of our paper updates
this list and gives a short outline of previously known cases where the explicit form
of the BLUE was known until now.

There was also an extensive study of the relation between solutions of the
Wiener–Hopf equations and the BLUE through the RKHS theory; see Parzen
(1961), Sacks and Ylvisaker (1966, 1968, 1970) for an early or Ritter (2000) for
a more recent reference. If q = 0, then the main RKHS assumption is usually for-
mulated as the existence of a solution, say ζ0, of equation (1.3), where the measure
ζ0 is continuous and has no atoms; see Berlinet and Thomas-Agnan (2011) for
the RKHS theory. As shown in the present paper, this almost never happens for
the commonly used covariance kernels and regression functions (a single general
exception from this observation is given in Proposition 2.3). The case when the co-
variance kernel K is imprecisely known is carefully considered in Näther (1985),
Chapter 10; see also Anderes (2010), Loh and Lam (2000), Stein (2012) for some
discussions concerning the problem of estimation of covariance kernels.

Note also that the numerical construction of the continuous BLUE is difficult
even for q = 0 and m = 1; see, for example, Ramm (1980) and a remark on page 80
in Sacks and Ylvisaker (1966). For q > 0, the problem of numerical construction
of the BLUE is severely ill-posed, and hence is extremely hard.

The main purpose of this paper is to provide further insights into the structure
of the BLUE (and its covariance matrix) from the observations {Y(t)|t ∈ T } (and
its q derivatives) in continuous-time regression models of the form (1.1), where
the set T ⊆ [A,B] defines the region where the process is observed. By generaliz-
ing the celebrated Gauss–Markov theorem, we derive new characterizations for the
BLUE. Our results require minimal assumptions regarding the regression function
and the error process. Important examples, where the BLUE can be determined
explicitly, include general integrated processes (in particular, integrated Brown-
ian motion) and continuous autoregressive processes including the Matérn kernels
with parameters 3/2 and 5/2.

The remaining part of this paper is organized as follows. In Section 2, we de-
velop a consistent general theory of best linear unbiased estimation using signed
matrix measures and derive several important characterizations and properties of
the BLUE. In particular, in Theorem 2.1 we provide necessary and sufficient con-
ditions for an estimator to be BLUE when q ≥ 0; in Theorem 2.2 such conditions
are derived for q = 0, T ⊂ R

d with d ≥ 1 and very general assumptions about the
vector of regression functions f (·) and the covariance kernel K(·, ·).
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Section 3 is devoted to models where the error process has one derivative. In
particular, we derive an explicit form of the BLUE (see Theorems 3.1 and 3.2),
and obtain the BLUE for specific types of smooth kernels. In Section 3.4, we con-
sider regression models with a continuous-time autoregressive (AR) error process
of order 2 [i.e., CAR(2)] in more detail. Moreover, in practice the corresponding
discrete-time regression model (1.2) is used. Therefore, in the Supplementary Ma-
terial [Dette, Pepelyshev and Zhigljavsky (2019)] we exemplarily demonstrate that
the covariance matrix of the BLUE in this model can be obtained as a limit of the
covariance matrices of the BLUE in the discrete regression model (1.2) with obser-
vations at equidistant points and a discrete AR(2) error process. In Section 4, we
give some insight into the structure of the BLUE when the error process is more
than once differentiable. Some numerical illustrations are given in Section 5, while
technical proofs can be found in Section 5.

2. General linear estimators and the BLUE.

2.1. Linear estimators and their properties. Consider the regression model
(1.1) with covariance kernel K(t, s) = E[ε(t)ε(s)]. Suppose that we can ob-
serve the process {y(t)|t ∈ T } and, if q > 0, also its mean square derivatives
{y(i)(t)|t ∈ T } for i = 1, . . . , q . The set T is a Borel subset of some interval
[A,B] with −∞ ≤ A < B ≤ ∞. This is possible when the kernel K(t, s) is q

times continuously differentiable on the square [A,B] × [A,B] and the vector-
function f (t) = (f1(t), . . . , fm(t))T is q times differentiable on the interval [A,B]
with derivatives f (1), . . . f (q) (f (0) = f ). We will also assume throughout that the
functions f1, . . . , fm are linearly independent on T .

Let Y(t) = {(y(0)(t), . . . , y(q)(t))T } be the observation vector containing the
process y(t) = y(0)(t) and its q derivatives. Denote by YT = {Y(t) : t ∈ T } the set
of all available observations. The general linear estimator of the parameter θ in the
regression model (1.1) can be defined as

(2.1) θ̂G =
∫
T

G(dt)Y (t) =
q∑

i=0

∫
T

y(i)(t)Gi(dt),

where G(dt) = (G0(dt), . . . ,Gq(dt)) is a matrix of size m×(q +1). The columns
of this matrix are signed vector-measures G0(dt), . . . ,Gq(dt) defined on Borel
subsets of T (all vector-measures in this paper are signed and have length m).

The following lemma shows a simple way of constructing unbiased estimators;
this lemma will also be used for deriving the BLUE in many examples. The proof
is given in Section 5.

LEMMA 2.1. Let ζ0, . . . , ζq be some signed vector-measures defined on T
such that the m × m matrix

(2.2) C =
q∑

i=0

∫
T

ζi(dt)
(
f (i)(t)

)T
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is nondegenerate. Define G = (G0, . . . ,Gq), where Gi are the signed vector-
measures and Gi(dt) = C−1ζi(dt) for i = 0, . . . , q . Then the estimator θ̂G is un-
biased.

Note that the matrix C defined in (2.2) plays the role of an information matrix;
this can also be seen from Corollary 2.1 below.

The covariance matrix of any unbiased estimator θ̂G of the form (2.1) is

(2.3)

Var(θ̂G) =
∫
T

∫
T

G(dt)K(t, s)GT (ds)

=
q∑

i=0

q∑
j=0

∫
T

∫
T

∂i+jK(t, s)

∂t i ∂sj
Gi(dt)GT

j (ds),

where

K(t, s) =
(

∂i+jK(t, s)

∂t i ∂sj

)q

i,j=0
= (

E
[
ε(i)(t)ε(j)(s)

])q
i,j=0

is the matrix consisting of the derivatives of K .

2.2. The BLUE. The (continuous) BLUE is defined as follows. If there exists
a set of signed vector-measures, say G = (G0, . . . ,Gq), such that the estimator
θ̂G = ∫

T G(dt)Y (t) is unbiased and Var(θ̂H ) ≥ Var(θ̂G) in the sense of Loewner
ordering, where θ̂H = ∫

T H(dt)Y (t) is any other linear unbiased estimator which
uses the observations YT , then θ̂G is called the best linear unbiased estimator
(BLUE) for the regression model (1.1) using the set of observations YT . The
BLUE depends on the kernel K , the vector-function f , the set T and the number
q of available derivatives of the process {y(t)|t ∈ T }. The notation “continuous
BLUE” highlights that estimation is performed for continuous observations.

The following theorem is a generalization of the celebrated Gauss–Markov the-
orem (which is usually formulated for the case when q = 0 and T is finite) and
gives a necessary and sufficient condition for an estimator to be the BLUE. In this
theorem and below, we denote the partial derivatives of the kernel K(t, s) with
respect to the first component by

K(i)(t, s) = ∂iK(t, s)

∂t i
.

The proof of the theorem can be found in Section 5.

THEOREM 2.1. Consider the regression model (1.1), where the error process
{ε(t)|t ∈ [A,B]} has a covariance kernel K(·, ·) ∈ Cq([A,B] × [A,B]) for some
q ≥ 0. Suppose that the process {y(t)|t ∈ [A,B]} along with its q derivatives can
be observed at all t ∈ T ⊆ [A,B]. Assume also that all components of f (·) are q

times differentiable.
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An unbiased estimator θ̂G = ∫
T G(dt)Y (t) is BLUE if and only if the equality

(2.4)
q∑

i=0

∫
T

K(i)(t, s)Gi(dt) = Df (s),

is fulfilled for all s ∈ T , where D is some m×m matrix. In this case, D = Var(θ̂G)

with Var(θ̂G) defined in (2.3).

Corollary 2.1 is weaker than Theorem 2.1, where the covariance matrix of the
BLUE is not assumed to be nondegenerate, but will be very useful in further con-
siderations.

COROLLARY 2.1. Let the assumptions of Theorem 2.1 be satisfied and let
ζ0, . . . , ζq be signed vector-measures defined on T such that the matrix C defined
in (2.2) is nondegenerate. Define G = (G0, . . . ,Gq), Gi(dt) = C−1ζi(dt) for i =
0, . . . , q . The estimator θ̂G = ∫

T G(dt)Y (t) is the BLUE if and only if

(2.5)
q∑

i=0

∫
T

K(i)(t, s)ζi(dt) = f (s)

for all s ∈ T . In this case, the covariance matrix of θ̂G is Var(θ̂G) = C−1.

In the following sections, we derive sufficient conditions for (2.4) and (2.5); see,
for example, Sections 3.1, 3.3 and 4.2.

2.3. Grenander’s theorem and its generalizations. When T = [A,B], q = 0,
m = 1 and the regression model (1.1) is the location-scale model y(t) = α + ε(t),
Theorem 2.1 is known as Grenander’s theorem [see Grenander (1950) and Sec-
tion 4.3 in Näther (1985)]. In this special case, Grenander’s theorem has been
generalised by Näther (1985) to the case when T ⊂ R

d (see Theorem 4.3 in this
reference). For the case of one-dimensional processes, Theorem 2.1 generalizes
Grenander’s theorem to arbitrary m-parameter regression models of the form (1.1)
and the case of arbitrary q ≥ 0. Another generalization of Grenander’s theorem
is given below; it deals with a general m-parameter regression model (1.1) with a
continuous error process (i.e., q = 0) and a d-dimensional set T ⊂ R

d ; that is, the
case where y(t) is a random field.

THEOREM 2.2. Consider the regression model y(t) = θT f (t) + ε(t), where
t ∈ T ⊂R

d , the error process ε(t) has covariance kernel K(·, ·) and f : T →R
m

is a vector of bounded integrable and linearly independent functions. Suppose that
the process y(t) can be observed at all t ∈ T and let G be a signed vector-measure
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on T , such that the estimator θ̂G = ∫
T G(dt)Y (t) is unbiased. θ̂G is a BLUE if and

only if the equality ∫
T

K(t, s)G(dt) = Df (s)

holds for all s ∈ T for some m × m matrix D. In this case, D = Var(θ̂G), where
Var(θ̂G) is the covariance matrix of the estimator θ̂G defined by (2.3).

The proof of this theorem is a simple extension of the proof of Theorem 2.1
with q = 0 to a general set T ⊂ R

d and left to the reader.

2.4. Properties of the BLUE.

(P1) Let θ̂G1 and θ̂G2 be BLUEs for the same regression model (1.1) and
the same q but for two different design sets T1 and T2 such that T1 ⊆ T2. Then
Var(θ̂G1) ≥ Var(θ̂G2).

(P2) Let θ̂G1 and θ̂G2 be BLUEs for the same regression model (1.1) and the
same design set T but for two different values of q , say, q1 and q2, where 0 ≤ q1 ≤
q2. Then Var(θ̂G1) ≥ Var(θ̂G2).

(P3) Let θ̂G with G = (G0, . . . ,Gq) be a BLUE for the regression model (1.1),
design space T and given q ≥ 0. Define g(t) = Lf (t), where L is a nondegenerate
m × m matrix, and a signed vector-measure H = (H0, . . . ,Hq) with Hi(dt) =
L−1Gi(dt) for i = 0, . . . , q . Then θ̂H is a BLUE for the regression model y(t) =
βT g(t) + ε(t) with the same y(t), ε(t), T and q . The covariance matrix of θ̂H is
L−1 Var(θ̂G)L−1T

.
(P4) If T = [A,B] and a BLUE θ̂G is defined by the matrix-measure G that has

smooth enough continuous parts, then we can choose another representation θ̂H of
the same BLUE, which is defined by the matrix-measure H = (H0,H1, . . . ,Hq)

with vector-measures H1, . . . ,Hq having no continuous parts.
(P5) Let ζ0, . . . , ζq satisfy equation (2.5) for all s ∈ T , for some vector-function

f (·), design set T and given q ≥ 0. Define C = Cf by (2.2). Let g(·) be some
other q times differentiable vector-function on the interval [A,B]. Assume that
the signed vector-measures η0, . . . , ηq satisfy the equation

(2.6)
q∑

i=0

∫
T

K(i)(t, s)ηi(dt) = g(s) ∀s ∈ T ;

that is, equation (2.5) for the vector-function g(·), the same design set T and the
same q . Define Cg = ∑q

i=0

∫
T g(i)(t)ηT

i (dt), which is the matrix (2.2) with ηi

substituted for ζi and g(·) substituted for f (·).
If the matrix C = Cf + Cg is nondegenerate, then we define the set of signed

vector-measures G = (G0, . . . ,Gq) by Gi = C−1(ζi + ηi), i = 0, . . . , q , yield-
ing the estimator θ̂G. This estimator is a BLUE for the regression model y(t) =
θT [f (t) + g(t)] + ε(t), t ∈ T .
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Properties (P1)–(P3) are obvious. The property (P4) is a particular case of the
discussion of Case (5) in Section 2.5. To prove (P5), we simply add equations (2.5)
and (2.6) and then use Corollary 2.1.

We believe that the properties (P4) and (P5) have never been noticed before
and both these properties are very important for understanding best linear unbi-
ased estimators in the continuous-time regression model (1.1) and especially for
constructing a BLUE for new models from the cases when a BLUE is known for
simpler models.

As an example, set g(t) = c, where c is a constant vector of size m and let f

be arbitrary for which we know the BLUE with C = Cf . Assume that we also
know the BLUE for the location-scale model which gives us the associated matrix
C = Cg of rank 1 for the model θT g(t). Then, assuming that the matrix Cf + Cg

is nondegenerate we can use property (P5) to construct BLUE for θT (f (t) + c).
In particular, if all functions in the vector f are not constant and Cf is nondegen-
erate then Cf + Cg is nondegenerate. This observation constitutes an important
part in the proof of Theorem 3.2, which allows obtaining the explicit form of the
BLUE for integrated error processes from the explicit form of the BLUE for the
corresponding non-integrated errors (which is an easier problem). In this particular
application of property (P5), the vector-function g is used to correct the constant
terms in functions f1, . . . , fm as the latter ones are integrals

∫ t
a ψi(s) ds of some

other functions ψi , and hence contain undesirable constant terms.

2.5. Existence and uniqueness of the BLUE. Let us classify different situa-
tions.

(1) If functions f1, . . . , fm are linearly dependent on T then the BLUE does not
exist as the unbiasedness condition cannot be satisfied. This is the reason why we
assume that f1, . . . , fm are linearly independent on T .

(2) If T is a discrete set T = {t1, . . . , tN } and the kernel K is strictly positive
definite, then the BLUE exists for any q ≥ 0. It is uniquely defined for q = 0 as
the matrix (K(ti, tj ))

N
i,j=1 is always nondegenerate. However, for q > 0 the BLUE

may not be uniquely defined as the matrix of covariances and cross-covariances
between observations and derivatives may not be non-degenerate; this is similar to
the continuous case considered below in case (5).

(3) If all functions f1, . . . , fm belong to the RKHS associated with K and ad-
ditionally satisfy some extra smoothness conditions then the BLUE exits and can
be found using results of Parzen (1961). A serious difficulty with this approach is
the fact that for the majority of kernels there is no known expression for the scalar
products in the RKHS. Also, the RKHS-based approach is not applicable when the
covariance matrix of the BLUE is degenerate. There are many examples when the
BLUE exists and can be found using Theorem 2.1 with functions f1, . . . , fm which
may not belong to the RKHS. As a simple example, set T = [0,1], q = m = 1,
f (t) = t − t2/2, K(t, s) = min(t, s)2(3 max(t, s)− min(t, s))/6; see (3.5). Define
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G0(dt) = 0 and G1(dt) = δ0(dt), where δa(dt) is the Dirac delta-measure con-
centrated at the point a. Then equation (2.4) is satisfied with D = 0, and as the
estimator θ̂G is obviously unbiased G = (G0,G1) defines the BLUE.

(4) If T = [A,B] and the derivatives y(j)(t) are available for j = 0, . . . , p < q

then the BLUE exists only for very specific functions f . Assume, for example, that
p = 0 so that only values of y(t) are available. Then the class of respective func-
tions is g(t) = f̃ (t) + ∑

i ciK(ai, t), where ai ∈ [A,B], ci ∈ R and f̃ is defined
by (2.8). It seems to be in contradiction with the fact that discrete BLUE estima-
tors always exist even when p = 0. This can be explained by the behaviour of
these discrete BLUEs when the uniform N -point grid approximating a continuous
T = [A,B] gets finer and finer: the discrete BLUE weights at the points close to
A and B are trying to create approximations for all q derivatives of y at A and B ,
and hence have the order of Nq (in absolute values). Therefore, (a) the sequence of
discrete measures diverge, and (b) the covariance matrices of the discrete BLUEs
converge very slowly; they do converge to the covariance matrix of the continuous
BLUE which would use all q derivatives of y(t). To increase efficiency of discrete
BLUEs we would advice to always place q − 1 distinct design points very close to
A and B , in addition to A and B themselves.

(5) Assume T = [A,B], q > 0 and the values of derivatives y(j)(t) for j =
0, . . . , q are available. In this case, if f is smooth enough then the BLUE is
not uniquely defined. More generally, we will show that if T = [A,B] then,
under additional smoothness conditions of f , for a given set of signed vector-
measures G = (G0,G1, . . . ,Gq) on T we can find another set of measures
H = (H0,H1, . . . ,Hq) such that the signed vector-measures H1, . . . ,Hq have no
continuous parts but the expectations and covariance matrices of the estimators θ̂G

and θ̂H coincide.
For this purpose, let G0, . . . ,Gq be some signed vector-measures and assume

that for some i ∈ {1, . . . ,m}, the signed measure Gi(dt) has the form Gi(dt) =
Qi(dt) + ϕi(t) dt , where Qi(dt) is a signed vector-measure and ϕi ∈ Ci([A,B]).
Define the matrix H = (H0, . . . ,Hq), where the columns of H are the following
signed vector-measures:

H0(dt) = G0(dt) + (−1)i
[
ϕi

(i)(t) dt − ϕ
(i−1)
i (A)δA(dt) + ϕ

(i−1)
i (B)δB(dt)

]
,

Hj (dt) = Gj(dt) + (−1)i−j−1[
ϕ

(i−j−1)
i (A)δA(dt) − ϕ

(i−j−1)
i (B)δB(dt)

]
for j = 1, . . . , i − 1; Hi(dt) = Qi(dt), Hj(dt) = Gj(dt), for j = i + 1, . . . , q .
The proof of the following result is given in Section 5.

LEMMA 2.2. In the notation above, the expectations and covariance matrices
of the estimators θ̂G = ∫

G(dt)Y (t) and θ̂H = ∫
H(dt)Y (t) coincide.

Lemma 2.2 shows that the sets of measures G = (G0, . . . ,Gq) and H =
(H0, . . . ,Hq) produce estimators θ̂G and θ̂H of the form (2.1) with the same co-
variance matrix. Therefore, we can restrict the search of linear unbiased estimators
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to estimators θ̂G such that the components G1, . . . ,Gq of G have no continuous
parts. To achieve this, by a repeated use of Lemma 2.2 we negate the absolutely
continuous parts of measures Gi one-by-one, for i = q, q − 1, . . . ,1. A family of
different BLUE-measures is shown in Example 3.1.

2.6. Examples of the BLUE for nondifferentiable error processes. For the sake
of completeness, we first consider the case when the errors in model (1.1) follow a
Markov process, which is a very common class of correlation kernels and includes
as a particular case the kernels of continuous autoregressive errors of order 1. In
presenting these results, we follow Näther (1985) and Dette, Pepelyshev and Zhigl-
javsky (2016).

PROPOSITION 2.1. Consider the regression model (1.1) with f twice differen-
tiable and covariance kernel K(t, s) = u(t)v(s) for t ≤ s and K(t, s) = v(t)u(s)

for t > s; here u(·) and v(·) are twice differentiable positive functions such that
q(t) = u(t)/v(t) is monotonically increasing. Define the signed vector-measure
ζ(dt) = zAδA(dt) + zBδB(dt) + z(t) dt with

zA = 1

v2(A)q ′(A)

[
f (A)u′(A)

u(A)
− f ′(A)

]
,

z(t) = − 1

v(t)

[
h′(t)
q ′(t)

]′
, zB = h′(B)

v(B)q ′(B)
,

where ψ ′ denotes a derivative of a function ψ , the vector-function h(·) is defined
by h(t) = f (t)/v(t). Assume that the matrix C = ∫

T f (t)ζ T (dt) is nondegener-
ate. Then the estimator θ̂G with G(dt) = C−1ζ(dt) is a BLUE with covariance
matrix C−1.

In the following statement we provide an explicit expression for the BLUE for
one special case of non-Markovian covariance kernel. The proof is given in Sec-
tion 5.

PROPOSITION 2.2. Consider the regression model (1.1) on the interval T =
[A,B] with errors having the covariance function K(t, s) = 1 + λ1t − λ2s, where
t ≤ s, λ1 ≥ λ2 > 0 and λ2(B − A) ≤ 1. Define the signed vector-measure ζ(dt) =
zAδA(dt) + zBδB(dt) + z(t) dt by

z(t) = − f (2)(t)

λ1 + λ2
, zA =

(
−f (1)(A) + λ2

1f (A) + λ1λ2f (B)

λ1 + λ2 + λ2
1A − λ2

2B)

)/
(λ1 + λ2),

zB =
(
f (1)(B) + λ1λ2f (A) + λ2

2f (B)

λ1 + λ2 + λ2
1A − λ2

2B)

)/
(λ1 + λ2)

and suppose that the matrix C = ∫
T f (t)ζ T (dt) is nondegenerate. Then the esti-

mator θ̂G with G(dt) = C−1ζ(dt) is a BLUE with covariance matrix C−1.
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If λ1 = λ2 and [A,B] = [0,1] in Proposition 2.2, then we obtain the case

(2.7) K(t, s) = max
(
1 − λ|t − s|,0

)
.

Optimal designs for this covariance kernel (with λ = 1) have been considered in
Section 6.5 in Näther (1985), Müller and Pázman (2003) and Fedorov and Müller
(2007).

EXAMPLE 2.1. Consider the regression model (1.1) on the interval T = [0,1]
with errors having the covariance kernel (2.7) with λ ≤ 1. Define the signed vector-
measure

ζ(dt) =
[
−f (1)(0)

2λ
+ fλ

]
δ0(dt) +

[
f (1)(1)

2λ
+ fλ

]
δ1(dt) −

[
f (2)(t)

2λ

]
dt,

where fλ = (f (0) + f (1))/(4 − 2λ). Assume that the matrix C = ∫
T f (t)ζ T (dt)

is nondegenerate. Then the estimator θ̂G with G(dt) = C−1ζ(dt) is a BLUE; the
covariance matrix of this estimator is given by C−1.

Next, we consider the case when the regression functions are linear combina-
tions of eigenfunctions from Mercer’s theorem. Note that a similar approach was
used in Dette, Pepelyshev and Zhigljavsky (2013) for the construction of optimal
designs for the signed least squares estimators. Let T = [A,B]; consider the in-
tegral operator TK(h)(·) = ∫ B

A K(t, ·)h(t) dt on L2([A,B]), which defines a sym-
metric, compact self-adjoint operator. In this case, Mercer’s theorem [see, e.g.,
Kanwal (1997)] shows that there exist a countable number of orthonormal eigen-
functions φ1, φ2, . . . with positive eigenvalues λ1, λ2, . . . of the integral operator
TK . The next statement follows directly from Corollary 2.1.

PROPOSITION 2.3. Let φ1, φ2, . . . be the eigenfunctions of the integral op-
erator TK(·) and f (t) = ∑∞

�=1 q�φ�(t) for some sequence {q�}�∈N in R
m. As-

sume that the matrix C = ∑∞
�=1 λ−1

� q�q
T
� is nondegenerate and the vector sum∑∞

�=1 λ−1
� q�φ�(t) converges for all t . Then the estimator θ̂G with

G(dt) = C−1
∞∑

�=1

λ−1
� q�φ�(t) dt

is a BLUE with covariance matrix C−1.

Proposition 2.3 provides a way of constructing covariance kernels for which the
measure defining the BLUE does not have any atoms. An example of such kernels
is the following.
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EXAMPLE 2.2. Consider the regression model (1.1) with m = 1, f (t) ≡ 1,
t ∈ T = [−1,1], and the covariance kernel K(t, s) = 1 + κpα,β(t)pα,β(s), where
κ > 0, α,β > −1 are some constants and pα,β(t) = α−β

2 +(1+ α+β
2 )t is the Jacobi

polynomial of degree 1. Then the estimator θ̂G with G(dt) = const · (1 − t)α(1 +
t)β dt is a BLUE.

2.7. BLUE for functions from the class SY(K). Equation (1.3) is related to
the work of Sacks and Ylvisaker (1966, 1968, 1970), who used a RKHS approach
to construct asymptotically optimal designs for linear regression models with cor-
related observations. To be precise denote by H(K), the RKHS of functions on T
associated with the kernel K and by SY(K) the class of functions h ∈ H(K) of the
form h(·) = ∫

T K(s, ·)φ(s) ds for some continuous function φ on T . The functions
from SY(K) are often referred to as the functions satisfying the Sacks–Ylvisaker
conditions; see Ritter (2000), Ritter, Wasilkowski and Woźniakowski (1995).

Assume that all components fi of f belong to SY(K) so that fi(·) =∫
T K(s, ·)φi(s) ds for some continuous functions φi(·). Set φ = (φ1, . . . , φm)T .

Corollary 2.1 then implies that if the matrix C = ∫
T φ(t)f T (t) dt is non-

degenerate then the estimator θ̂G = ∫
T G(dt)Y (t) is the BLUE; here, G =

(G0, . . . ,Gq) with G0(dt) = C−1φ(t) dt and Gi = 0, for i = 1, . . . , q . This im-
plies that if all components fi of f belong to SY(K), then the BLUE measure for
f can be chosen so that it has no atoms and no weights assigned to any derivatives
of y(t).

Assume now that T = [A,B], the vector-function f is smooth enough and all
components fi of f belong to H(K) but not necessarily to SY(K). As shown
in Section 2.5, we can choose vector-measures ζi(dt) (i = 0,1, . . . , q) satisfying
(2.5) so that there are no continuous parts in the measures ζi(dt), i = 1, . . . , q .
Formally, this can be expressed as ζ0(dt) = z

(0)
A δA(dt) + z

(0)
B δB(dt) + z(t) dt and

ζi(dt) = z
(i)
A δA(dt) + z

(i)
B δB(dt) for i = 1, . . . , q , where z(t) is some continuous

function on [A,B] and z
(i)
A , z

(i)
B (i = 0,1, . . . , q) are some vectors. Define

(2.8) f̃ (t) = f (t) −
q∑

i=0

z
(i)
A K(i)(A, t) −

q∑
i=0

z
(i)
B K(i)(B, t).

From (2.5), all components of f̃ belong to SY(K) and f̃ (·) = ∫ B
A K(s, ·)z(s) ds.

Summarizing, for any sufficiently smooth f ∈ H(K), the function f̃ ∈ SY(K)

exists and is uniquely defined. The BLUE measures for f and f̃ can be chosen
so that the measure for f̃ has no atoms and the continuous components of the
BLUE measures for f and f̃ are proportional; we may call such f̃ ∈ SY(K) a
representative of f ∈ H(K) in SY(K). Note also that the above discussion shows
that the functions in SY(K) have, as a rule, a very peculiar form.



1940 H. DETTE, A. PEPELYSHEV AND A. ZHIGLJAVSKY

2.8. Signed least squares estimators and the BLUE. The ordinary least square
estimator (OLSE) of θ in the model (1.1) for the design measure ξ is given by
θ̂OLSE = ∫

M−1f (t)Y (t)ξ(dt) with M = ∫
f (t)f T (t)ξ(dt) and its covariance ma-

trix is D(θ̂OLSE) = M−1[∫ ∫
K(t, s)f (t)f T (s)ξ(dt)ξ(ds)]M−1. Assume that for

some probability density p(t) on T and some nondegenerate m × m matrix � we
have

∫
K(t, s)p(t)f (t) dt = �f (s) for all s ∈ T . In this case, for the continuous

design ξ(dt) = p(t) dt we obtain

D(θ̂OLSE) = M−1
[∫

�f (s)f T (s)p(s) ds

]
M−1 = M−1�.

At the same time, condition (2.5) with q = 0 is satisfied by the measure ζ0(dt) =
�−1f (t)p(t) dt and hence from Corollary 2.1 we deduce that ζ0(dt) gives the
BLUE with covariance matrix[∫

ζ0(dt)f T (t)

]−1
=

[∫
�−1f (t)f T (t)p(t) dt

]−1
= M−1�.

This implies that in this case the OLSE with design ξ(dt) = p(t) dt coincides with
the continuous BLUE.

Matrix-weighted estimators (MWE) introduced in Dette, Pepelyshev and Zhigl-
javsky (2016) generalize the OLSE by giving specific m × m matrix weights to all
points t ∈ T . They showed that if f ∈ H(K) and q = 0, then the optimal MWE is
also the BLUE. If all matrix weights contain only −1,0 or 1, then the MWE be-
comes the (generalized) signed least square estimator (SLSE). It was also shown
that if the number of observations N tends to infinity then for a suitable sequence
of designs the asymptotic covariance matrix of the discrete SLSE converges to the
covariance matrix of the BLUE. However, unless f ∈ SY(K), the rate convergence
is extremely slow as many design points are required to emulate weights which the
BLUE measure assigns to the end-points A and B . These results are generalizable
to the case of differentiable kernels as considered in this paper.

2.9. BLUE and energy minimization. The problem of constructing the contin-
uous BLUE generalizes the problem of the so-called energy minimization prob-
lem [see, e.g., Sejdinovic et al. (2013) and Székely and Rizzo (2013) for details],
which for a given (conditionally) positive definite kernel K(s, t) is the minimiza-
tion problem

(2.9)
∫
T

∫
T

K(s, t)G(ds)G(dt) → min
G∈G

where G is the set of finite signed measures on T such that
∫
T G(dt) = 1 (signed

measures of total mass 1). This is exactly the problem of construction of the contin-
uous BLUE for the case m = 1, q = 0, general T and the location-scale regression
model with f (t) = 1. For a general f with m = 1 and q = 0, the unbiasedness
condition for a general linear estimator (2.1) is

∫
T f (t)G(dt) = 1 and it reduces to∫

T G(dt) = 1 when f (t) = 1.
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On the other hand, if f (t) 
= 0 for all t ∈ T then we can define G̃(dt) =
f (t)G(dt) and K̃(s, t) = K(s, t)/(f (s)f (t)). Then the problem of constructing
the BLUE for the model (1.1) with m = 1, q = 0 and general T is exactly the en-
ergy minimization problem (2.9) for the kernel K̃(s, t), assuming that it is also a
positive definite kernel.

3. BLUE for processes with trajectories in C1[A,B]. In this section, we
assume that the error process is exactly once continuously differentiable (in the
mean-square sense).

3.1. A general statement. Consider the regression model (1.1) and a linear
estimator in the form

(3.1) θ̂G0,G1 =
∫
T

y(t)G0(dt) +
∫
T

y(1)(t)G1(dt),

where G0(dt) and G1(dt) are signed vector-measures. The following corollary is
a specialization of Corollary 2.1 when q = 1.

COROLLARY 3.1. Consider the regression model (1.1) with the covariance
kernel K(t, s) and such that y(1)(t) exists in the mean-square sense for all t ∈
[A,B]. Suppose that y(t) and y(1)(t) can be observed at all t ∈ T . Assume that
there exist vector-measures ζ0 and ζ1 such that the equality∫

T
K(t, s)ζ0(dt) +

∫
T

K(1)(t, s)ζ1(dt) = f (s),

is fulfilled for all s ∈ T , and such that the matrix

C =
∫
T

f (t)ζ T
0 (dt) +

∫
T

f (1)(t)ζ T
1 (dt)

is nondegenerate. Then the estimator θ̂G0,G1 defined in (3.1) with Gi = C−1ζi

(i = 0,1) is a BLUE with covariance matrix C−1.

The next theorem provides sufficient conditions for vector-measures of some
particular form to define a BLUE by (3.1) for the case T = [A,B]. This theorem,
which is proved in Section 5, will be useful for several choices of the covariance
kernel below. Assume that s3 = K(3)(s−, s) − K(3)(s+, s) is a nonzero constant;
here, K(j)(s−, s) and K(j)(s+, s) are one-sided j th derivatives of K at the diag-
onal. Define the vector-function

z(t) = (
τ0f (t) − τ2f

(2)(t) + f (4)(t)
)
/s3,

and vectors

zA = (
f (3)(A) − γ1,Af (1)(A) + γ0,Af (A)

)
/s3,

zB = (−f (3)(B) + γ1,Bf (1)(B) + γ0,Bf (B)
)
/s3,
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z1,A = (−f (2)(A) + β1,Af (1)(A) − β0,Af (A)
)
/s3,

z1,B = (
f (2)(B) + β1,Bf (1)(B) + β0,Bf (B)

)
/s3,

where τ0, τ2, γ0,A, γ1,A, β0,A, β1,A, γ0,B, γ1,B, β0,B, β1,B are some constants. De-
fine the functions

(3.2)

J1(s) = −γ1,AK(A, s) + β1,AK(1)(A, s) + τ2K(A, s) − K(2)(A, s),

J2(s) = γ0,AK(A, s) − β0,AK(1)(A, s) − τ2K
(1)(A, s) + K(3)(A, s),

J3(s) = −γ1,BK(B, s) + β1,BK(1)(B, s) − τ2K(B, s) + K(2)(B, s),

J4(s) = γ0,BK(B, s) − β0,BK(1)(B, s) + τ2K
(1)(B, s) − K(3)(B, s).

THEOREM 3.1. Consider the regression model (1.1) on the interval T =
[A,B] with errors having the covariance kernel K(t, s). Suppose that the vec-
tor of regression functions f is four times differentiable and the kernel K(t, s) is
once differentiable for all t, s ∈ [A,B] and is four times differentiable for t 
= s

such that s3 
= 0 and K(i)(s−, s) − K(i)(s+, s) = 0, i = 0,1,2. Using the nota-
tion of the previous paragraph define the vector-measures ζ0(dt) = zAδA(dt) +
zBδB(dt) + z(t) dt and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt). Assume that there ex-
ist constants τ0, τ2, γ0,A, γ1,A, β0,A, β1,A, γ0,B, γ1,B, β0,B, β1,B such that (i) the
identity

(3.3) τ0K(t, s) − τ2K
(2)(t, s) + K(4)(t, s) ≡ 0

holds for all t, s ∈ [A,B] with t 
= s, (ii) the identity J1(s) + J2(s) + J3(s) +
J4(s) ≡ 0 holds for all s ∈ [A,B], and (iii) the matrix C = ∫

T f (t)ζ T
0 (dt) +∫

T f (1)(t)ζ T
1 (dt) is nondegenerate. Then the estimator θ̂G0,G1 defined in (3.1) with

Gi(dt) = C−1ζi(dt) (i = 0,1) is a BLUE with covariance matrix C−1.

3.2. Two examples for integrated error processes. In this section, we illustrate
the application of our results calculating the BLUE when errors follow an inte-
grated Brownian motion and an integrated process with triangular-shape kernel.
All results of this section can be verified by a direct application of Theorem 3.1.
We first consider the case of Brownian motion, where the integrated covariance
kernel is given by

(3.4)

K(t, s) =
∫ t

a

∫ s

a
min

(
t ′, s′)dt ′ ds′

= max(t, s)(min(t, s)2 − a2)

2

− a2(min(t, s) − a)

2
− min(t, s)3 − a3

6
and 0 ≤ a ≤ A.
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PROPOSITION 3.1. Consider the regression model (1.1) with i covariance ker-
nel (3.4) and suppose that f is four times differentiable on the interval [A,B].
Define the signed vector-measures ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t) dt and
ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where z(t) = f (4)(t),

zA = f (3)(A) − 6(A + a)

(A + 3a)(A − a)2 f (1)(A) + 12A

(A + 3a)(A − a)3 f (A),

z1,A = −f (2)(A) + 4(A + 2a)

(A + 3a)(A − a)
f (1)(A) − 6(A + a)

(A + 3a)(A − a)2 f (A),

zB = −f (3)(B), z1,B = f (2)(B).

Assume that the matrix C = ∫ B
A f (t)ζ T

0 (dt) + ∫
T f (1)(t)ζ T

1 (dt) is nondegenerate.
Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) = C−1ζi(dt) is a BLUE
with covariance matrix C−1.

The next example is a particular case of Proposition 3.1 when a = 0.

EXAMPLE 3.1. Consider the regression model (1.1) on T = [A,B] with the
covariance kernel (3.4) with a = 0:

(3.5) K(t, s) = min(t, s)2(
3 max(t, s) − min(t, s)

)
/6.

Suppose that f is differentiable four times. Define the vector-measures ζ0(dt) =
zAδA(dt) + zBδB(dt) + z(t) dt and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where

(3.6)

zA = f (3)(A) − 6

A2 f (1)(A) + 12

A3 f (A),

z1,A = −f (2)(A) + 4

A
f (1)(A) − 6

A2 f (A),

zB = −f (3)(B), z1,B = f (2)(B), z(t) = f (4)(t).

If C = ∫ B
A f (t)ζ T

0 (dt) + ∫ B
A f (1)(t)ζ T

1 (dt) is nondegenerate, then the estimator
θ̂G0,G1 with Gi(dt) = C−1ζi(dt) is a BLUE with covariance matrix C−1.

As shown in Section 2.5, the expressions (3.6) are not the only expressions
defining the BLUE; indeed, using Lemma 2.2, we can construct many other mea-
sures defining a BLUE. Specifically, let ψ(t) be a vector of arbitrary differentiable
functions on T . Define the vector-measures ζ0,ψ (dt) = ζ0(dt) − ψ(A)δA(dt) +
ψ(B)δB(dt) + ψ(1)(t) dt and ζ1,ψ (dt) = ζ1(dt) + ψ(t). Then the matrix C does
not depend on the choice of ψ and all estimators θ̂G0,ψ ,G1,ψ

with Gi,ψ(dt) =
C−1ζi,ψ(dt) are BLUE.

In particular, if ψ(t) ≡ 0, then we get the expression (3.6), where the derivative
of y(t) at the interior points of [A,B] is not used. However, if we choose ψ(t) such
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that ψ(1)(t) = −f (4)(t) for all t ∈ [A,B], then the estimator θ̂G0,ψ ,G1,ψ
would

not use observations of the process y(t) but instead use the observations of the
derivative y(1)(t) at the interior points of the interval [A,B]; the corresponding
BLUE is defined by the vector-measures

(3.7)

ζ0(dt) =
[
− 6

A2 f (1)(A) + 12

A3 f (A)

]
δA(dt),

ζ1(dt) = −
[
f (2)(A) − 4

A
f (1)(A) + 6

A2 f (A)

]
δA(dt)

+ f (2)(B)δB(dt) − f (3)(t) dt.

In particular, for the location-scale model with f (t) ≡ 1 and arbitrary ψ we
obtain ζ0,ψ (dt) = 12/A3δA(dt) − ψ(A)δA(dt) + ψ(B)δB(dt) + ψ(1)(t) dt and
ζ1,ψ(dt) = −6/A2δA(dt) + ψ(t). This gives different BLUE-defining measures
G but the value C = [12/A3 − ψ(A) + ψ(B) + ∫ B

A ψ(1)(t) dt] = 12/A3 (the in-
verse of the BLUE variance) does not depend on the choice of ψ .

Consider now the integrated triangular-shape kernel

(3.8)
K(t, s) =

∫ t

0

∫ s

0
max

{
0,1 − λ

∣∣t ′ − s′∣∣}dt ′ ds′

= ts − λmin(t, s)
(
3 max(t, s)2 − 3ts + 2 min(t, s)2)

/6.

PROPOSITION 3.2. Consider the regression model (1.1) on T = [A,B]
with integrated covariance kernel (3.8), where λ(B − A) < 1. Suppose that
f is four times differentiable. Define the signed vector-measures ζ0(dt) =
zAδA(dt) + zBδB(dt) + z(t) dt and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where
z(t) = f (4)(t)/(2λ) and

zA =
[
f (3)(A) − 6κ2

A2κ4
f (1)(A) + 6λ

Aκ4
f (1)(B) + 12κ1

A3κ4
f (A)

]/
(2λ),

z1,A =
[
−f (2)(A) + 4κ3

Aκ4
f (1)(A) − 2λ

κ4
f (1)(B) − 6κ2

A2κ4
f (A)

]/
(2λ),

z1,B =
[
f (2)(B) − 2λ

κ4
f (1)(A) + 4λ

κ4
f (1)(B) + 6λ

Aκ4
f (A)

]/
(2λ),

zB = −f (3)(B)/(2λ), κj = Aλ − jBλ + 2j.

Assume that the matrix C = ∫ B
A f (t)ζ T

0 (dt) + ∫ B
A f (1)(t)ζ T

1 (dt) is nondegenerate.
Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) = C−1ζi(dt) is a BLUE
with covariance matrix C−1.

3.3. Explicit form of the BLUE for the integrated processes. We conclude this
section establishing a direct link between the BLUE for models with nondiffer-
entiable error processes and the BLUE for regression models with an integrated
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kernel of the form (3.11) below. Note that this extends the class of kernels consid-
ered in Sacks and Ylvisaker (1970) in a nontrivial way.

Consider the regression model (1.1) with a nondifferentiable error process
with covariance kernel R(t, s) and the BLUE θ̂G0 = ∫

T y(t)G0(dt). From Corol-
lary 2.1, we have for the vector-measure ζ0(dt) satisfying (2.5) and defining the
BLUE

(3.9)
∫ B

A
R(t, s)ζ0(dt) = f (s)

and Var(θ̂G0) = C−1 = (
∫
T f (t)ζ T

0 (dt))−1. The unbiasedness condition for the
measure G0(dt) = C−1ζ0(dt) is∫

T
f (t)GT

0 (dt) = Im.

Define the integrated process as follows:

ỹ(t) =
∫ t

a
y(u) du, f̃ (t) =

∫ t

a
f (u) du, ε̃(t) =

∫ t

a
ε(u) du

with some a ≤ A (meaning that the regression vector-function and the error pro-
cess are defined on [a,B] but observed on [A,B]) so that

f̃ (1)(t) = f (t), ỹ(1)(t) = y(t), ε̃(1)(t) = ε(t).

Consider the regression model

(3.10) ỹ(t) = θT f̃ (t) + ε̃(t),

which has the integrated covariance kernel

(3.11) K(t, s) =
∫ t

a

∫ s

a
R(u, v) dudv.

The proof of the following result is given in Section 5.

THEOREM 3.2. Let the vector-measure ζ0 satisfy the equality (3.9) and de-
fine the BLUE θ̂G0 with G0(dt) = C−1ζ0(dt) in the regression model (1.1) with
covariance kernel R(·, ·). Let the measures η0, η1 satisfy the equality

(3.12)
∫
T

K(t, s)η0(dt) +
∫
T

K(1)(t, s)η1(dt) = 1

for all s ∈ T . Define the vector-measures ζ̃0 = −cη0 and ζ̃1 = −cη1 + ζ0, where
the vector c is given by c = ∫ A

a [∫ B
A R(t, s)ζ0(dt) − f (s)]ds. Then the estimator

θ̂
G̃0,G̃1

defined in (3.1) with G̃i(dt) = C̃−1ζ̃i (dt) (i = 1,2), where

C̃ =
∫

f̃ (t)ζ̃ T
0 (dt) +

∫
f̃ (1)(t)ζ̃ T

1 (dt),

is a BLUE in the regression model (3.10) with kernel (3.11).
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Repeated application of Theorem 3.2 extends the results to the case of several
times integrated processes.

If a = A in (3.11), we have c = 0 in Theorem 3.2; in this case, the statement
of Theorem 3.2 can be proved easily. Moreover, in this case the class of kernels
defined by (3.11) is exactly the class of kernels considered in equations (1.5) and
(1.6) of Sacks and Ylvisaker (1970) for once differentiable processes (k = 1 in
their notation). We emphasize that the class of kernels considered here is much
richer than the class considered in this reference.

3.4. BLUE for AR(2) errors. Consider the continuous-time regression model
(1.1), which can be observed at all t ∈ [A,B], where the error process is a con-
tinuous autoregressive (CAR) process of order 2. Formally, a CAR(2) process is
defined as a solution of the linear stochastic differential equation of the form

(3.13) dε(1)(t) = ã1ε
(1)(t) + ã2ε(t) + σ 2

0 dW(t),

where ã1 and ã2 are constants, Var(ε(t)) = σ 2 and W(t) is a standard Wiener
process [see Brockwell, Davis and Yang (2007)]. Note that the process {ε(t)|t ∈
[A,B]} defined by (3.13) has a continuous derivative and, consequently, the pro-
cess {y(t) = θT f (t) + ε(t)|t ∈ [A,B]}, is a continuously differentiable process
with drift on the interval [A,B]. In this section, we derive the explicit form for the
continuous BLUE using Theorem 3.1. An alternative approach would be to use the
coefficients of equation (3.13) as indicated in Parzen (1961).

There are in fact three different forms of the autocorrelation function ρ(t) =
K(0, t) of CAR(2) processes [see, e.g., formulas (14)–(16) in He and Wang
(1989)], which are given by

(3.14) ρ1(t) = λ2

λ2 − λ1
e−λ1|t | − λ1

λ2 − λ1
e−λ2|t |,

where λ1 
= λ2, λ1 > 0, λ2 > 0, by

(3.15) ρ2(t) = e−λ|t |
{

cos
(
ω|t |) + λ

ω
sin

(
ω|t |)},

where λ > 0, ω > 0, and by

(3.16) ρ3(t) = e−λ|t |(1 + λ|t |),
where λ > 0. Note that the kernel (3.16) is widely known as Matérn kernel with pa-
rameter 3/2, which has numerous applications in spatial statistics [see Rasmussen
and Williams (2006)] and computer experiments [see Pronzato and Müller (2012)].
In the following results, which are proved in Section A.7, we specify the BLUE
for the CAR(2) model.
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PROPOSITION 3.3. Consider the regression model (1.1) with CAR(2) er-
rors, where the covariance kernel K(t, s) = ρ(t − s) has the form (3.14). Sup-
pose that f is a vector of linearly independent, four times differentiable func-
tions on the interval [A,B]. Then the conditions of Theorem 3.1 are satisfied for
s3 = 2λ1λ2(λ1 + λ2), τ0 = λ2

1λ
2
2, τ2 = λ2

1 + λ2
2, βj,A = βj,B = βj and γj,A =

γj,B = γj for j = 0,1, where β1 = λ1 + λ2, γ1 = λ2
1 + λ1λ2 + λ2

2, β0 = λ1λ2 and
γ0 = λ1λ2(λ1 + λ2).

PROPOSITION 3.4. Consider the regression model (1.1) with CAR(2) errors,
where the covariance kernel K(t, s) = ρ(t − s) has the form (3.15). Suppose that
f is a vector of linearly independent, four times differentiable functions. Then
the conditions of Theorem 3.1 hold for s3 = 4λ(λ2 + ω2), τ0 = (λ2 + ω2)2, τ2 =
2(λ2 − ω2), βj,A = βj,B = βj and γj,A = γj,B = γj for j = 0,1, where β1 = 2λ,
γ1 = γ1 = 3λ2 − ω2, β0 = λ2 + ω2 and γ0 = 2λ(λ2 + ω2).

The BLUE for the covariance kernel in the form (3.16) is obtained from either
Proposition 3.3 with λ1 = λ2 = λ or Proposition 3.4 with ω = 0.

REMARK 3.1. In the Supplementary Material [Dette, Pepelyshev and Zhigl-
javsky (2019)], we consider the regression model (1.2) with a discrete AR(2) error
process. Although the discretised CAR(2) process follows an ARMA(2,1) model
rather than an AR(2) [see He and Wang (1989)] we will be able to establish the
connection between the BLUE in the discrete and continuous-time models, and
hence derive the limiting form of the discrete BLUE and its covariance matrix.

4. Models with more than once differentiable error processes. If T =
[A,B] and q > 1 then solving the Wiener–Hopf type equation (2.5) numerically
is virtually impossible in view of the fact that the problem is severely ill-posed.
Derivation of explicit forms of the BLUE for smooth kernels with q > 1 is hence
extremely important. We did not find any general results on the form of the BLUE
in such cases. In particular, the well-known paper of Sacks and Ylvisaker (1970)
dealing with these kernels does not contain any specific examples. In Theorem 3.2,
we have already established a general result that can be used for deriving explicit
forms for the BLUE for q > 1 times integrated kernels, which can be used re-
peatedly for this purpose. We can also formulate a result similar to Theorem 3.1.
However, already for q = 2, even a formulation of such theorem would take a
couple of pages, and hence its usefulness would be very doubtful.

In this section, we indicate how the general methodologies developed in the
previous sections can be extended to error processes with q > 1 by two examples:
twice integrated Brownian motion and CAR(p) error models with p ≥ 3, but other
cases can be treated very similarly.
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4.1. Twice integrated Brownian motion.

PROPOSITION 4.1. Consider the regression model (1.1) where the error pro-
cess is the twice integrated Brownian motion with the covariance kernel

K(t, s) = t5/5! − st4/4! + s2t3/12, t < s.

Suppose that f is 6 times differentiable and define the vector-measures ζ0(dt) =
zAδA(dt) + zBδB(dt) + z(t) dt , ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), ζ2(dt) =
z2,AδA(dt) + z2,BδB(dt), where z(t) = −f (6)(t),

zA = (−A5f (5)(A) + 60A2f (2)(A) − 360Af (1)(A) + 720f (A)
)
/A5,

z1,A = (
A4f (4)(A) − 36A2f (2)(A) + 192Af (1)(A) − 360f (A)

)
/A4,

z2,A = (−A3f (3)(A) + 9A2f (2)(A) − 36Af (1)(A) + 60f (A)
)
/A3,

zB = f (5)(B), z1,B = −f (4)(B), z2,B = f (3)(B).

Then the estimator θ̂G0,G1,G2 defined by (2.1) (for q = 2) with Gi(dt) = C−1ζi(dt)

(i = 0,1,2),

C =
∫
T

f (t)ζ T
0 (dt) +

∫
T

f (1)(t)ζ T
1 (dt) +

∫
T

f (2)(t)ζ T
2 (dt),

is the BLUE with covariance matrix C−1.

4.2. CAR(p) models with p ≥ 3. Consider the regression model (1.1), which
can be observed at all t ∈ [A,B] and the error process has the continuous autore-
gressive (CAR) structure of order p. Formally, a CAR(p) process is a solution of
the linear stochastic differential equation of the form

dε(p−1)(t) = ã1ε
(p−1)(t) + · · · + ãpε(t) + σ 2

0 dW(t),

where Var(ε(t)) = σ 2 and W is a standard Wiener process [see Brockwell,
Davis and Yang (2007)]. Note that the process ε has continuous derivatives
ε(1)(t), . . . , ε(p−1)(t) at the point t and, consequently, the process {y(t) =
θT f (t) + ε(t)|t ∈ [A,B]} is continuously differentiable p − 1 times on the in-
terval [A,B] with drift θT f (t). Define the vector-functions

z(t) = (
τ0f (t) + τ2f

(2)(t) + · · · + f (2p)(t)
)
/s2p−1,

and vectors

zj,A =
2p−j−1∑

l=0

γl,j,Af (j)(A)/s2p−1,

zj,B =
2p−j−1∑

l=0

γl,j,Bf (j)(B)/s2p−1

for j = 0,1, . . . , p − 1, where s2p−1 = K(2p−1)(s−, s) − K(2p−1)(s+, s).
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PROPOSITION 4.2. Consider the regression model (1.1) with CAR(p) errors.
Define the vector-measures

ζ0(dt) = z0,AδA(dt) + z0,BδB(dt) + z(t) dt,

ζj (dt) = zj,AδA(dt) + zj,BδB(dt), j = 1, . . . , p − 1,

for j = 1, . . . , p−1. Then there exist constants τ0, τ2 . . . , τ2(p−1) and γl,j,A, γl,j,B ,
such that the estimator θ̂G0,G1,...,Gp−1 defined by (2.1) (for q = p − 1) with
Gj(dt) = C−1ζj (dt) (i = 0,1, . . . , p − 1),

C =
∫
T

f (t)ζ T
0 (dt) +

p−1∑
j=1

∫
T

f (j)(t)ζ T
j (dt),

is a BLUE with covariance matrix C−1.

Let us consider the construction of a BLUE for model (1.1) with a CAR(3) error
process in more detail. One of several possible forms for the covariance function
for the CAR(3) process is given by

(4.1) ρ(t) = c1e
−λ1|t | + c2e

−λ2|t | + c3e
−λ3|t |,

where λ1, λ2, λ3 are the roots of the autoregressive polynomial ã(z) = z3 + ã1z
2 +

ã2z + ã3,

cj = kj

k1 + k2 + k3
, kj = 1

ã′(λj )ã(−λj )
,

λi 
= λj , λi > 0, i, j = 1, . . . ,3; see Brockwell (2001). Specifically, we have

c1 = λ2λ3(λ2 + λ3)

(λ1 − λ2)(λ1 − λ3)(λ1 + λ2 + λ3)
,

c2 = λ1λ3(λ1 + λ3)

(λ2 − λ1)(λ2 − λ3)(λ1 + λ2 + λ3)
,

c3 = λ1λ2(λ1 + λ2)

(λ3 − λ1)(λ3 − λ2)(λ1 + λ2 + λ3)
.

In this case, a BLUE is given in Proposition 4.2 with the following parameters:

τ0 = −λ2
1λ

2
2λ

2
3, τ2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, τ4 = −λ2

1 − λ2
2 − λ2

3,

s5 = 2λ1λ2λ3(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)

λ1 + λ2 + λ3
= 2

∏
i λi

∏
i 
=j (λi + λj )∑

i λi

,

z0,A = f (5)(A) − ∑
i

λ2
i f

(3)(A) − ∏
i

λif
(2)(A)

+
[∑
i 
=j

λ2
i λ

2
j + ∏

i

λi

∑
i

λi

]
f (1)(A) − ∏

i

λi

∑
i 
=j

λiλjf (A),



1950 H. DETTE, A. PEPELYSHEV AND A. ZHIGLJAVSKY

z1,A = −f (4)(A) + ∑
i,j

λiλjf
(2)(A)

− ∏
i 
=j

(λi + λj )f
(1)(A) + ∏

i

λi

∑
i

λif (A),

z2,A = f (3)(A) − ∑
i

λif
(2)(A) + ∑

i 
=j

λiλjf
(1)(A) − ∏

i

λif (A),

−z0,B = f (5)(B) − ∑
i

λ2
i f

(3)(B) − ∏
i

λif
(2)(B)

+
[∑
i 
=j

λ2
i λ

2
j + ∏

i

λi

∑
i

λi

]
f (1)(B) − ∏

i

λi

∑
i 
=j

λiλjf (B),

−z1,B = −f (4)(B) + ∑
i,j

λiλjf
(2)(B)

− ∏
i 
=j

(λi + λj )f
(1)(B) + ∏

i

λi

∑
i

λif (B),

−z2,B = f (3)(B) − ∑
i

λif
(2)(B) + ∑

i 
=j

λiλjf
(1)(B) − ∏

i

λif (B).

If we set λ1 = λ2 = λ3 = λ, then the above formulas give the explicit form of
the BLUE for the Matérn kernel with parameter 5/2; that is, the kernel defined by
ρ(t) = (1 + √

5tλ + 5t2λ2/3) exp(−√
5tλ).

5. Numerical study. In this section, we describe some numerical results on
comparison of the accuracy of various estimators for the parameters in the regres-
sion models (1.1) with [A,B] = [1,2] and the integrated Brownian motion as error
process. The kernel K(t, s) is given in (3.5) and the explicit form of the covariance
matrix of the continuous BLUE can be found in Example 3.1. We denote this es-
timator by θ̂cont.BLUE. We are interested in the efficiency of various estimators for
this differentiable error process. For a given N (in the tables, we use N = 3,5,10),
we consider the following four estimators that use 2N observations:

• θ̂BLUE(N,N): discrete BLUE based on observations y(t1), . . . , y(tN), y′(t1),
. . . , y′(tN) with ti = 1 + (i − 1)/(N − 1), i = 1, . . . ,N . This estimator uses N

observations of the original process and its derivative (at equidistant points).
• θ̂BLUE(2N − 2,2): discrete BLUE based on observations y(t1), . . ., y(t2N−2),

y′(1), y′(2) with ti = 1 + (i − 1)/(2N − 3), i = 1, . . . ,2N − 3. This estimator
uses 2N − 2 observations of the original process (at equidistant points) and
observations of its derivative at the boundary points of the design space.

• θ̂BLUE(2N,0): discrete BLUE based on observations y(t1), . . . , y(t2N) with ti =
1+ (i −1)/(2N −1), i = 1, . . . ,2N . This estimator uses 2N observations of the
original process (at equidistant points) and no observations from its derivative.
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TABLE 1
The efficiency defined by (5.1) for four different estimators based on 2N observations and the

regression functions in (5.2)–(5.4)

Model (5.2) (5.3) (5.4)

N 3 5 10 3 5 10 3 5 10

θ̂BLUE(N,N) 1 1 1 0.412 0.929 0.997 0.696 0.960 0.998
θ̂BLUE(2N − 2,2) 1 1 1 0.456 0.987 0.999 0.869 0.994 0.999
θ̂BLUE(2N,0) 0.859 0.915 0.957 0.478 0.772 0.896 0.100 0.333 0.625
θ̂OLSE(2N,0) 0.073 0.073 0.073 0.001 0.001 0.002 0.089 0.141 0.119

• θ̂OLSE(2N,0): ordinary least square estimator (OLSE) based on observations
y(t1), . . . , y(t2N) with ti = 1 + (i − 1)/(2N − 1), i = 1, . . . ,2N . This estima-
tor uses 2N observations of the original process (at equidistant points) and no
observations from its derivative.

In Table 1, we use the results derived in this paper to calculate the efficiencies

(5.1) Eff(θ̃) = Var(θ̂cont.BLUE)

Var(θ̃)
,

where θ̃ is one of the four estimators under consideration. In particular, we con-
sider three different scenarios for the response function f (t) in model (1.1):

m = 1, f (t) = 1,(5.2)

m = 3, f (t) = (
1, sin(3πt), cos(3πt)

)T
,(5.3)

m = 5, f (t) = (
1, t, t2,1/t,1/t2)T

.(5.4)

The formulas provided in Example 3.1 give us expressions for a continuous
BLUE. For the model (5.2) (recall that [A,B] = [1,2]), we obtain ζ0(dt) =
12δ1(dt) and ζ1(dt) = −6δ1(dt). Therefore, the estimator θ̂cont.BLUE = y(1) −
0.5y ′(1) is a BLUE. For the model (5.3), we obtain from Example 3.1 the vector-
measures ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t) dt and ζ1(dt) = z1,AδA(dt) +
z1,BδB(dt), where z(t) = 34π4(0, sin(3πt), cos(3πt))T ,

zA =
⎛
⎜⎝ 12

27π3 + 18π

−12

⎞
⎟⎠ , zB =

⎛
⎜⎝ 0

27π3

0

⎞
⎟⎠ ,

z1,A =
⎛
⎜⎝ −6

−12π

−9π2 + 6

⎞
⎟⎠ , z1,B =

⎛
⎜⎝ 0

0
−9π2

⎞
⎟⎠ .

Similarly, we get the BLUE measures for the model (5.4).
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The results are very typical for many regression models with differentiable error
processes (i.e., q = 1) and can be summarized as follows. Any BLUE is far supe-
rior to the OLSE and any BLUE becomes highly efficient when N is large. More-
over, the use of information from the derivatives in constructing BLUEs typically
makes them more efficient than the BLUE which only uses values of {y(t)|t ∈ T };
this is not true in general: see the case N = 3 for model (5.3) in Table 1. We also
emphasize that the BLUEs which use more than two values of the derivative y′ of
the process have lower efficiency than the BLUE that uses exactly two values of
derivatives, y′(A) and y′(B) (recall that the total number of observations is fixed).
Therefore, the best way of constructing the BLUE for N observations in the in-
terval [A,B] is to emulate the asymptotic BLUE: that is, to use y′(A) and y′(B)

but for the other N − 2 observations use values of the process {y(t)|t ∈ T }. Sim-
ilarly, for q times differentiable processes y(t) with q > 1 and N large enough,
the most efficient BLUE construction procedure would suggest observing values
of the derivatives y(i)(A) and y(i)(B) for i = 1, . . . , q and using remaining N −2q

observations for observing values of process {y(t)|t ∈ T }.

APPENDIX

A.1. Proof of Lemma 2.1. The mean of θ̂ T
G is

E
[
θ̂ T
G

] = θT
q∑

i=0

∫
T

f (i)(t)GT
i (dt) = θT

∫
T

F(t)GT (dt),

where F(t) = (f (t), f (1)(t), . . . , f (q)(t)). This implies that the estimator θ̂G is
unbiased if and only if

(A.1)
∫
T

F(t)GT (dt) = Im.

Since G = (G0,G1, . . . ,Gq) with Gi = C−1ζi , we have

∫
T

F(t)GT (dt) =
q∑

i=0

∫
T

f (i)(t)ζ T
i (dt)C−1T = CT C−1T = Im,

which completes the proof.

A.2. Proof of Theorem 2.1. I. We will call a signed matrix-measure G unbi-
ased if the associated estimator θ̂G defined in (2.1) is unbiased; that is, (A.1) holds.
The set of all unbiased signed matrix-measures will be denoted by S . This set is
convex; moreover, if G,H ∈ S then (1 − α)G + αH ∈ S for any real α.

The covariance matrix of any estimator θ̂G is the matrix-valued function
φ(G) = Var(θ̂G) defined in (2.3). The BLUE minimizes this matrix-valued func-
tion on the set S .
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Introduce the vector-function d : T × S →R
m by

d(s,G) =
q∑

j=0

∫
T

K(j)(t, s)Gj (dt) − φ(G)f (s).

The validity of (2.4) for all s ∈ T is equivalent to the validity of d(s,G) = 0m×1 for
all s ∈ T . Hence we are going to prove that θ̂G is the BLUE if and only if d(s,G) =
0m×1 for all s ∈ T . For this purpose, we will need the following auxiliary result.

LEMMA A.1. For any G ∈ S, we have
∫
T d(s,G)GT (ds) = 0m×m, where

d(s,G) = (d(s,G), d(1)(s,G), . . . , d(q)(s,G)) is an m × (q + 1) matrix.

PROOF OF LEMMA A.1. Using the unbiasedness condition (A.1), we have∫
T

d(s,G)GT (ds) =
∫
T

∫
T

G(dt)K(t, s)GT (ds) − φ(G)

∫
T

F(s)GT (ds)

= φ(G) − φ(G)Im = 0m×m. �

For any two matrix-measures G and H in S , denote

�(G,H) =
∫
T

∫
T

G(dt)K(t, s)HT (ds)

which is a matrix of size m × m. Note that for any G ∈ S , the matrix φ(G) =
�(G,G) is exactly Var(θ̂G), the covariance matrix of θ̂G; see (2.3).

For any two matrix-measures G and H in S and any real α, we have

φ
(
(1−α)G+αH

) = (1−α)2φ(G)+α2φ(H)+α(1−α)
[
�(G,H)+�(H,G)

]
.

The directional derivative of φ((1 − α)G + αH) as α → 0 is

(A.2)
∂

∂α
φ

(
(1 − α)G + αH

)∣∣∣∣
α=0

= �(G,H) + �(H,G) − 2φ(G).

To rewrite (A.2), we note that
∫
T d(s,G)HT (ds) can be written as

(A.3)

∫
T

d(s,G)HT (ds) = �(G,H) − φ(G)

∫
T

F(s)HT (ds)

= �(G,H) − φ(G),

where in the last equality we have used the unbiasedness condition (A.1) for H .
Using (A.2), (A.3) and the fact that the matrix �(H,G) − φ(G) is the transpose
of �(G,H) − φ(G) we obtain

(A.4)

∂

∂α
φ

(
(1 − α)G + αH

)∣∣∣∣
α=0

=
∫
T

d(s,G)HT (ds) +
[∫

T
d(s,G)HT (ds)

]T

.
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This yields that if d(s,G) = 0m×1 for all s ∈ T , then

(A.5)
∂φ((1 − α)G + αH)

∂α

∣∣∣∣
α=0

= 0m×m ∀H ∈ S.

Also we have ∂2φ((1 − α)G + αH)/∂α2 = 2φ(G − H), which is a nonnegative
definite matrix for all G,H ∈ S .

Let us assume that G ∈ S is such that d(s,G) = 0m×1 for all s ∈ T , fix H ∈ S
and a vector c ∈ R

m. Consider a function ψc,H (α) = cT φ((1 − α)G + αH)c as a
function of α ∈ R. This is simply a quadratic and convex function of α, which, in
view of (A.5), has zero derivative at α = 0. Therefore, for all c ∈ R

m and H ∈ S
we have ψc,H (0) = minα ψc,H (α), which is equivalent to the assertion that θ̂G is
the BLUE.

II. Assume now that G gives the BLUE θ̂G. This implies, first, that (A.5) holds
and second, for all c ∈ R

m cT φ(G)c ≤ cT φ(H)c, for any H ∈ S . Let us deduce
that d(s,G) = 0m×1 for all s ∈ T [which is equivalent to validity of (2.4)]. We are
going to prove this by contradiction.

Assume that there exists s0 ∈ T such that d(s0,G) 
= 0. Define the signed
matrix-measure ζ = (ζ0, ζ1, . . . , ζq) with ζ0(ds) = G0(ds) + κd(s0,G)δs0(ds),
κ 
= 0, and ζi(ds) = Gi(ds) for i = 1, . . . , q .

Since G is unbiased, CG = ∫
T G(dt)F T (t) = Im. For any small positive

or small negative κ , the matrix Cζ = ∫
T ζ(dt)F T (t) = Im + κd(s0,G)f T (s0)

is nondegenerate and its eigenvalues are close to 1. In view of Lemma 2.1,
H(ds) = C−1

ζ ζ(ds) is an unbiased matrix-measure. Using the identity (A.4) and
Lemma A.1, we obtain for the measure Gα = (1 − α)G + αH :

∂φ(Gα)

∂α

∣∣∣∣
α=0

= κd(s0,G)dT (s0,G)C−1
ζ

T + κC−1
ζ d(s0,G)dT (s0,G).

Write this as ∂φ(Gα)/∂α|α=0 = κ(X0A
T + AX0), where A = C−1

ζ and X0 =
d(s0,G)dT (s0,G) is a symmetric matrix.

For any given A, the homogeneous Lyapunov matrix equation XAT + AX = 0
has only the trivial solution X = 0 if and only if A and −A have no common
eigenvalues [see Section 3, Chapter 8 in Gantmacher (1959)]; this is the case when
A = C−1

ζ and κ is small enough.

This yields that for X = X0, the matrix X0A
T + AX0 is a nonzero symmetric

matrix. Therefore, there exists a vector c ∈ R
m such that the directional derivative

of cT φ(Gα)c is nonzero. For any such c, cT φ(Gα)c < cT φ(G)c for either small
positive or small negative α, and hence θ̂G is not the BLUE. Thus, the assumption
of the existence of an s0 ∈ T such that d(s0,G) 
= 0 yields a contradiction to the
fact that G gives the BLUE. This completes the proof that the equality (2.4) is
necessary and sufficient for the estimator θ̂G to be the BLUE.
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A.3. Proof of Lemma 2.2. We repeat i times the integration by parts∫
T

ψ(i)(t)ϕ(t) dt = ψ(i−1)(t)ϕ(t)

∣∣∣∣B
A

−
∫
T

ψ(i−1)(t)ϕ(1)(t) dt

for differentiable functions ψ(t) and ϕ(t). This gives

∫
T

ψ(i)(t)ϕi(t) dt =
i∑

j=1

(−1)j−1ψ(i−j)(t)ϕi
(j−1)(t)

∣∣∣∣B
A

+ (−1)i
∫
T

ψ(t)ϕ
(i)
i (t) dt.

Using the above equality with ψ(t) = y(i)(t), we obtain that the expectation of
two estimators coincide. Also, using this equality with ψ(t) = K(i)(t, s) we obtain
that the covariance matrices of the two estimators coincide.

A.4. Proof of Proposition 2.2. Straightforward calculus shows that∫
T

K(t, s)ζ(dt) = K(A, s)zA + K(B, s)zB −
∫
T

K(t, s)f (2)(t) dt/(λ1 + λ2)

= K(A, s)zA + K(B, s)zB

+ [−K(t, s)f (1)(t)
∣∣s
A+K(1)(t, s)f (t)

∣∣s−
A

− K(t, s)f (1)(t)
∣∣B
s +K(1)(t, s)f (t)

∣∣B
s+

]
/(λ1 + λ2)

= (1 + λ1A − λ2s)zA + (1 + λ1s − λ2B)zB + f (s)

+ [
K(A, s)f (1)(A) − K(1)(A, s)f (A)

− K(B, s)f (1)(B) + K(1)(B, s)f (B)
]
/(λ1 + λ2)

= f (s).

Therefore, the conditions of Corollary 2.1 are fulfilled.

A.5. Proof of Theorem 3.1. It is easy to see that θ̂G0,G1 is unbiased. Fur-
ther we are going to use Corollary 3.1 which gives the sufficient condition for an
estimator to be the BLUE. We will show that the identity

(A.6) LHS =
∫ B

A
K(t, s)ζ0(dt) +

∫ B

A
K(1)(t, s)ζ1(dt) = f (s)

holds for all s ∈ [A,B]. By the definition of the measure ζ , it follows that

LHS = zAK(A, s) + zBK(B, s) + IA + IB + z1,AK(1)(A, s) + z1,BK(1)(B, s),

where IA = ∫ s
A K(t, s)z(t) dt, IB = ∫ B

s K(t, s)z(t) dt . Indeed, for the vector-
function z(t) = τ0f (t) − τ2f

(2)(t) + f (4)(t), we have

s3IA = τ0

∫ s

A
K(t, s)f (t) dt − τ2

∫ s

A
K(t, s)f (2)(t) dt +

∫ s

A
K(t, s)f (4)(t) dt
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= τ0

∫ s

A
K(t, s)f (t) dt − τ2K(t, s)f (1)(t)

∣∣s
A+τ2K

(1)(t, s)f (t)
∣∣s
A

− τ2

∫ s

A
K(2)(t, s)f (t) dt + K(t, s)f (3)(t)

∣∣s
A−K(1)(t, s)f (2)(t)

∣∣s−
A

+ K(2)(t, s)f (1)(t)
∣∣s−
A −K(3)(t, s)f (t)

∣∣s−
A +

∫ s

A
K(4)(t, s)f (t) dt.

By construction, the coefficients τ0, τ2, are chosen such that the equality (3.3)
holds for all t ∈ [A,B] and any s, implying that integrals in the expression for
IA are cancelled. Thus, we obtain

s3IA = +τ2K(A, s)f (1)(A) − τ2K
(1)(A, s)f (A) − K(A, s)f (3)(A)

+ K(1)(A, s)f (2)(A) − K(2)(A, s)f (1)(A) + K(3)(A, s)f (A)

− τ2K(s−, s)f (1)(s) + τ2K
(1)(s−, s)f (s) + K(s−, s)f (3)(s)

− K(1)(s−, s)f (2)(s) + K(2)(s−, s)f (1)(s) − K(3)(s−, s)f (s).

Similarly, we have

s3IB = −τ2K(B, s)f (1)(B) + τ2K
(1)(B, s)f (B) + K(B, s)f (3)(B)

− K(1)(B, s)f (2)(B) + K(2)(B, s)f (1)(B) − K(3)(B, s)f (B)

+ τ2K(s+, s)f (1)(s) − τ2K
(1)(s+, s)f (s) − K(s+, s)f (3)(s)

+ K(1)(s+, s)f (2)(s) − K(2)(s+, s)f (1)(s) + K(3)(s+, s)f (s).

Using the assumption on the derivatives of the kernel K(t, s), we obtain

s3(IA + IB) = τ2K(A, s)f (1)(A) − τ2K
(1)(A, s)f (A) − K(A, s)f (3)(A)

+ K(1)(A, s)f (2)(A) − K(2)(A, s)f (1)(A) + K(3)(A, s)f (A)

− τ2K(B, s)f (1)(B) + τ2K
(1)(B, s)f (B) + K(B, s)f (3)(B)

− K(1)(B, s)f (2)(B) + K(2)(B, s)f (1)(B)

− K(3)(B, s)f (B) + s3f (s).

Also we have

s3
(
zAK(A, s) + z1,AK(1)(A, s)

)
= (

f (3)(A) − γ1,Af (1)(A) + γ0,Af (A)
)
K(A, s)

+ (−f (2)(A) + β1,Af (1)(A) − β0,Af (A)
)
K(1)(A, s)

= f (3)(A)K(A, s) + (−γ1,AK(A, s) + β1,AK(1)(A, s)
)
f (1)(A)

− K(1)(A, s)f (2)(A) + (
γ0,AK(A, s) − β0,AK(1)(A, s)

)
f (A),
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and a similar result at the point t = B . Putting these expressions into (A.6) and us-
ing the assumption that constants γ1,A, β1,A, γ0,A, β0,A and γ1,B, β1,B, γ0,B, β0,B

are chosen such that the sum of the functions defined in (3.2) is identically equal
to zero, we obtain∫ B

A
K(t, s)ζ0(dt) +

∫ B

A
K(1)(t, s)ζ1(dt) = f (s);

this completes the proof.

A.6. Proof of Theorem 3.2. Observing (3.9), we write the vector c as

c =
∫ A

a

[∫ B

A
R(t, s)ζ0(dt) − f (s)

]
ds

=
∫ A

a

[∫ B

A
R

(
t, s′)ζ0(dt) − f

(
s′)]ds′ +

∫ s

A

[∫ B

A
R

(
t, s′)ζ0(dt) − f

(
s′)]ds′

=
∫ B

A

∫ s

a
R

(
t, s′)ds′ζ0(dt) −

∫ s

a
f

(
s′)ds′ =

∫ B

A
K(1)(t, s)ζ0(dt) − f̃ (s).

We now show that equation (2.5) in Corollary 2.1 holds for q = 1, f = f̃ and
ζi = ζ̃i . Observing (3.12) and the definition of ζ̃i in Theorem 3.2, we obtain∫

T
K(t, s)ζ̃0(dt) +

∫
T

K(1)(t, s)ζ̃1(dt)

= −c

(∫
T

K(t, s)η0(dt) +
∫
T

K(1)(t, s)η1(dt)

)
+

∫
T

K(1)(t, s)ζ0(dt)

= −c · 1 + f̃ (s) + c = f̃ (s).

A.7. Proof of Propositions 3.3 and 3.4. For the sake of brevity, we only give
a proof of Proposition 3.3, the other result follows by similar arguments. Direct
calculus gives s3 = K(3)(s+, s) − K(3)(s−, s) = 2λ1λ2(λ1 + λ2). Then we ob-
tain that the identity (3.3) holds for τ0 = λ2

1λ
2
2 and τ2 = λ2

1 + λ2
2. Straightforward

calculations show that identities (3.2) hold with the specified values of constants
γ1, γ0, β1, β0.
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SUPPLEMENTARY MATERIAL

Supplement to “The BLUE in continuous-time regression models with cor-
related errors” (DOI: 10.1214/18-AOS1734SUPP; .pdf). We exemplarily demon-
strate that the covariance matrix of the BLUE for the model (1.1) with observations

https://doi.org/10.1214/18-AOS1734SUPP
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on the interval can be obtained as a limit of the covariance matrices of the BLUE
in the discrete regression model (1.2) with observations at equidistant points and a
discrete AR(2) error process.
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