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This paper discusses the transformed linear regression with non-normal
error distributions, a problem that often occurs in many areas such as eco-
nomics and social sciences as well as medical studies. The linear transforma-
tion model is an important tool in survival analysis partly due to its flexibil-
ity. In particular, it includes the Cox model and the proportional odds model
as special cases when the error follows the extreme value distribution and
the logistic distribution, respectively. Despite the popularity and generality of
linear transformation models, however, there is no general theory on the max-
imum likelihood estimation of the regression parameter and the transforma-
tion function. One main difficulty for this is that the transformation function
near the tails diverges to infinity and can be quite unstable. It affects the accu-
racy of the estimation of the transformation function and regression parame-
ters. In this paper, we develop the maximum likelihood estimation approach
and provide the near optimal conditions on the error distribution under which
the consistency and asymptotic normality of the resulting estimators can be
established. Extensive numerical studies suggest that the methodology works
well, and an application to the data on a typhoon forecast is provided.

1. Introduction. Linear regression is a traditional and commonly used tech-
nique for characterizing the relationship between a response variable, say Y , and
a group of predictor variables, say X, and a great deal of literature has been es-
tablished about inference on various linear models and their generalizations. In
particular, various transformations such as log and Box–Cox transformations have
been proposed to make the transformed response variable more close to a normal
variable among other reasons (Box and Cox [1]; Sherman [18]). However, it is
well known that sometimes there may not exist such transformation and, further-
more, one may prefer to leave the transformation arbitrary for the flexibility. That
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is, we face a transformed linear regression model with unknown transformation or
an inference problem with some distributions other than the normal distribution.

To be specific, in this paper, we will consider the following linear transformation
model:

(1.1) H0(Y ) = −X′β0 + ε,

where H0 is a strictly increasing function on R, β0 a p-dimensional vector of
regression parameters, and ε the error term with a known density function f . Note
that the model above is invariant to any increasing transformation function. That
is, for any strictly increasing function G, the variable Y ∗ = G(Y) still follows
the same model. On the density function f , among others, one popular class of
functions is given by

f (x) = ex

(1 + rex)1+1/r
,

and it gives the Cox model and the proportional odds model with r = 0 and 1,
respectively. Among others, two areas where model (1.1) has been commonly used
and studied are econometrics and survival analysis (Chen [4]; Doksum [8]; Han
[10]; Horowitz [11]; Ma [14]; Sherman[18]). In the following, we will discuss
inference about model (1.1) with f belonging to a broad family, to be denoted by
F , of density functions defined in the next section over the entire real line.

Several inference procedures have been developed for model (1.1) under differ-
ent situations (Cheng [5]; Diao [7]; Zeng [23–25]; Fine [9]; Huang [12]). However,
most of these methods only considered the function H0 defined over a bounded
interval mainly because this can render the technical ease when applying the em-
pirical process theory to establish the asymptotical properties of the resulting es-
timators. For example, Zeng [25] investigated the problem with the normal error
distribution over a bounded region. In practice, as the typhoon example discussed
below, one may often face the error distribution over the entire line and/or being
a nonnormal distribution. Although it may seem to be easy to generalize the idea
used in Zeng [25] and others to the current situation, as will be seen below, their
techniques do not work anymore for the derivation or establishment of the asymp-
totic properties of the derived estimators here. Correspondingly, for the proposed
nonparametric maximum likelihood estimation (NPMLE) approach with the focus
on the nonnormal distribution, we will employ a philosophically different approach
along with some novel techniques and observations.

In particular, a key contribution or an innovation of the approach used here is the
inequalities given in the Lemma A.1 in the Appendix, which allow one to be able to
handle the density that is of polynomial decay. By citing the maximum likelihood
criterion, we will prove that the NPMLE of the transformation function shall not
have large jumps, an essential step for the establishment of the consistency of
the NPMLE. Also, we will derive the minimal conditions on F that allow the
establishment of the consistency and asymptotic normality of the NPMLE. A key
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step in proving the asymptotic normality will be to show that the score function of
the regression parameter is a P-Donsker class (van der Vaart [20–22]), which will
be achieved under stronger conditions on the tail of the transformation function.
Note that as mentioned above, the focus here will be on the situation with the
nonnormal error distribution. In other words, although the class F to be defined
below include many commonly used distributions or models such as the Cox model
and the proportional odds model as special case, it does not include the normal
distribution. More comments on this are given below.

The rest of this paper is organized as follows. In Section 2, after introducing
some notation and assumptions, we will develop the maximum likelihood estima-
tion approach for model (1.1). Asymptotic properties of the resulting estimators are
also established in the section with the proofs sketched in the Appendix. Section 3
presents some results from an extensive simulation study conducted for assessing
the finite sample properties of the proposed approach, which suggest that it works
well for practical situations. An application which is provided in Section 4 and
Section 5 contains some discussion and concluding remarks.

2. Parameter estimation and inference procedure. In this section, we will
first discuss estimation of model (1.1) and then establish the asymptotic properties
of the resulting estimators along with the description of the class of the density
distributions F .

2.1. Maximum likelihood estimation. Suppose that the observed data consist
of n i.i.d. random samples (Yi,Xi)’s of (Y,X). To derive the likelihood function,
note that the conditional distribution function of Y given X has the form

FY |x(y) = P(Y ≤ y|X = x) = P
(
ε ≤ H0(y) + X′β0

)|X=x.

This yields the conditional density function of Y

fY |X(y) = h0(y)f
(
H0(y) + X′β0

)
given X, where h0(y) = dH0(y)/dy. It thus follows that the log-likelihood func-
tion of θ = (β,H) is given by

l∗(θ) =
n∑

i=1

[
logf

{
H(Yi) + X′

iβ
} + logh(Yi)

]
,

where h(y) = dH(y)/dy.
For estimation of θ , as with usual nonparametric settings, we will restrict the

function H to be right continuous and have jumps only at the points Yi’s and
consider the following log-likelihood function:

(2.1) ln(θ) = 1

n

n∑
i=1

[
logf

{
H(Yi) + X′

iβ
} + logH {Yi} + logn

]
.
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In the above, H {Yi} = H(Yi) − H(Yi−) denotes the jump size of H at the point
Yi . More specifically, define the estimator θ̂n = (β̂n, Ĥn) to be the value of θ that
maximizes the log-likelihood function ln(θ) over the parameter space � = B×H,
where B is a subset of Rp and

H = {
H : H(·) is a nondecreasing right continuous function

}
.

Define g(t) = −d logf (t)/dt and I(·) be the indicator function. For the deter-
mination of θ̂n, we propose to employ the following algorithm.

Step 1. Choose the initial values β(0) and H {Yk}(0).
Step 2. At the t + 1th iteration, obtain the updated estimator H {Yk}(t+1) by: for

Yk > 0,

H {Yk}(t+1) =
∑n

i=1 I(Yi = Yk)∑n
i=1 I(Yi ≥ Yk)g(H(t)(Yi) + X′

iβ
(t))

,

and for Yk < 0,

H {−Yk}(t+1) =
∑n

i=1 I(Yi = Yk)∑n
i=1 I(−Yi ≥ −Yk)g(H(t)(−Yi) + X′

iβ
(t))

,

where H(t)(Yi) = ∑n
j=1 H {−Yj }(t)I(Yi ≥ Yj ).

Step 3. Obtain the updated estimator β(t+1) as the root to the following score
equation:

U(β) =
n∑

i=1

Xig
{
H(t+1)(Yi) + X′

iβ
} = 0.

Step 4. Repeat Steps 2 and 3 until the desired convergence.

For the selection of the initial estimators β(0) and H {Yk}(0) in Step 1, one has
to be careful since we allow the error distribution f to be over the entire real line.
In practice and also in the numerical studies below, we suggest to create some
censored data and then employ some existing methods to determine the initial
estimators. More specifically, choose a large M > 0 and for any i such that if
|Yi | > M , set Y ∗

i = M and δi = 0. Otherwise, set Y ∗
i = Yi and δi = 1, which gives

the censored data {Y ∗
i , δi,Xi}ni=1. Then one can use the resulting estimators of β

and H given by some existing method, say that proposed by Chen and Tong [3],
based on the censored data as the initial estimators. The numerical study below
indicates that this seems to work well and relatively be robust with respect to M .
For the convergence of the algorithm above, we suggest to focus on estimation of
β , which is usually the focus of the inference, and stop the algorithm if β(t+1) and
β(t) are close enough such that their distance is smaller than a prespecified positive
number. In all of the simulation studies conducted, the number of iterations needed
for the convergence was less than 100 times.
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2.2. Asymptotical properties and inference. Now we will establish the asymp-
totic properties of the estimator θ̂n and for this, we will first describe the regularity
conditions needed. For a function g, let ġ and g̈ denote the first and second deriva-
tives of g. We will need the following regularity conditions:

(C1) The true value β0 is an interior point of a known compact set B in Rp .
(C2) The true function H0 is strictly increasing and Ḣ0(s) is continuous.
(C3) (i) The covariate X is uniformly bounded. That is, X takes its values in a

known compact set X ⊂ R
p; (ii). Assume that E{XX′} > 0.

(C4) The density function f is positive and there exists a positive constant
ν > 0 such that

lim sup
|t |→∞

|t |1+νf (t) < ∞.

(C5) The function g(x) = −ḟ (x)/f (x) is strictly increasing with g(0) = 0 and

lim
x→∞g(x) = g+∞, lim

x→−∞g(x) = g−∞.

(C6) The function g defined in (C5) has a bounded and continuous second
derivative.

Note that Conditions (C1)–(C3) are very common in the statistical literature
and Condition (C4) ensures that the density f cannot be too heavy tailed. The
latter condition is generally very weak as if there exists no such ν, then both the
expectation and variance of the error do not exist. In addition, many functions f

satisfy Conditions (C4)–(C6) and one example is when the hazard function of ε

takes the form exp(t)/(1 + r exp(t)) with r ≥ 0. In the following, we will first
describe the existence and consistency of θ̂n.

THEOREM 2.1. Assume that Conditions (C1)–(C4) given above hold. Then
θ̂n = (β̂n, Ĥn) exists and, furthermore, for any τ ∈ (−∞,∞), we have

P
(
−∞ < inf

n≥1
Ĥn(τ ) ≤ sup

n≥1
Ĥn(τ ) < ∞

)
= 1.

THEOREM 2.2. Assume that Conditions (C1)–(C4) given above hold. Then
for any 0 < τ < ∞, we have

|β̂n − β0| → 0 and sup
t∈[−τ,τ ]

∣∣Ĥn(t) − H0(t)
∣∣ → 0 almost surely.

Note that the results above state that the estimator Ĥn is uniformly bounded
from both above and below in any compact set of R and θ̂n is asymptotically con-
sistent. To establish the asymptotic normality, without loss of generality, assume
that H(0) = 0.
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THEOREM 2.3. Assume that Conditions (C1)–(C6) given above hold. Then we
have that as n → ∞, n1/2(β̂n − β0) converges in distribution to a normal random
variable with zero mean and the covariance matrix 	 = A−1

β 	βA−1′
β , where Aβ

and 	β are given in (A.14) and (A.15) of the Appendix below, respectively.

The proofs of all results above are sketched in the Appendix. It is worth pointing
out that if f is the standard normal density function, we have that |t |1+νf (t) → 0
as t → ±∞ for any ν > 0 and, therefore, f satisfies Condition (C4). In other
words, although the focus here is on nonnormal distributions, the results given in
Theorems 2.1 and 2.2 also hold and the proposed maximum likelihood estimator
is still asymptotically consistent for the normal error distribution. In contrast, the
result given in Theorem 2.3 only applies to nonnormal error distributions since the
normal density does not satisfy Conditions (C5) and (C6).

For inference about β0 and the use of the results above, it is apparent that we
need to estimate the covariance matrix of β̂n, and a natural approach would be to
develop some consistent estimators of the covariance matrix given in Theorem 2.3.
However, this is quite difficult or not straightforward due to the large number of
parameters involved. To address this, we instead propose to employ the following
profile likelihood approach (Murphy [15, 16]; Murphy and van der Vaart [17]).

Specifically, for given β ∈ B, let Ĥn(·;β) denote the estimator of H0 obtained
by maximizing the log-likelihood function given in (2.1) and define the profile
log-likelihood function pln(β) = ln{β, Ĥn(·;β)}. For k = 1, . . . , p, let ek be the p-
dimensional vector of zeros except its kth component being one. Then it follows
from Corollary 3 of Murphy and van der Vaart [17] that for σ 2

k , the asymptotic
variance of the kth component of β̂n, we have that

2pln(β̂n) − pln(β̂n + snek) − pln(β̂n − snek)

ns2
n

→ σ−2
k

in probability, where sn is any sequence that converges to 0 in probability. This
suggests that one can estimate σ 2

k by the quantity above for finite samples and for
all results below, we will use sn = n−1/2 max{1, |β̂nk|}, where β̂nk denotes the kth
component of β̂n. Note that in general, the profile approach for variance estimation
may be sensitive to the choice of sn sometimes. To assess this, we performed a
simulation study and the results, given in part 3 of the Supplementary Material
[19], indicate that the variance estimator above seems to be robust with respect
to sn.

3. A simulation study. In this section, we present some results obtained from
an extensive simulation study conducted to assess the finite sample performance
of the maximum likelihood estimation approach proposed in the previous section.
In the study, it was assumed that the response variable Y follows the linear trans-
formation model:

H0(Y ) = −X1β01 − X2β02 + ε.
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TABLE 1
Simulation results on estimation of β01 with β02 = 1

n = 100 n = 200

r β01 Bias SSE ESE CP Bias SSE ESE CP

With H0(Y ) = log(Y )

0 1 −0.0293 0.2287 0.2271 0.949 −0.0105 0.1453 0.1575 0.962
−1 0.0127 0.2197 0.2263 0.950 0.0098 0.1524 0.1576 0.960

0.5 1 0.02511 0.2796 0.3006 0.964 −0.0016 0.2005 0.2104 0.953
−1 −0.0024 0.2875 0.3002 0.960 0.0114 0.2064 0.2108 0.957

1 1 0.0008 0.3627 0.3624 0.957 −0.0021 0.2441 0.2545 0.963
−1 −0.0091 0.3515 0.362 0.960 0.0053 0.2481 0.2545 0.953

2 1 −0.0193 0.4697 0.464 0.954 −0.0173 0.299 0.3254 0.967
−1 −0.0066 0.4535 0.4638 0.949 −0.0148 0.3065 0.3256 0.960

With H0(Y ) = Y 3

0 1 0.0245 0.2306 0.2368 0.956 0.0054 0.1624 0.1619 0.948
−1 0.0169 0.2277 0.2359 0.966 0.0069 0.1629 0.1614 0.951

0.5 1 0.0123 0.3116 0.3049 0.95 0.005 0.2093 0.2118 0.956
−1 −0.0075 0.3114 0.304 0.947 0 0.2121 0.2116 0.948

1 1 0.0043 0.3703 0.3671 0.952 −0.0063 0.2623 0.256 0.941
−1 0.0186 0.3727 0.3679 0.942 −0.0063 0.2536 0.2557 0.941

2 1 −0.0047 0.4564 0.4751 0.955 −0.0104 0.3154 0.3296 0.963
−1 −0.0071 0.4788 0.4756 0.955 −0.0057 0.3314 0.3297 0.947

In the above, we assumed that H0(Y ) = log(Y ) for the logarithm function or
H0(Y ) = Y 3 for the power function that is equivalent to the famous Box–Cox
transformation function, the two covariates X1 and X2 followed the Bernoulli
distribution with the success probability of 0.5 and the uniform distribution
over [−1,1], respectively, and ε had the distribution with the hazard function
exp(t)/(1 + r exp(t)) (Chen [2, 3]), where r is a constant. As mentioned above,
when r = 0, we have the Cox model (Cox [6]) and r = 1 gives the proportional
odds model. The results given below are based on n = 100 or 200 with 1000 repli-
cations.

Table 1 presents the results on estimation of the regression parameter β01 with
β01 = −1 or 1, β02 = 1 and r = 0,0.5,1 and 2. The results include the estimated
bias (Bias) of the proposed estimates given by the average of the estimates minus
the true value, the sample standard deviations (SSE) of the estimates, the average
of the estimated standard errors (ESE) and the empirical 95% coverage probabil-
ity (CP). They suggest that the proposed estimator seems to be unbiased and the
variance estimation also seems to be appropriate. In addition, they indicate that
the normal distribution approximation appears to be reasonable. Also as expected,
the estimator became more accurate when the sample size increased or when r

decreased. To further see the performance of the proposed method, Figure 1 gives
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FIG. 1. The proposed estimates of H0 with the solid line being the true curve, the dashed line for
n = 100 and the circle line for n = 200.

the average of the proposed estimates of H0 based on the simulated data giving Ta-
ble 1 with β01 = 1, r = 1 and H0(Y ) = log(Y ) and again suggests that the method
seems to perform well. The results on the estimation of β02 are similar and some
of them are given in Table 2 along with some other results.

As mentioned above, among others, Khan and Tamer [13] and Sherman [18]
discussed the similar problems and developed some rank-based estimation proce-
dures, and thus it would be interesting to compare them to the proposed estimation
approach. For this, Table 2 displays the results on estimation of β02 given by the
three methods with β01 = 1, β02 = −1 or 1, H0(Y ) = log(Y ), and the other set-ups
being the same as in Table 1. One can see from the table that the proposed estima-
tor seems to have better performance than the ones given in Khan and Tamer [13]
and Sherman [18]. In particular, the proposed estimator seems to be more efficient
than the other two estimators.

4. Analysis of typhoon data in China. To illustrate the inference procedure
proposed in the previous sections, we apply it to a set of the data consisting of 280
typhoons that occurred on the mainland of China since 1949. Among others, one
objective of the study is to predict the duration time of a typhoon or investigate the
relationship between the duration time and some predictive factors or covariates. It
is apparent that the longer the duration time is, the more loss or damage a typhoon
causes. In the analysis below, we will focus on the following five covariates, the
maximum wind speed (MWS), the longitude of landing site, the central pressure,
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TABLE 2
Simulation results on estimation of β02 with β01 = 1

Proposed method KT’s method Sherman’s method

n r β02 Bias SSE ESE CP Bias SSE Bias SSE

100 0 1 0.02188 0.2028 0.2031 0.954 0.0260 0.4088 0.0380 0.4110
−1 −0.0157 0.2084 0.2025 0.949 −0.0585 0.3689 −0.0468 0.3678

0.5 1 0.0079 0.2687 0.2643 0.942 0.0381 0.4768 0.0449 0.4821
−1 −0.023 0.259 0.2643 0.967 −0.0842 0.4136 −0.0710 0.4159

1 1 0.0205 0.3273 0.3176 0.946 0.0692 0.5114 0.0685 0.5121
−1 −0.0174 0.3202 0.3175 0.952 −0.09616 0.4541 −0.08678 0.4506

2 1 0.0125 0.4051 0.4066 0.949 0.0744 0.5908 0.0822 0.5934
−1 0.0122 0.409 0.4058 0.962 −0.1394 0.5160 −0.1385 0.5161

200 0 1 0.0071 0.1404 0.1405 0.954 0.01274 0.2898 0.02592 0.2991
−1 −0.0102 0.1432 0.1409 0.947 −0.04192 0.2715 −0.03348 0.2756

0.5 1 0.0064 0.1862 0.1852 0.953 0.01738 0.3675 0.02488 0.3694
−1 0.0048 0.1792 0.1854 0.951 −0.05048 0.3337 −0.04774 0.3356

1 1 0.0022 0.2170 0.2229 0.958 0.0291 0.4389 0.02886 0.432
−1 −0.0074 0.2217 0.2229 0.949 −0.0738 0.3792 −0.06742 0.3836

2 1 0.0081 0.2919 0.2849 0.948 0.0266 0.4919 0.0302 0.4903
−1 −0.0066 0.2878 0.2849 0.945 −0.0648 0.4466 −0.0623 0.4498

the moving speed (MS) and the rotation angle (RA). As a preliminary analysis, we
first calculated the Kendall τ and Spearman’s rank correlation coefficients between
the duration time and the five covariates and present them in Table 3. One can see
that it seems that the duration time is positively related to the MWS and longitude,
but negatively correlated with the central pressure, MS and RA.

To apply the proposed maximum likelihood approach, let Y denote the duration
time and X1, . . . ,X5 the five covariates described above, respectively. Further-
more, as in the simulation study, we assume that Y follows the linear transforma-
tion model log{H(Y)} = X′β + ε with ε following the distribution whose hazard
function has the form exp(t)/(1 + r exp(t)). Table 4 gives the estimated effects of
the five covariates on the duration time along with the estimated standard errors for
r = 0, 1 and 2. Here, we also tried some other values for r , too, and obtained simi-
lar results. One can see that the estimation results are quite consistent with respect

TABLE 3
Correlation coefficients between the duration time and the five covariates

MWS Longitude Central Pressure MS RA

Spearman 0.4721 0.0464 −0.4339 −0.1888 −0.2781
Kendall 0.3562 0.0315 −0.3227 −0.1342 −0.2005
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TABLE 4
Estimated effects of the five covariates on the duration time

Error distribution MWS Longitude Central pressure MS RA

r = 0 Estimator 0.0285 0.0023 −0.4442 −0.0244 −0.0022
ESE 0.0037 0.0004 0.0183 0.0043 0.0008

r = 1 Estimator 0.0650 0.0167 −0.4316 −0.0317 −0.0047
ESE 0.0043 0.0045 0.0057 0.0045 0.0015

r = 2 Estimator 0.0851 0.0187 −0.5363 −0.0349 −0.0052
ESE 0.0036 0.0034 0.0039 0.0036 0.0016

Normal Estimator 0.1015 −0.0008 −0.4458 −0.0361 −0.0063

to r and also the signs of all the estimated effects are consistent with those given
in Table 3. They indicate that all five factors seem to be significantly related to the
duration time of a typhoon and can be useful predictors for the typhoon duration.

As mentioned above, the focus of this paper is on model (1.1) with non-normal
error distributions, for which there was no established method available before.
To check the appropriateness of the normality assumption here, we obtained the
quantile plot of the estimated errors ε̂i’s against the standard normal distribution
and present it in Figure 2. It is apparent that the normality assumption seems to be
questionable or it does not seem to be reasonable for the typhoon data considered
here. To further investigate this, we applied the proposed method to the data by as-

FIG. 2. Quantile plot of the estimated errors against the standard normal distribution.
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suming that ε follows the normal distribution and include the estimated covariate
effects in Table 4 too. Although the estimated effects of the other four covariates
are similar to other estimates given in the table, the estimated effect of the longi-
tude of landing site under the normal error assumption is quite different or has the
opposite sign from other estimates. This again suggests that the normal assumption
may not be appropriate here and one needs to apply the proposed method.

5. Discussion and concluding remarks. This paper discussed the linear
transformation regression with unknown transformations with the focus on the
situation where the error term follows a general, nonnormal distribution. For the
problem, the maximum likelihood estimation approach was developed and the re-
sulting estimators have been shown to be consistent. Furthermore, the estimators
of regression parameters were shown to asymptotically follow the normal distri-
bution. The simulation study suggested that the approach works well for practical
situations and can be more efficient than the commonly used rank estimation pro-
cedures.

As seen from the example in Section 4, the nonnormal error distribution can
occur in practice and for the situation, the analysis could yield biased or even
misleading results or conclusions if the normal error distribution was used. Also
as discussed above, although the similar problem has been discussed for cen-
sored data in the literature, the case considered here is actually more difficult
due to the unboundedness of Ĥn. To deal with this, some fundamentally differ-
ent ideas or methods had to be used to establish the asymptotic properties of
the proposed estimators. Unfortunately, in this paper, the normal case is not in-
cluded in the class F . The main reason, with the normal distribution, we can-
not write the score function for β evaluated at the maximum likelihood esti-
mator as a positive matrix times (β̂n − β0) plus op(n−1/2). More specifically,
PnX[g(Ĥn(Y ) + X′β̂n) − g(H0(Y ) + X′β0)] may not be Op(n−1/2) since Ĥn(Y )

largely deviates from H0(Y ) for large |Y |. For the normal case, it may need some
other techniques to prove the asymptotical normality of the proposed estimator.

Note that in the proposed approach, as other authors, we have assumed that the
error distribution is known and it is apparent that this may not be true in reality. In
other words, it would be useful to generalize the proposed method to the situation
where the error distribution is completely unknown, which may not be easy. A rel-
atively simpler problem is to assume that the error distribution belongs to some
class such as the class used in the numerical studies above and in this situation,
one can treat r as another parameter and estimate it by using the maximum likeli-
hood estimation along with other parameters together. For the situation, in part 2
of the Supplementary Material [19], we show that model (1.1) is still identifiable
and, furthermore, one can also generalize the profile likelihood approach described
at the end of Section 2 for variance estimation. For the assessment of this approach
on estimation of regression parameters, we carried out a limited simulation study
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and the results, given in part 4 of the Supplementary Material [19], indicate that
it performed well. But more research is clearly needed. Another possible direction
for the generalization of the proposed method can be to fit model (1.1) to correlated
or clustered data with either normal or nonnormal error distributions.

APPENDIX A: PROOFS OF THE ASYMPTOTIC PROPERTIES OF θ̂n

In this appendix, we will sketch the proof of the asymptotic properties of θ̂

described in Theorems 2.1–2.3. For this, we will first present two lemmas, whose
proofs are shown in Appendix B.

LEMMA A.1. For any c ∈ R, ν > 0, dn ≥ 0, set

Sm = max
δ1,...,δm>0

{
−(1 + ν)

m∑
j=1

log(1 + dn + �j) +
m∑

j=1

log δj + mc + m logn

}
,

where �j = ∑j
k=1 δk and �0 = 0. Then

Sm = −mν log(1 + dn) −
m∑

j=1

(1 + νj) log
1 + νj

νj

−
m∑

j=1

logνj + mc + m logn.(A.1)

As a result, if limn→∞ m
n

= 0 and lim supn→∞ dn < ∞,

(A.2) lim sup
n→∞

Sm

n
≤ 0.

LEMMA A.2. Assume that Conditions (C1)–(C4) hold. Then there exists a
random variable −∞ < τ0 < ∞ such that

−∞ < inf
n≥1

Ĥn(τ0) ≤ sup
n≥1

Ĥn(τ0) < ∞ a.s.

PROOF OF THEOREM 2.1. To show the existence, it suffices to show that the
jump size of Ĥn at Yi is finite and away from 0. By the compactness of B, Xi ,
i = 1, . . . , n, and

ln(β,H) = 1

n

n∑
i=1

(
logf

(
H(Yi) + X′

iβ
) + logH {Yi} + logn

)
,

if for some i such that H {Yi} → ∞, or H {Yi} → 0, then ln(β,H) → −∞ by
Condition (C4). We conclude that the jump sizes of Ĥn must be finite and away
from 0.
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Next, we will show the boundedness. For this, suppose that p :=
P(infn≥1 Ĥn(τ ) = +∞) > 0, and without loss of generality, assume P(Ĥn(τ ) →
+∞) > 0. Also for convenience, assume that Y1 ≤ Y2 ≤ · · · ≤ Yn, and suppose
there exists a subsequence (for convenience of notation, let the subsequence be the
sequence itself) such that for some dn ↑ ∞,

τn = sup
{
t : Ĥn(t) ≤ dn

}
< ∞.

Then P(supn≥1 τn ≤ τ) ≥ p > 0. The proof will follow from the following four
steps.

Step 1. Show

(A.3) lim sup
n→∞

1

n

∑
i:τ0<Yi≤τn

{
logf

(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
} ≤ c

for some c > 0.
Let (β̃n, H̃n) be the maximizer of∑

i:τ0<Yi≤τn

{
logf

(
H̃ (Yi) + X′

i β̃
) + log H̃ {Yi} + logn

}
subject to

H̃ (τ0) = Ĥ (τ0).

For fixed M large enough, set τ ∗
n = inf{t; H̃n(t) > M}. Then

1

n

∑
i:τ0<Yi≤τ∗

n

{
logf

(
H̃n(Yi) + X′

i β̃n

) + log H̃n{Yi} + logn
} ≤ c1

for some constant c1 > 0.
By Lemma A.1,

1

n

∑
i:τ∗

n <Yi≤τn

{
logf

(
H̃n(Yi) + X′

i β̃n

) + log H̃n{Yi} + logn
}

≤ 1

n

∑
i:τ∗

n <Yi≤τn

(−(1 + ν) log
(
1 + H̃n{Yi}) + log H̃n{Yi} + logC + logn

)

≤ −kn log kn + kn logn

n
+ O(1) = O(1),

where kn = the number of the set {i : τ ∗
n < Yi ≤ τn}. Therefore,

1

n

∑
i:τ0<Yi≤τn

{
logf

(
H̃n(Yi) + X′

i β̃n

) + log H̃n{Yi} + logn
} = O(1),

and so (A.3) holds.
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Step 2. Show that on {supn≥1 τn ≤ τ },

(A.4) lim sup
n→∞

1

n

∑
i:Yi>τn

{
logf

(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
} = −∞.

Denote by k∗
n = the number of the set {i : Yi > τn}. Set J = sup{i;Yi ≤ τn} and

δj = Ĥn{Yj+J }, �j =
j∑

i=1

δi

Then Ĥn(Yj+J ) = �j + dn, and on {supn≥1 τn ≤ τ },

lim inf
n→∞

k∗
n

n
> 0.

By Lemma A.1, on {supn≥1 τn ≤ τ },
1

n

∑
i:Yi>τn

{
logf

(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
}

≤ 1

n

∑
i:Yi>τn

(−(1 + ν) log(1 + dn + �i) + log H̃n{Yi} + logC + logn
)

≤ k∗
n

n

(
(−ν logdn + logC + logn) − 1

k∗
n

∑
i:Yi>τn

(1 + νj) log
1 + νj

νj

− 1

k∗
n

∑
i:Yi>τn

logνj

)

≤ −k∗
n

n
ν logdn − k∗

n

n
log

k∗
n

n
+ O(1) → −∞.

Step 3. Combining Step 2 and Step 3, we have that on {supn≥1 τn ≤ τ },

(A.5) lim sup
n→∞

1

n

∑
i:Yi>τ0

{
logf

(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
} = −∞.

Step 4. We define a nondecreasing function H ∗
n (t) = ∑n

i=1 H ∗
n {Yi}I(t ≥ Yi),

where H ∗
n (t) = Ĥn(τ0) for t ≤ τ0 and 1/n for Yi > τ0.

Then

(A.6) lim inf
n→∞

1

n

∑
i:Yi>τ0

{
logf

(
H ∗

n (Yi) + X′
i β̂n

) + logH ∗
n {Yi} + logn

}
> −∞.

Since (β̂n, Ĥn) maximizes the log-likelihood function, one obtains that on
{supn≥1 τn ≤ τ },

0 ≤ lim sup
n→∞

ln(β̂n, Ĥn) − ln
(
β̂n,H

∗
n

)
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= lim sup
n→∞

1

n

∑
i:Yi>τ0

{
logf

(
Ĥn(Yi) + X′

i β̂n

)
+ log Ĥn{Yi} + logn

}
− lim inf

n→∞
1

n

∑
i:Yi>τ0

{
logf

(
H ∗

n (Yi) + X′
i β̂n

)
+ logH ∗

n {Yi} + logn
}

= −∞.

It is a contradiction. This proves P(supn≥1 Ĥn(τ ) < ∞) = 1 for all finite τ . Thus
symmetrically, we can prove that P(supn≥1 Ĥn(τ ) > −∞) = 1 for all finite τ and
we complete the proof. �

Now we will sketch the proof of Theorem 2.2. For this, first note that it suffices
to show that for any convergent subsequence of (β̂n, Ĥn) such as (β̂nk

, Ĥnk
) →

(β∗,H ∗), we have (β∗,H ∗) = (β0,H0). For the simplicity of notation, let the
subsequence {nk, k ≥ 1} be the original sequence. Since (β̂n, Ĥn) is a symmetric
function of the sample X1, . . . ,Xn, (β∗,H ∗) is measurable with respect to the
exchangeable σ -field of {Xn,n ≥ 1}. It then follows from the Hewitt–Savage’s
0 − 1 law that (β∗,H ∗) is a constant. To provide the proof, we need one more
lemma, whose proof is given in the Appendix B.

LEMMA A.3. Assume that Conditions (C1)–(C4) hold. Then the function
H ∗(t) is continuous in (−∞,∞).

PROOF OF THEOREM 2.2. We write

ln(β̂n, Ĥn)

= 1

n

n∑
i=1

I{Yi ≤ t0}(logf
(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
)

+ 1

n

n∑
i=1

I{t0 < Yi ≤ tN }(logf
(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
)

× 1

n

n∑
i=1

I{Yi > tN }(logf
(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
)

=: η1(β̂n, Ĥn) + η2(β̂n, Ĥn) + η3(β̂n, Ĥn),

where −M = t0 < t1 < t2 < · · · < tN = M are fixed and M > 0 is large enough.
Since 1

n

∑n
i=1 I{Yi > M} → P(Y > M) which goes to 0 when M → ∞, by
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Lemma A.1,

(A.7) lim sup
M→∞

lim sup
n→∞

η1(β̂n, Ĥn) ≤ 0.

Likewise,

(A.8) lim sup
M→∞

lim sup
n→∞

η3(β̂n, Ĥn) ≤ 0.

Now let us consider tk < Yi ≤ tk+1 for k = 0,1, . . . ,N − 1. Let nk =
the number of {i;Yi ∈ (tk, tk+1]}. Then when n → ∞,

1

n

∑
tk<Yi≤tk+1

(
logf

(
Ĥn(Yi) + X′

i β̂n

) + log Ĥn{Yi} + logn
)

≤ 1

n

∑
tk<Yi≤tk+1

(
logf

(
Ĥn(Yi) + X′

i β̂n

) + log
Ĥn(tk+1) − Ĥn(tk)

nk

+ logn

)
= E

(
logf

(
H ∗(Y ) + X′β∗) + log

(
H ∗(tk+1) − H ∗(tk)

))
I{tk < Yi ≤ tk+1}

+ pk logpk + o(1),

where pk = P(tk < Y ≤ tk+1).
Let H̃n(tk) = H0(tk) for k = 0,1, . . . ,N , and

�H̃n(Yi) = Ĥn(tk+1) − Ĥn(tk)

nk

for Yi ∈ (tk, tk+1), k = 0,1, . . . ,N − 1,

�H̃n(Yi) = 1

n
for Yi < −M or Yi > M.

Then by Lemma A.1,

(A.9) lim sup
M→∞

lim sup
n→∞

η1(β0, H̃n) ≤ 0

and

(A.10) lim sup
M→∞

lim sup
n→∞

η3(β0, H̃n) ≤ 0.

For k = 0,1, . . . ,N − 1,

1

n

∑
tk<Yi≤tk+1

(
logf

(
H̃n(Yi) + X′

iβ0
) + log H̃n{Yi} + logn

)
= E

(
logf

(
H0(Y ) + X′β0

)
I{tk < Yi ≤ tk+1}) + pk log

(
H0(tk+1) − H0(tk)

)
+ pk logpk + rn,k,

where rn,k is such that

lim
max−∞≤k≤N−1 |tk+1−tk |→0

lim sup
n→∞

N−1∑
k=0

|rn,k| = 0.
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Then

lim sup
n→∞

(
η2(β̂n, Ĥn) − η2(β0, H̃n)

)
≤

N−1∑
k=0

E
((

logf
(
H ∗(Y ) + X′β∗) + log

(
H ∗(tk+1) − H ∗(tk)

))
× I{tk < Y ≤ tk+1})
−

N−1∑
k=0

(
E

((
logf

(
H0(Y ) + X′β0

) + log
(
H0(tk+1) − H0(tk)

))
× I{tk < Y ≤ tk+1}))
+ lim sup

n→∞

N−1∑
k=0

|rn,k|

and
N−1∑
k=0

(
E

((
logf

(
H ∗(Y ) + X′β∗) + log

(
H ∗(tk+1) − H ∗(tk)

))
I{tk < Y ≤ tk+1}))

−
N−1∑
k=0

(
E

((
logf

(
H0(Y ) + X′β0

) + log
(
H0(tk+1) − H0(tk)

))
I{tk < Y ≤ tk+1}))

= E

(
I{t0 < Y ≤ tN } log

N−1∑
k=0

f (H ∗(Y ) + X′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(Y ) + X′β0)(H0(tk+1) − H0(tk))

× I{tk < Y ≤ tk+1}
)

≤ αN logE

(
N−1∑
k=0

f (H ∗(Y ) + X′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(Y ) + X′β0)(H0(tk+1) − H0(tk))

I{tk < Y ≤ tk+1}
)

− αN logαN,

where αN = P(t0 < Y ≤ tN ).
Let −M = t0 < t1 < · · · < tN = M such that

lim
N→∞ max−∞≤k≤N−1

|tk+1 − tk| = 0.

Then using Lemma A.3, as N → ∞,

logE

(
N−1∑
k=0

f (H ∗(Y ) + X′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(Y ) + X′β0)(H0(tk+1) − H0(tk))

I{tk < Y ≤ tk+1}
)
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= log
∫
A

N−1∑
k=0

∫ tk+1

tk

f (H ∗(t) + x′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(t) + x′β0)(H0(tk+1) − H0(tk))

× f
(
H0(t) + x′β0

)
h0(t) dt dFX(x)

→ log
∫
A

∫ M

−M
f

(
H ∗(t) + x′β∗)

dH ∗(t) dFX(x) → 0 as M → ∞.

Thus

(A.11) lim sup
M→∞

lim sup
N→∞

lim sup
n→∞

(
ln(β̂n, Ĥn) − ln(β0, H̃n)

) = 0.

Noting that

E

(
It0 < Y ≤ tN log

N−1∑
k=0

f (H ∗(Y ) + X′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(Y ) + X′β0)(H0(tk+1) − H0(tk))

× I{tk < Y ≤ tk+1}
)

=
∫
A

N−1∑
k=0

∫ tk+1

tk

log
f (H ∗(t) + x′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(t) + x′β0)(H0(tk+1) − H0(tk))

× f
(
H0(t) + x′β0

)
h0(t) dt dFX(x)

and by (A.11),

lim sup
M→∞

lim sup
N→∞

∣∣∣∣∣
∫
A

N−1∑
k=0

∫ tk+1

tk

log
f (H ∗(t) + x′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(t) + x′β0)(H0(tk+1) − H0(tk))

× f
(
H0(t) + x′β0

)
h0(t) dt dFX(x)

∣∣∣∣∣ = 0.

Since f and h0 have a positive lower bound and a finite upper bound on each
finite interval, the above equation implies that for any M ∈ (0,∞),

sup
N≥1

∣∣∣∣∣
N−1∑
k=0

(
H0(tk+1) − H0(tk)

)
log

H0(tk+1) − H0(tk)

H ∗(tk+1) − H ∗(tk)

∣∣∣∣∣ < ∞.

Now, by x logx = supα∈R{αx − eα−1}, we have that for any r > 0,∣∣∣∣∣
N−1∑
k=0

(
H0(tk+1) − H0(tk)

)
log

(H0(tk+1) − H0(tk))

H ∗(tk+1) − H ∗(tk)

∣∣∣∣∣
=

∣∣∣∣∣
N−1∑
k=0

sup
α∈R

{
α

(
H0(tk+1) − H0(tk)

) − (
H ∗(tk+1) − H ∗(tk)

)
eα−1}∣∣∣∣∣
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≥ r

N−1∑
k=0

∣∣H0(tk+1) − H0(tk)
∣∣ − er−1

N−1∑
k=0

∣∣H ∗(tk+1) − H ∗(tk)
∣∣.

Thus if limN→∞
∑N−1

k=0 |H ∗(tk+1) − H ∗(tk)| = 0, then

lim sup
N→∞

N−1∑
k=0

∣∣H0(tk+1) − H0(tk)
∣∣

≤ 1

r
sup
N≥1

∣∣∣∣∣
N−1∑
k=0

(
H0(tk+1) − H0(tk)

)
log

H0(tk+1) − H0(tk)

H ∗(tk+1) − H ∗(tk)

∣∣∣∣∣
→ 0 as r → ∞.

Thus, H0 is absolutely continuous with respect to H ∗, and for any M > 0,

lim sup
N→∞

∫
A

N−1∑
k=0

∫ tk+1

tk

log
f (H ∗(t) + x′β∗)(H ∗(tk+1) − H ∗(tk))
f (H0(t) + x′β0)(H0(tk+1) − H0(tk))

× f
(
H0(t) + x′β0

)
h0(t) dt dFX(x)

=
∫
A

∫ M

−M
log

dGx(y)

dFY |x(y)
dFY |x(y) dFX(x)

= −E

(∫ M

−M

(
log

dFY |X(y)

dGX(y)

)
dFY |X(y)

)
,

where

dGx(y) = f
(
H ∗(y) + x′β∗)

dH ∗(y).

Note that | logx| ≤ 1/x for all 0 < x ≤ 1. We have that (log dFY |X(y)

dGX(y)
)− ≤

(
dFY |X(y)

dGX(y)
)−1. Thus∫ M

−M

(
log

dFY |X(y)

dGX(y)

)−
dFY |X(y) ≤ GX(M) ≤ 1.

By the monotone convergent theorem,

lim
M→∞E

(∫ M

−M

(
log

dFY |X(y)

dGX(y)

)+
dFY |X(y)

)

= E

(∫ ∞
−∞

(
log

dFY |X(y)

dGX(y)

)+
dFY |X(y)

)
and

lim
M→∞E

(∫ M

−M

(
log

dFY |X(y)

dGX(y)

)−
dFY |X(y)

)
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= E

(∫ ∞
−∞

(
log

dFY |X(y)

dGX(y)

)−
dFY |X(y)

)
< ∞.

Therefore,

0 ≤ − lim
M→∞E

(∫ M

−M

(
log

dFY |X(y)

dGX(y)

)
dFY |X(y)

)

= −E

(∫ ∞
−∞

(
log

dFY |X(y)

dGX(y)

)
dFY |X(y)

)
≤ 0,

which implies that

FY |X(y) = GX(y).

That is, for any t ∈ R,∫ t

−∞
f

(
H ∗(y) + X′β∗)

dH ∗(y) =
∫ t

−∞
f

(
H0(y) + X′β0

)
dH0(y).

This yields ∫ H ∗(t)+X′β∗

−∞
f (s) ds =

∫ H0(t)+X′β0

−∞
f (s) ds.

Thus,

H ∗(t) − H0(t) = −X′(β∗ − β0
)

for all t ∈ R.

By letting t → −∞, we obtain β∗ = β0, and so H ∗ = H0. This completes the
proof. �

Now we consider the proof of the asymptotic normality or Theorem 2.3. For
this, define {Tn} as the values such that P(|Y | ≥ Tn) = o(n−3/4) and E{ġ(H0(Y )+
X′β0)H0(Y )I(|Y | ≥ Tn)} = op(n−3/4). Also for any T > 0, define the pseudo-
distance of (θ1, θ2) as

dT (θ1, θ2) = sup
|t |≤T

∣∣H1(t) − H2(t)
∣∣ + ‖β1 − β2‖.

For convenience, we write ε(t) = H0(t)+X′β0 and ε̂ = Ĥn(Y )+X′β̂n. Again we
need the following lemma, whose proof will be shown in the Appendix B.

LEMMA A.4. Assume Conditions (C1)–(C6) hold. Then dTn(θ̂n, θ0) = op(1).

PROOF OF THEOREM 2.3. For the convenience of the proof, we define the
function

H̃n(t) =

⎧⎪⎪⎨⎪⎪⎩
Ĥn(t) if |t | ≤ Tn,

Ĥn(Tn) if t ≥ Tn,

Ĥn(−Tn) if t ≤ −Tn,
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which can be viewed as the truncated function of Ĥn at Tn. Also it can be approx-
imately viewed as the maximizer of the likelihood function for the censored data
which Y are censored by ±Tn. Also for notational convenience, we write β̃n = β̂n

and θ̃n = (β̃n, H̃n).
Since the score function for β evaluated at θ̂n is zero, one obtains that

Png(Ĥn(Y ) + X′β̂n)X = 0. Then it follows from the proof of Lemma A.4 that

op

(
n−1/2)

= PnI
(|Y | ≤ Tn

)
g
(
Ĥn(Y ) + X′β̂n

)
X

= Png(ε)X + Pn

{
I
(|Y | ≤ Tn

)
ġ
(
H0(Y ) + X′β0

)
X

[
Ĥn(Y ) − H0(Y )

]}
+ Pn

{
I
(|Y | ≤ Tn

)
ġ
(
H0(Y ) + X′β0

)
XX′}(β̂n − β0) + op

(
dTn(θ̂n, θ0)

)
.

It follows from the definition of H̃n that the above equation still holds by replacing
Ĥn by H̃n and in addition,

E
[
ġ(ε)XX′](β̂n − β0) +A[H̃n − H0]
= −Png(ε)X + op

(
dTn(θ̃n, θ0)

) + op

(
n−1/2)

,(A.12)

where A is the functional operator such that

A[H ] =
∫ ∞
−∞

EX

[
ġ
(
H0(t) + X′β0

)
f

(
H0(t) + X′β0

)
X

]
H(t) dH0(t),

where H ∈ {H : |H(t)| ≤ 3H0(t)}.
Now we consider the asymptotical representation of H̃n(t). First,

H̃n(t) =
∫ t

0

PndN+(s)

PnI(Y ≥ s)g(H̃n(Y ) + X′β̂n)
,

where N+(s) = I(0 < Y ≤ s). Define the martingale process M+(t) as

dM+(s) = dN+(s) − I(Y ≥ s)λ
(
H0(s) + X′β0

)
dH0(s),

where λ(s) is the hazards function of ε.
Then it follows from the proof of Lemma A.4 that for any s ∈ [0, Tn],
H̃n(t) − H0(t)

=
∫ t

0

PndN+(s)

PnI(Y ≥ s)g(H̃n(Y ) + X′β̂n)
− H0(t)

=
∫ t

0

PndM+(s)

P I(Y ≥ s)g(H̃n(Y ) + X′β̂n)

+
∫ t

0

PnI(Y ≥ s)[λ(ε(s)) − g(ε)]dH0(s)

PnI(Y ≥ s)g(H̃n(Y ) + X′β̂n)
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−
∫ t

0

PnI(Y ≥ s)[g(H̃n(Y ) + X′β̂n) − g(H0(Y ) + X′β0)]dH0(s)

PnI(Y ≥ s)g(H̃n(Y ) + X′β̂n)

=
∫ t

0

PndM+(s)

P I(Y ≥ s)g(ε)
+

∫ t

0

PnI(Y ≥ s)[λ(ε(s)) − g(ε)]dH0(s)

EI(Y ≥ s)g(ε)

−
∫ t

0

PnI(Y ≥ s)ġ(ε)[(H̃n(Y ) − H0(Y )) + X′(β̂n − β0)]
EI(Y ≥ s)g(ε)

dH0(s)

+ op

(
dTn(θ̃n, θ0)

) + op

(
n−1/2)

.

Define U+
1 (t) = ∫ t

0
dM+(s)

EI(Y≥s)g(ε)
+ ∫ t

0
I(Y≥s)[λ(ε(s))−g(ε)]

EI(Y≥s)g(ε)
dH0(s), U+

2 (t) =∫ t
0

EI(Y≥s)ġ(ε)X
EI(Y≥s)g(ε)

dH0(s) and the functional operator

G+[H ](t) =
∫ ∞

0
H(s)EX

[
ġ
(
ε(s)

)
f

(
ε(s)

)]
dH0(s)

∫ s

0

I(u ≤ t)

EI(Y ≥ s)g(ε)
dH0(s),

where the notation EX is the expectation with respect to the distribution of X. This
immediately yields that

H̃n(t) − H0(t) = PnU
+
1 (t) − U+

2 (t)′(β̂n − βn)

− G+[H̃n − H0](t) + op

(
dTn(θ̃n, θ0) + n−1/2)

.

Similar to the above arguments, we can obtain that for t ∈ [−Tn,0],
H̃n(t) − H0(t) = PnU

−
1 (t) − U−

2 (t)′(β̂n − βn)

− G−[H̃n − H0](t) + op

(
dTn(θ̃n, θ0) + n−1/2)

,

where U−
1 (t),U−

2 (t),G− can be similarly defined as above. Combing with the
above two equalities yields that for t ∈ [−Tn,Tn],

H̃n(t) − H0(t) = PnU1(t) − U2(t)
′(β̂n − βn)

− G[H̃n − H0](t) + op

(
dTn(θ̃n, θ0) + n−1/2)

,

where U1(t) = U+
1 (t) + U−

1 (t) and so are U2(t) and G, which gives that

H̃n(·) − H0(·) = Pn(I + G)−1[U1](·) − (I + G)−1[U2](·)′(β̂n − βn)

+ op

(
dTn(θ̃n, θ0) + n−1/2)

.

This, together with (A.12), gives that[
E

{
ġ(ε)XX′} −A

[
(I + G)−1[U2](Y )

]′]
(β̂n − β0)

= −Pn

[
g(ε)X + (I + G)−1[U1](Y )

] + op

(
dTn(θ̃n, θ0)

) + op

(
n−1/2)

,
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and thus that
√

n(β̂n −β0) = −[E{ġ(ε)XX′}−A[(I +G)−1[U2](Y )]′]−1√nPn ×
[g(ε)X + (I +G)−1[U1](Y )] + op(

√
ndTn(θ̃n, θ0)) + op(1). Therefore, we obtain

that

n1/2(β̂n − β0) → N(0,	),

where

(A.13) 	 = A−1
β 	βA−1′

β ,

and

Aβ = E
{
ġ(ε)XX′} −A

[
(I + G)−1[U2](Y )

]′
,(A.14)

	β = cov
[
g(ε)X + (I + G)−1[U1](Y )

]
.(A.15)

The proof is complete. �

APPENDIX B: PROOFS OF THE LEMMAS IN APPENDIX A

PROOF OF LEMMA A.1. Set νj = jν. For any a > 0, consider the function
the function

g(δ) = −(1 + ν) log(a + δ) + log δ.

Then g′(δ) = −νδ+a
δ(a+δ)

, g′(0+) > 0 and g′(+∞) = −∞. The function g̃(δ) = −νδ+
a is strictly decreasing. Thus g(δ) attains its maximum at a/ν:

−(1 + ν) log(1 + ν) − ν log
a

ν
= −(1 + ν) log

1 + ν

ν
− logν − ν loga.

For dn > 0, set

gk(ν) = max
δk>0

−(1 + ν) log(1 + dn + �k−1 + δk) + log δk

for k = 1, . . . ,m. Then it follows that

gm(ν) = −ν log(1 + dn + �m−1) − (1 + ν) log
1 + ν

ν
− logν,

and thus

Sm = max
δ1,...,δm−1>0

{
gm−1(ν2) +

m−2∑
j=1

gj (ν1)

}

− (1 + ν) log
1 + ν

ν
− logν + mc + m logn.

This yields (A.1) by induction. �
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PROOF OF LEMMA A.2. Set ϑ = 2 maxx∈X ,β∈B |x′β|. By Condition (C4),
there exists a positive constant C such that sup|s−t |≤ϑ f (s) ≤ C

(1+|t |)1+ν , t ∈ R, For
a given M > ϑ + 2, assume that there exists a subsequence {nk, k ≥ 1} such that∣∣Ĥnk

(Yi)
∣∣ > M for all i = 1,2, . . . , nk

For simplicity of notation, let the sequence {nk, k ≥ 1} be the original sequence
{n,n ≥ 1} and assume Y1 < · · · < Yn. Set

m = sup
{
k ≤ n; Ĥn(Yk) < −M

}
,

here sup∅= 0. Then Ĥn(Ym+1) > M , and

ln(β̂n, Ĥn) = 1

n

n∑
i=1

(
logf

(
Ĥn(Yi) + X′

i β̂n

) + Ĥn{Yi} + logn
)

= 1

n

m∑
i=1

(
logf

(
Ĥn(Yi) + X′

i β̂n

) + Ĥn{Yi} + logn
)

+ 1

n

n∑
i=m+1

(
logf

(
Ĥn(Yi) + X′

i β̂n

) + Ĥn{Yi} + logn
)

=: ξ1 + ξ2.

It follows from sup|s−t |≤ϑ f (s) ≤ C
(1+|t |)1+ν , t ∈ R, that

nξ1 ≤ m logC − (1 + ν)

m∑
i=1

(
log

(
1 + Ĥn(Yi)

) + log Ĥn{Yi} + m logn
)
.

Applying Lemma A.1 to dn = −Ĥn(Ym), δj = Ĥn{Yn−j+1}, j = 1, . . . , n, we ob-
tain that

nξ1 ≤ −mν log(1+M)−
m∑

j=1

(1+νj) log
1 + νj

νj
−

m∑
j=1

logνj +m logC +m logn.

Similarly,

nξ2 ≤ −(n − m)ν log(1 + M) −
n−m∑
j=1

(1 + νj) log
1 + νj

νj
−

n−m∑
j=1

logνj

+ (n − m) logC + (n − m) logn.

Thus

lim sup
n→∞

ln(β̂n, Ĥn)

≤ −μ log(1 + M) + lim sup
n→∞

(n − m)(logC + logν) + m(logC + logν)

n
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+ lim sup
n→∞

(n − m) log n
n−m

+ m log n
m

n

≤ −μ log(1 + M) + (logC + logν) + 2 sup
x≥1

logx

x
→ −∞

as M → ∞. �

PROOF OF LEMMA A.3. Suppose H ∗ is discontinuous at some point τ ∈ R.
Let τ1 < τ2 < τ < τ3. Let H̄n be defined by

H̄n(t) = Ĥn(t) for t < τ1 or t > τ3,

and

�H̄n(Yi) = Ĥn(τ3) − Ĥn(τ1)

m
for Yi ∈ (τ1, τ3),

where m = the number of {i;Yi ∈ (τ1, τ3)}. Then

ln(β̂n, Ĥn) − ln(β̂n, H̄n)

= ∑
Yi∈(τ1,τ3)

(
logf

(
Ĥn(Yi) + X′

i β̂n

) − logf
(
H̄n(Yi) + X′

i β̂n

))
+ ∑

Yi∈(τ1,τ3)

(
log Ĥn{Yi} − log H̄n{Yi})

≤ mC̃ + ∑
Yi∈(τ1,τ2)

log
Ĥn(τ2) − Ĥn(τ1)

m1
+ ∑

Yi∈(τ2,τ3)

log
Ĥn(τ3) − Ĥn(τ2)

m2

+ m log
Ĥn(τ3) − Ĥn(τ1)

m

≤ mC̃ + m1 log
Ĥn(τ2) − Ĥn(τ1)

m1
+ m2 log

Ĥn(τ3) − Ĥn(τ2)

m2

+ m log
Ĥn(τ3) − Ĥn(τ1)

m
,

where m1 = the number of {i;Yi ∈ (τ1, τ2)}, m2 = the number of {i;Yi ∈ (τ2, τ3)}
and

C̃ = sup
|x−y|≤τ3−τ1,|x|≤M,|y|≤M

∣∣logf (x) − logf (y)
∣∣.

Let τ2 − τ1 = τ3 − τ2. Then

lim sup
n→∞

1

m

(
ln(β̂n, Ĥn) − ln(β̂n, H̄n)

)
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≤ C̃ + p1 log
Ĥn(τ2) − Ĥn(τ1)

Ĥn(τ3) − Ĥn(τ1)
+ p2 log

Ĥn(τ3) − Ĥn(τ2)

Ĥn(τ3) − Ĥn(τ1)

+ p1 logp1 + p2 logp2,

where

p1 = lim sup
n→∞

m1

m
= P(Y ∈ (τ1, τ2))

P (Y ∈ (τ1, τ3))
, p2 = 1 − p1.

Let |τ2 − τ1| = |τ3 − τ2| → 0, then p1 → 1/2 and p2 → 1/2, and

H ∗(τ2) − H ∗(τ1) → 0,H ∗(τ3) − H ∗(τ2) → �H ∗(τ ).

As a result,

lim sup
|τ2−τ1|=|τ3−τ2|→0

lim sup
n→∞

1

m

(
ln(β̂n, Ĥn) − ln(β̂n, H̄n)

) = −∞.

This is a contradiction. �

PROOF OF LEMMA A.4. Since Theorem 2.2 shows that |β̂n − β0| = op(1), it
suffices to prove that sup|t |≤Tn

|Ĥn(t) − H0(t)| = op(1).

First, we show that sup0<t≤Tn
|Ĥn(t) − H0(t)| = op(1). This is equivalent to

proving that for any sufficiently small η > 0, the probability of the event An =
{sup0<t≤Tn

|Ĥn(t) − H0(t)| < Cη} for some constant C > 0 tends to one.
From Conditions (C5)–(C6), there exists a Tη > 0, such that

g+∞ ≥ sup
t>Tη,x∈X ,β∈B

g
(
H0(t) + x′β

) ≥ inf
t>Tη,x∈X ,β∈B g

(
H0(t) + x′β

) ≥ g+∞ − η.

By differentiating the log-likelihood function w.r.t. H {Yi}, we obtain that

Ĥn(t) =
∫ t

0

PndI (Y ≤ s)

Pn{I(Y ≥ s)g(Ĥn(Y ) + X′β̂n)}
.

It follows from Theorem 2.2 that |Ĥn(t) − H0(t)| = op(1) uniformly for t ∈
[0, Tη]. Observe that uniformly for s ∈ [0, Tn],∣∣PnI(Y ≥ s)

(
g(ε̂) − g(ε)

)∣∣
≤ Pn

∣∣I(Y > Tn)g(ε)
∣∣ + ∣∣PnI(Y > Tn)g(ε̂)

∣∣
+ ∣∣PnI(Y ≥ s, Y < Tη)

[
g(ε̂) − g(ε)

]∣∣
+ PnI(Y ≥ s, Tη < Y < Tn)

∣∣g(ε̂) − g(ε)
∣∣

≤ 2g+∞P(Y > Tn) + constant ∗ dTη(θ̂n, θ0) + 2ηPnI(Y > s).
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Using the equality: a−1 = b−1 − (a − b)/[ab] for any two scalars a, b 
= 0, we
have that

Ĥn(t) =
∫ t

0

PndI (Y ≤ s)

Pn{I(Y ≥ s)g(Ĥn(Y ) + X′β̂n)}
=

∫ t

0

PndI (Y ≤ s)

Pn{I(Y ≥ s)g(H0(Y ) + X′β0)}
−

∫ t

0

Pn{I(Y ≥ s)(g(ε̂) − g(ε))}
Pn{I(Y ≥ s)g(ε)}Pn{I (Y ≥ s)g(ε̂)}PndI (Y ≤ s).

Since the function class of the {I(y ≥ s) : s ≥ 0} is the Glinvenko–Cantelli class,
the first term of the right-hand side uniformly converges to H0(t) as n tends to
infinity.

This yields that, for sufficiently large n,∣∣Ĥn(t) − H0(t)
∣∣ ≤ 3η

∫ t

0

P I(Y ≥ s)

P {g(H0(Y ) + X′β0)I(Y ≥ s)} dH0(s) + op(1),

which completes the proof of this lemma. �
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SUPPLEMENTARY MATERIAL

Supplement to “Maximum likelihood estimation in transformed linear re-
gression with nonnormal errors” (DOI: 10.1214/18-AOS1726SUPP; .pdf). Due
to space constraints, the proofs of the consistency of the proposed covariance ma-
trix estimator and the identifiability of model (1.1) along with some additional
simulation results are provided in the Supplementary Material.
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