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Bayesian Analysis of RNA-Seq Data Using
a Family of Negative Binomial Models

Lili Zhao*, Weisheng Wu', Dai Feng?, Hui Jiang®, and XuanLong Nguyen¥

Abstract. The analysis of RNA-Seq data has been focused on three main cate-
gories, including gene expression, relative exon usage and transcript expression.
Methods have been proposed independently for each category using a negative
binomial (NB) model. However, counts following a NB distribution on one feature
(e.g., exon) do not guarantee a NB distribution for the other two features (e.g.,
gene/transcript). In this paper we propose a family of Negative Binomial mod-
els, which integrates the gene, exon and transcript analysis under a coherent NB
model. The proposed model easily incorporates the uncertainty of assigning reads
to transcripts and simplifies substantially the estimation for the relative usage.
We developed simple Gibbs sampling algorithms for the posterior inference by ex-
ploiting fully tractable closed-forms of computation via suitable conjugate priors.
The proposed models were investigated under extensive simulations. Finally, we
applied our model to a real data set.

Keywords: Bayesian RNA-Seq, Chinese restaurant table distribution, differential
test, exon usage, transcript analysis.

1 Introduction

High throughput sequencing technology has rapidly become the standard method for
measuring RNA expression levels (Mortazavi et al., 2008). RNA-Seq uses next-generation
sequencing (NGS) methods to sequence cDNA that has been derived from an RNA sam-
ple, and hence produces millions of short reads. These reads are mapped to a reference
genome using a data alignment tool, such as TopHat (Kim et al., 2013). The number of
reads mapping within a genomic feature of interest (such as a gene or an exon) is used
as a measure of the abundance of that feature in the analyzed sample (Anders et al.,
2012).

For the statistical analysis, we rely on a simple count matrix produced from the
RNA-Seq experiments. In the count matrix the row represents a feature and the column
a sample in a specific experimental condition. Then the data are normalized to account
for different library sizes (the total number of mapped reads) across different samples.
A detailed review of the normalization methods can be found in Dillies et al. (2013) and
Rapaport et al. (2013). It is widely recognized that a negative binomial (NB) distribution
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provides a good fit to read counts data produced by NGS. Many statistical algorithms
have been published using a NB model, including Anders and Huber (2010); Robinson
et al. (2010); Di et al. (2011); Hardcastle and Kelly (2010); Leng et al. (2013); van de
Wiel et al. (2012, 2014); Love et al. (2014); Wu et al. (2013); Trapnell et al. (2013);
Niu et al. (2014). In all these works, the NB distribution was parameterized by a mean
parameter p and an overdispersion parameter «. Hypothesis tests were constructed
to compare the p’s between conditions. However, all statistical inference rely on some
form of approximation. Many treat the estimated dispersions as if they were known
parameters, without allowing for uncertainty of the estimation. Other methods that
account for the uncertainty in the dispersion rely on other approximations due to the lack
of conjugacy in the parameter formulation (see Hardcastle and Kelly (2010); van de Wiel
et al. (2012)). In this paper, we parameterize the NB distribution using a probability
parameter p and a dispersion parameter r and treat both as unknown parameters. Based
on the newly developed sampling algorithm in the field of topic modelling (Zhou and
Carin, 2012, 2015), we estimate p and r using fully tractable closed-forms via suitable
conjugate priors. More importantly, this parameterization allows us to define a family
of NB models for each gene to unify the analysis of genes, exons and transcripts under
a coherent statistical model.

The analysis of genes, exons and transcripts have been developed with separate NB
models. For example, a NB distribution has been used for 1) modelling the total gene
counts, such as edgeR (Robinson et al., 2010), DESeq (Anders and Huber, 2010), DE-
Seq2 (Love et al., 2014), baySeq (Hardcastle and Kelly, 2010), NBPSeq (Di et al., 2011),
and ShrinkBayes (van de Wiel et al., 2014), 2) modelling exon counts, such as DEXSeq
(Anders et al., 2012), and 3) modelling transcript counts, such as Cuffdiff (Trapnell
et al., 2013) and IUTA (Niu et al., 2014). However, under their model formulations,
a NB model for one feature prohibits a NB distribution for the other two features. In
particular, if different NB distributions are assumed for different exon counts within a
particular gene, the total count in that gene by summing over the exon counts does not
have a NB distribution.

In this paper, we propose a family of NB models (FNB for short), which unifies
the exon, transcript and gene analysis under a coherent negative binomial modelling
framework. Moreover, the FNB approach greatly simplifies the imputation of latent
transcript counts and allows us to estimate the relative exon/transcript usage from a
simple multinomial distribution.

2 Methods

2.1 Parameter estimation in a negative binomial distribution

Most negative binomial models developed for the analysis of RNA-Seq count data are
parameterized by a mean parameter u and an overdispersion parameter «. In this work,
we characterize the NB distribution by parameters p and r. That is, y|r,p ~ NB(r, p)
has the probability mass function f(y|r,p) = 1;(,;—?;’))(1 — p)"pY, where I" denotes the

gamma function, p € (0,1) and r > 0. The mean and overdispersion are obtained
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by p = rp/(1 —p) and r = 1/a. It is a classical fact that the NB distribution is
equivalent to a Gamma-Poisson mixture distribution: we can obtain y|r,p ~ NB(r, p)
by first drawing A ~ Gammal(r, (1 — p)/p) and then generating y|A ~ Pois(\). A NB
distribution can also be augmented under a compound Poisson representation, so that
by endowing both parameters r and p with suitable conjugate priors, it is possible to
draw samples for their posterior distribution in a tractable way, see Zhou and Carin
(2012, 2015). Specifically, given the NB model y;|r,p ud NB(r,p), for j =1,--- ,n, the
prior specifications p ~ Beta(ag, by), and r ~ Gammal(ey, fo), where e and fy are the
shape and the rate parameters. Then the posterior distributions of p and r are obtained
in the limit by iteratively applying the following Gibbs sampling steps:

(p|=) ~ Beta(ao + Zj Yj, bo + nr), (1)
(lj|=) ~  CRT(y;,7), (2)
(r|-) ~ Gammal(eo + Zj 1, fo — nlog(1 — p)). (3)

In the above display “|—” denotes the conditional distributions given the data and
all remaining parameters. The first step for sampling p follows from the Beta-Binomial
conjugacy. The last two steps complete the sampling of parameter r, which also involves
auxiliary variable [;’s. These variables represent (latent) counts distributed according
to a Chinese restaurant table (CRT) distribution, which are defined as follows. We write
(Ljl=) ~ CRT(y;,r), if

LL|

Yi
lj = Z bm, and by, ~ Bernoulli(r/(m — 1+ 1)).

m=1

Now, given all /;’s, » can be sampled by the third equation, which is obtained by
exploiting a Gamma-Poisson conjugacy.

2.2 Notation

We first introduce the notation for a particular gene. In general, let y; be gene count
in sample j (j = 1,---,n), and r and p are gene-level parameters in the NB dis-
tribution. We use superscript “e” for exon-level data and parameters and superscript
“t” for transcript-level data and parameters. Specifically, on the exon level, let y]“ be
the read count in exon ¢ (i = 1,---, F) in sample j, r% be the corresponding dis-
persion parameter. On the transcript level, let y;” be the read count in transcript &’
(i =1,---,T) in sample j, r*" be the corresponding dispersion parameter. We know
that y; = ZZEZI Y5 = EZ: y;t-i’ (i.e., the sum of exon counts and the sum of transcript
counts are equal to the gene counts). In our proposed model (defined in the next section),
we have r = Zf:l ré = ZiT,:l rti’ (i.e., the sum of exon-level dispersion parameters and
the sum of transcript-level dispersion parameters are equal to the gene-level dispersion
parameter). There is a single parameter p for the gene, exons and transcripts within
that gene. The mean expression for exons are (i = 1,--- , E') and for transcripts are
Ng’(i/ =1 7T)
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. . Exon
Transcript 1 Transcript 2 counts
Exon 1 ? ? 100 11
Exon 2 0 200 200 M=o 1
Exon 3 ? ? 400 11
Transcript 2 2 700
counts

Table 1: The left table shows the hypothetical data for a particular gene in a given
sample (“?” refers to unobserved data). The M matrix for this data is on the right.

We also need notation on the exon-transcript level to show that our model integrates
the gene, exon and transcript analysis under a coherent NB model. Let 4% be the read
count in exon ¢ and transcript ¢/ (¢ = 1,--- ,E;i’ = 1,--- ,T). Since not all exons are
included in a particular transcript, we set M, = 1 if exon i belongs to transcript i’
and zero otherwise. Let S,, be the effective length of exon 4, it follows that the effective
length of transcript ¢’ is L;, = Y, Me,1,, Se, -

Furthermore, we use subscript “k” to denote experimental conditions. For example,
in condition k (k = 1,2), the read count data are denoted by y;x, yj; and y;fk’ on the gene,
exon and transcript level, respectively, and the corresponding dispersion parameters are
Tk, 7y and r,if", mean parameters are i, p, and /L};"', and the probability parameter is
Pk

2.3 A family of negative binomial models for the analysis of gene,
exon and transcript

In this section we focus on the modelling for a particular gene in a particular sample (we
dropped indices of j and k for simplified notation). Table 1 shows a simple hypothetical
data set with a total read count 700. This total count is decomposed into multiple counts
on the exon level (i.e., 700 = 100 + 200 + 400), or multiple counts on the transcript
level. Here, “exon” is used loosely. More generally, “exon” can also be thought of as part
of the exon (i.e., an exon counting bin in Anders et al. (2012), or as defined in Turro
et al. (2011)). Regardless of these various definitions, counts in exons are observed,
while counts in transcripts are unobserved. If we know how each exon count is allocated
to different transcripts, we can impute the unobserved count for a given transcript
by summing over exon counts belonging to that transcript. However, the allocation
probabilities are unknown. Moreover, the allocation is under some restrictions because
not all exons are included in a particular transcript. We use a M matrix to consider
the restrictions. In the hypothetical example, the first row of M is (1, 1) indicating that
count 100 is allocated to two transcripts, and the second row is (0, 1) indicating that
count 200 is only allocated to transcript 2 since transcript 1 does not include exon 2.

In this paper, we exploit the infinitely divisible property of the negative binomial
distribution and define a family of NB models for each gene. In a “gene” family, read
counts in all family members (exons, transcripts and the corresponding gene) have NB
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distributions. These NB distributions share a common probability parameter p, but
each retain its own dispersion parameter (we call it a FNB model). The key assump-
tion in our FNB model is that all family members share the same p. Biologically, the
common p can characterize the effect of common transcription factors that control the
rates of transcription in regulating the amounts of RNA products. Mathematically, this
assumption greatly reduces the number of parameters in the model, which could gain
efficiency for the parameter estimation, especially when the sample size is small as in
RNA-Seq studies. Furthermore, this assumption allows us to unify the analyses of gene,
exon and transcript under a coherent modeling framework. To investigate the robust-
ness of the FNB model to this assumption, we conducted extensive simulation studies
and performed goodness-of-fit tests in the real data analysis.

To illustrate that the gene, exon and transcript analyses are integrated under our
proposed FNB model, we start from the exon-transcript level by assuming that the read
count in exon 7 and transcript i’ has a NB distribution. That is, y¢t’ ~
NB(Me.,,, Se, 7", p), where 7' is the dispersion parameter per unit length of tran-
script i/, and S, is the effective length of exon i (Turro et al., 2011). Here, y®*" = 0 if
M,,;s, = 0. The count in exon i has a NB distribution, which is given by

T T
yei = Zyeiti, ~ NB(SG7 ZMEiti/ftilap)a it=1,--,F.
i/ 5!

7

This is true because the sum of independent NB distributions with a common p
is still a NB distribution with the same p and the dispersion parameter obtained by
summing over the dispersion parameters in the independent NB distributions. Here,
re = S, Z;‘C Meiti,Fti/. It is worth noting that the M matrix and exon length are not
necessary for the estimation of 7, which can be directly estimated using observed exon
counts.

Similarly, on the transcript level, we have
E
Y=y ~ NB(Ly, 7 p),
i

E
where Ly, = > Mt Se,

Finally, the count in a gene is

y= Z Dyt~ NB(Z Ly, 7, p).

Therefore, analyses of the gene, exon and transcript were integrated under a co-
herent NB modeling framework. The only unknown parameters in the FNB model are
the probability and dispersion parameters, the data on the exon level, the exon and
transcript length, and M matrix are known.

In the next two sections, we show that the above modelling framework 1) provides a
simple way to infer the allocation probabilities in order to impute unobserved transcript
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counts, and 2) reduces the complex problem of estimating the relative usage in a NB
model to a simpler problem of estimating of the proportion of latent counts from a
multinomial distribution.

2.4 Imputation of unobserved transcript counts

The read count in each transcript is not directly observed while similar transcripts
can generate identical sequence reads (for example, the “?” in Table 1). Imputation
of transcript counts is statistically very challenging especially under the NB model.
Because of the difficulty, a two-step procedure is commonly used (Trapnell et al., 2013;
Niu et al., 2014). That is, impute transcript counts in the first step, and then perform
differential test in the second step based on the imputed counts obtained from the first
step. Ideally, these two steps should be modelled simultaneously to avoid the potential
bias and gain efficiency in the parameter estimation.

In our imputation, we treat y¢*’ (i =1,--- ,E;i’ = 1,---,T) as unknown param-
eters, and estimate them together with other parameters in the NB distribution. As
discussed in Section 2.3, y®'¢ ~ NB(M,s,Se,7,p), and it can also be reformulated
using the Gamma-Poisson mixture formulation,

Aty Poi( M), (4)
(A=)~ Gamma(Me,, Se, 7, (1= p)/p). ()
At each Markov chain Monte Carlo (MCMCQ) iteration, we sample \¢% (i/ =1,.-- | T)
from Gamma distributions in (5). Based on the relationship between independent Pois-

son distributions and the multinomial distribution, we estimate transcript counts in
exon ¢ from

eit;r

(y

(y(iitlv e 7yeiti, P 7yeitT) ~ Multinomial(yEia p)a 1= 17 e 7Ea
e;t e;t e;t . P .
where p = (=2 j\eit,, R ;ET.t,, S Z/\ ;eT.t,, ). This probability vector p contains
” i y (1 y 174

the allocation 1pr0babilities, with which the count in exon i is distributed to different
transcripts. The imputed count for transcript i’ is simply y* =Y, y®i's.

It is important to note that our imputation is naturally embedded in the whole
estimation procedure. This procedure relies on the Gamma-Poisson mixture formulation
of the NB distribution for imputation and the compound Poisson representation of the
NB distribution for the parameter estimation.

2.5 Estimation of the relative usage

When the interest lies in estimating the fraction of the gene’s reads that falls into the
exon or transcript (i.e., the relative usage), read counts across all exons/transcripts in a
particular gene need to be modelled simultaneously. The FNB model reduces the com-
plex problem of estimating the relative usage in a NB model to a simple problem of
estimating of the proportion of latent counts from a multinomial distribution. Specifi-
cally, the relative exon usage QF = (Q°',--- ,Q%,--- ,Q°?) is sampled from a Dirichlet
distribution,
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E s e e; e
QE ~ D1r1chlet(ho+2j Ity 7ho+zj RS 7h0+2j 15%), (6)

where l;l ~ CRT(y;‘,rei)7 and hg is a fixed hyperparameter in the Dirichlet prior to
quantify the prior belief of the relative usage. Conceptually, latent counts across the
exons have a multinomial distribution. The relative usage of an exon is proportional to
the latent counts in that exon (proof for (6) can be found in supplementary materials
(Zhao et al., 2017)).

Similarly, the relative transcript usage is based on the latent counts inferred from the
imputed transcript counts, that is, QT ~ Dirichlet(hg + Zj l;l, <or L ho+ Zj l;i, <o ho+

1)

3 Parameter estimation and differential tests

In the previous sections, we defined our FNB model and emphasized its novelty through
its simplicity to impute the unobserved transcript counts and infer the relative usage.
In this section we discuss detailed steps for parameter estimations and differential tests
on the gene, exon and transcript level, respectively.

For the illustrative purpose, we assume two experimental conditions and use index
k to denote condition, but the algorithms can be easily extended to deal with multiple
conditions. Recall that y;, denotes the normalized total count for a particular gene in
sample j in condition k (j = 1,--- ,ng; k = 1,2). The read counts on the gene, exon
and transcript level all have NB distributions and they share a common pg, but they
have their own dispersion parameters (see Section 2.2 for the relevant notation). In the
sampling algorithms below, the gene-level dispersion parameters are assumed to be the
same between conditions (i.e., 71 = ro = r, which is a commonly used assumption in
practice), but the algorithms can be easily modified to allow different r’s.

3.1 Gene analysis

We proposed two algorithms to estimate the expression for a particular gene. Algorithm
1A is a simple extension of (1)—(3) for studies with two experimental conditions. After
iterating the four steps in Algorithm 1A, we obtain posterior distributions of the mean
gene expression, p1 and pg, for the two conditions (we removed the “|—” in the algo-
rithms below to simplify the notation). Based on these posterior distributions, we obtain
the posterior distribution of the log fold change, 8 = log(us) — log(i1), and compute
a posterior probability Ps = 2 x min{P(8 < 0), P(8 > 0)}, with a smaller value of P
indicating stronger evidence of differential expression (DE) for that gene.

For the multiplicity control, we can convert P(8 < 0)’s, or P(3 > 0)’s, over all genes
to obtain the posterior expected false discovery rates (FDR) using methods in Lewin
et al. (2007); Le6n-Novelo et al. (2013) (see supplementary materials (Zhao et al., 2017)).
These FDRs are derived under an one-sided test: Hy : po < pq or Hy @ g > pp. If 7 is
assumed to be the same between conditions, we can derive the FDRs under a two-sided
test (i.e., Ho : po = p1 vs. Hy @ po # p1), see Algorithm 1B. If r is common between
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Algorithm 1A Gene Analysis
Sample py ~ Beta(ao + >, yjk, bo +nxr), k=1,2
Sample I, ~ CRT(yjk,r), j=1,--- ,np
Sample r ~ Gammal(eo + D5, >, Lk, fo — 25 e log(1 — pi))
Calculate pg, = rpr/(1 — pi)

Algorithm 1B Gene Analysis
Sample p ~ Beta(ag + Zj Yik,bo +ngr), j=1,--+ ,njk=1,2
Sample py ~ Beta(ag+ Y, Zj Yik,bo + 1Y nk)
Calculate mo = B(ao+ 3y > Yjk: bo +7 >4 k), and ma = [, Blao+>_; yjk,bo +
ngr)
Calculate p = (1 + %)_1
Sample z ~ Bernouli(p); if z = 1, then p, = py, else pr = po
The rest (sampling [, and r) are the same as in Algorithm 1A

conditions, the hypothesis test for DE is reduced to Hg : po = p1 vs. Hi : pa # p1.
Let z € {0,1} indicates choosing the null or alternative model, the posterior probability
of selecting H; is given by

Pr(z=1|-) = (1 + :—‘1) x Z?Eii)l

where 7y and 7 are the prior probabilities for null and alternative model. The marginal
likelihood functions, mg(y) and m;(y) under the null and alternative model, are ob-
tained by integrating out the py’s with respect to their prior distributions. Under our
parametrization of the NB distribution, the marginal functions have simple forms due
to the fact that a NB distribution with a beta prior for the probability parameter is a
beta negative binomial distribution, which is given by

B B o Blao,bo) Blao+r Y nibo+3, Y yin) ) 71
Priz=1]-) = (1 + o T, Blaotnanbots, v;m) ) ; (7)
where B(,) denotes a beta function; derivation of the formula (7) is in supplemen-
tary materials (Zhao et al., 2017). Posterior probabilities Pr(z = 1|—)’s over all genes,
obtained from Algorithm 1B, are then converted to the posterior expected FDRs.

When the number of replicates per condition is small, it is beneficial to allow each
gene to have its own dispersion estimate while borrowing information from the other
genes. In the Bayesian framework, this is achieved by adding a hierarchical structure for
gene-level r’'s. Here, we add index g to represent gene g. That is, 7y ~ Gamma(R, ¢p) g =
1,---,G. Then the sampling of 7, is

(rl =)~ Gamma(R+Y", 3" lyoco— Y, melog(l—por)),  (8)
=)~ CRT(Y, D o B, (9)
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(R|-) ~ Gamma(ey + Zg Iy, fo— Zg log(1 —py)), (10)

— > Nk log(1—pgk)
co—>_ Nk log(1—pgr)
the prior belief for the population parameter R, and ¢y controls the shrinkage of the

gene-level r,’s to the population average.

where p; = . Parameters ey and fj in a gamma distribution quantify

3.2 Exon analysis

Algorithm 2 contains steps to sample parameters in the exon analysis.

Algorithm 2 Exon Analysis
Sample py, ~ Beta(ao + > yYjk, bo +npr), k=1,2
Sample I7; ~ CRT(yj}’C,TZig, i=1,---E;j=1,--- ,ng
Sample QF ~ Dirichlet(ho + X2, 15, - ho + 3, 15F)
Sample 7 ~ Gamma(eg + Y, ij i s fo — ik ny, log(1 — py))
Calculate 7" = rQ}’, and p;’ = ' pr/(1 — p.)

MCMC sampling allows us to carry out essentially all posterior inference of interest.

1. To test differential expression for exon i, we calculate the posterior probability
Plug' > py*) or Ppy' < py’).

2. To test differential relative usage for exon ¢, we calculate the posterior probability
P(Q5 > QF) or P(QY < Q).

3. To test the difference in the overall exon usage, we use a compositional met-
ric (Aitchison et al., 2000) (denoted by Adist) to compare the two probability
vectors QF vs. QF. This metric is widely recognized as the most appropriate

geometry for the compositional data. Specifically, Adist = (Zil(log% —

log %)2)1/2, where ¢(Q) = ([T, Q°)"F. Then we calculate the posterior
probability P(Adist > threshold) to quantify the difference (for example, thresh-

old =1).

Finally, we can convert all posterior probabilities to FDRs for the multiplicity control
under an one-sided hypothesis. To borrow data information in the whole genome, we
can add a hierarchical prior for the gene-level r’s as specified in (8)—(10). Similarly, we
can add a gamma hierarchical prior for r’s in the two conditions such that the r’s are
not the same, but could be similar between conditions.

3.3 Transcript analysis

Algorithm 3 contains steps to sample parameters in the transcript analysis, which are
similar to Algorithm 2 for the exon analysis except that we added two more steps to
impute the unobserved transcript counts.
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Algorithm 3 Transcript Analysis
Sample py ~ Beta(ag + Zj Yjk,bo +ngr), k=1,2
Sample U ~ CRT(y'y 1), i' =1,---T;j =1, ,my
Sample Qf ~ Dirichlet(ho + 3, 17}, - - ho + 32, 157)
Sample 7 ~ Gamma(eo + Y5 >0 >y Uiy fo — D2, e log(1 — pi))
Calculate 7;2"" = TQZ"", and fZ' = r%""/Lti,
Sample )‘Zl Y Gamma(Meitw Seifki/ ) (1 - pk)/pk)a i = 17 - F

it1 eit
eil | et ; i €i AT T
Sample (y5;", -, y5; ©) ~ Multinomial(y5; , (Zi/ AR )), and calculate

ti’ _ eiti/
Yk = 2 Yik

The differential tests are the same as in the exon analysis with the following modi-
fications based on suggestions in Cuffdiff (Trapnell et al., 2013).

1. The differential tests are based on transcript-length adjusted estimates p** and
oty : *t, pir/ Lty sty Q" /L, ;
Q*", specifically, pu*tv = ST and Q*" = S QL where Ly, is the

effective length of transcript 4’

2. The expression for a particular gene is estimated using estimates of the transcript
expression, that is, py = >, ,u;;t” (k = 1,2). This estimate has a larger variance
compared to the estimate directly using the total gene count (see Section 3.1),

since it considers the uncertainty of assigning reads to transcripts.

4 Simulation studies

In this section, we ran extensive simulations to evaluate our model. First, we investigated
our Gibbs sampling algorithms for the gene expression analysis. Secondly, we tested the
robustness of our FNB model when the key assumption of the model is violated. Finally,
we evaluated our FNB model for the exon analysis and compared simulation results to
DEXSeq.

4.1 Gene expression analysis

There are many existing algorithms to perform the differential test for gene expression
data. We set up simulation studies as described in Soneson and Delorenzi (2013), and
compared our method to three popular methods, DESeq, edgeR and baySeq. The differ-
ential test for the gene expression using the total counts in a gene does not require the
key assumption in the FNB model. Hence, we directly simulated gene counts from NB
distributions with mean and dispersion parameters estimated from two real RNA-Seq
data sets. One data set contains RNA-Seq data from 69 unrelated Nigerian individuals
(Pickrell et al., 2010). The other data set contains RNA-Seq data from 41 unrelated
Caucasian individuals of European descent (Cheung et al., 2010). For each data set, the
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maximum likelihood estimates of the mean and the dispersion were obtained for each
gene using all samples. Then we merged all pairs of mean and dispersion estimates to
form a population of true parameters to be sampled in the simulation studies.

We studied two scenarios with 2 or 5 samples per condition. For each scenario,
we simulated 10 data sets, with each data set consisting of 10,000 genes with mean
and dispersion parameters randomly sampled from the population pool. The number
of differentially expressed genes was set to 20%, and the log2 fold changes for the
differentially expressed genes were generated from a standard normal distribution. In
these simulations, the dispersions in both conditions were assumed to be identical. Both
algorithms 1A and 1B were used for the estimation, with a hierarchical structure on
the gene-level dispersion parameters, as specified in (8)—(10). We set ag = bg = 1 in
the beta prior and ey = fo = ¢p = 0.1 in the gamma prior (vague priors). With a
burn-in of 4000 iterations, an additional 6000 iterations were used for inference. We
observed that the chain mixes well. Figure 1 shows that our method is comparable
to DESeq, edgeR and baySeq. It is not surprising that all four methods give similar
performances because all methods used a NB model for the differential test. When n is
larger (n = 5), the FNB model seems to have a slightly higher area under the receiver
operating characteristic (ROC) curve than DESeq2 and edgeR, and slightly smaller
false discoveries than the baySeq. Our results show that our Gibbs sampling algorithms
provide competing alternatives for the differential test in gene expression analysis.

4.2 Robustness of the FNB model

The key assumption of the FNB model is that the counts in exons/transcripts share the
same parameter p. This assumption greatly simplifies the estimation of relative usage
and the imputation of transcript counts. In this section, we conducted simulation studies
to assess the robustness of the FNB model when this assumption is violated.

In all simulations, we generated datasets consisting of 24,000 exons with 2 conditions
and 3 samples per condition. Each exon count was generated from a NB distribution with
a mean and a probability parameter, p. We randomly sampled 24,000 means from the
mean estimates derived from the pasilla dataset (Brooks et al., 2010). The proportion
of differentially expressed exons and the distribution of fold change were the same as
the gene expression simulations in Section 4.1. Parameter p’s were simulated under
four scenarios. In scenario I, p’s were fixed to be 0.8 for all exons in both conditions.
In the remaining three scenarios, p’s were generated from a beta distribution in both
conditions. Specifically, we used beta(8,2), beta(4,1), and beta(l,1) for scenario II,
III, and IV, respectively. The mean of the distribution for p is 0.8 in scenarios IT and
III, which was determined based on the real dataset. In scenario IV, p’s are uniformly
distributed between 0 and 1. When p’s have a larger variance, the assumption (i.e., the
same p’s for exons in the same gene) is more likely to be violated. Hence, scenarios II, I1T
and IV studied the presence of mild, moderate and severe departure of the assumption,
respectively.

In each scenario, there is a read count matrix of 24,000 rows, with each row rep-
resenting an exon and a column representing a sample in a condition. Next, we used
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Figure 1: The results of our FNB model are based on P3’s obtained from Algorithm 1A.
The left two plots show the averaged ROC curves, where the y axis is the true positive
rate (TPR) and the z axis is the false positive rate (FPR). The right two plots show the
averaged percentage false discoveries given the number of selected genes. Results based
on Algorithm 1B are very similar to the results presented here.

six different ways to assign gene IDs, resulting in six different datasets: 1) every 30
exons share an unique gene ID, 2) every 10 exons share an unique gene ID, 3) every 6
exons share an unique gene ID, 4) every 3 exons share an unique gene 1D, 5) every 2
exons share an unique gene ID and 6) each exon has an unique gene ID. It is important
to note that the six dastasets under each scenario have exactly the same read count
matrices but different gene IDs. Since the FNB model assumes that all exons in the
same gene share a common p, the first five datasets allow us to investigate whether
the FNB model is robust to the violation of the assumption when every 30, 10, 6, 3
or 2 exons share a common p if p’s are slightly, moderately and dramatically different
(scenarios II-IV). Among these studied cases, the first dataset in scenario IV represents



L. Zhao, W. Wu, D. Feng, H. Jiang, and X.L. Nguyen 423

the strongest deviation from the assumption, because the model assumes that 30 exons
have the same p’s when the actual p’s are likely to be very different. In scenario I, all six
datasets satisfy the assumption, and the last dataset in scenarios II to IV also satisfies
the assumption since each exon has its own p.

Finally, we applied our FNB model to 24 datasets (6 datasets x 4 scenarios), and
results for the six datasets were compared in each scenario. In the FNB model, we
used Algorithm 2 with a gamma hierarchical prior for r’s in the two conditions. We
set ag = by = 1, eg = fo = ho = 0.1, and ¢g = 0.01 (weak priors). With a burn-in of
4000 iterations, an additional 6000 iterations were used for inference. We also applied
DESeq?2 to the last dataset in each scenario and compared to the FNB model.

To evaluate the model performance, we calculated the area under the ROC curve
(AUC). Additionally, we computed model selection criteria to assess the goodness-of-fit
of the six FNB models within each scenario. We chose log-pseudo marginal likelihood
(LPML) (Ibrahim et al., 2001; Chen et al., 2000) and Watanabe-Akaike information
criterion (WAIC) (Watanabe, 2010). LPML is a cross-validated leave-one-out measure
of a model’s ability to predict the data. It is valid for small and large samples and
does not suffer from a heuristic justification based on large sample normality. Based
on Gelfand and Dey, 1994, the LPML implicitly includes a similar dimensional penalty
as AIC asymptotically. WAIC was proposed recently and can also be viewed as an
improvement over the standard DIC and it estimates pointwise out-of-sample prediction
accuracy from a fitted Bayesian model (see supplementary materials (Zhao et al., 2017)).
The best model should have the smallest WAIC and |[LMPL.

As shown in Figure 2, the FNB model were very robust in all studied scenarios. The
differences in AUC are less than 0.005 even in scenario IV where p’s are vastly different.
Moreover, when p’s are the same as in scenario I, the FNB model gained power as
more exons were used to estimate the p parameter. To our surprise, a similar gain in
power was also observed in scenario IT where p’s are different (p ranges from 0.186 to
0.999). Compared to the AUC in DESeq2, the FNB model is better in 3 out of 4 studied
scenarios.

The model fit statistics in Figure 3 appear to tell us the same story as in the AUC
results. The differences in LPML and WAIC statistics are very small in all studied
scenarios.

4.3 Exon-level data analysis

We conducted extensive simulation studies to evaluate our FNB model for the exon
analysis. In the simulations, we compared the FNB model to DEXSeq. DEXSeq is a
commonly used package for testing the exon relative usage (i.e., the fraction of the
gene’s reads that falls into the exon) between conditions. It estimates the relative usage
for each exon separately. Specifically, each exon is a factor with two levels, this (i.e., the
number of reads to the exon in question) and others (i.e.,the read counts from all other
exons of the same gene), and an interaction between exon and condition is tested in a
generalized linear model. In contrast, the FNB model estimates the relative usage for all
exons simultaneously. Furthermore, it tests a global hypothesis for the overall relative
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Figure 2: Simulation results under four scenarios. In DESeq2, each exon was treated as
a single gene. This value was plotted over different number of exons to visually compare
with the FNB models under different assumptions.

usage. In addition to the exon usage, the FNB model also tests for the differential
expression of exons.

In all simulation studies, we generated datasets with 2 conditions with 3 samples
per condition. Each simulated dataset consists of 10,000 genes with mean expressions
randomly sampled from two real RNA-Seq data sets as described in 4.1. The mean
expression for each exon was calculated based on its relative usage, which was simulated
from a Dirichlet distribution. Finally, read counts in each exon were generated from a
NB distribution.

We assumed that 3 or 6 exons per gene in each dataset, which produces a dataset
with 30,000 or 60,000 exons (call it a 3-exon or 6-exon dataset). To test for the exon
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Figure 3: Each curve indicates a different scenario. When each exon was assumed to
have a different p (i.e., number of exons sharing a common p is one), |[LMPL| statistics
are 24.4, 26.4, 24.8 and 22.2 for scenario I to IV, respectively, and WAIC statistics are
47.0, 47.6, 47.8,and 43.4 for scenario I to IV, respectively (call these statistics as the
baseline values). The WAIC and |[LMPL| statistics on the y-axis were adjusted by the
baseline values such that the first value in each scenario is zero.

expression and the relative usage at the same test, we generated 70% genes with the
same expression and same exon relative usage between conditions, 20% genes with the
same expression and differential exon relative usage between conditions, and 10% genes
with differential expression and same exon relative usage between conditions. The exon
expression is calculated by multiplying the gene expression and the relative usage. Thus,
each dataset includes exons with the same and different expressions/usages between
conditions, and genes with the same and different overall exon relative usages.

To generate gene expressions, we used a similar approach as described in Section
4.1. For DE genes, log2 fold changes were simulated from a normal distribution with
mean 0 and standard deviation 2. The relative usages were generated from a Dirichlet
distribution in both conditions. Specifically, a Dirichlet(1,4,8) for the 3-exon dataset and
a Dirichlet(1,4,8,1,2,2) for the 6-exon dataset. The averaged usage is (0.08 0.31 0.61) and
(0.06,0.22,0.44,0.06,0.11,0.11), respectively. Table 2 shows concentration parameters in
the Dirichlet distributions used to generate the relative usage in condition 2. For the
3-exon dataset, we studied two scenarios. In scenario I, usages of the first two exons are
switched in condition 2, and the differences in usage between conditions are about 23%
(i.e., 0.31-0.08=23%) on average. For the 6-exon dataset, we studied three scenarios. In
the last scenario, all six exons have different usages between conditions.

Based on the mean gene expression and the relative usage described as above, we
calculated the mean expression for each exon. To generate exon read counts from a NB
distribution, we also need to determine a probability parameter p. We generated p’s
from three distributions. The first distribution assumes that p’s for exons in the same
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Exon Condition Condition =~ Num. exon with
per gene Scenario 1 2 different usage
3 I (1,4,8) (4,1,8) 2
3 11 (1,4,8) (8,4,1) 3
6 I (1,4,8,1,2,2) (4,1,8,1,2,2) 2
6 11 (1,4,8,1,2,2) (8,4,1,1,2,2) 3
6 111 (1,4,8,1,2,2) (2,2,1,84,1) 6

Table 2: Concentration parameters in the Dirichlet distribution for generating the exon
relative usage in two conditions.

gene are the same. The last two distributions allow p’s to be different (a more realistic
assumption). To determine the p’s in the first distribution, we first sampled gene-level
dispersion parameters, 7’s, from the two real RNA-Seq data sets as described in Section
4.1, and then obtained the p by p = p/(p+ 1) (here, p is the mean gene expression). In
the other two distributions, p’s were simulated from a beta distribution, i.e., beta(8,2)
or a beta(1,1) as described in Section 4.2.

Finally, we applied the FNB model to six 3-exon datasets (2 scenarios for relative
usage X 3 distributions for p), and nine 6-exon datasets (3 scenarios for relative usage x
3 distributions for p). As shown in Table 3, the FNB model tests for the exon expression,
relative usage and the overall relative usage simultaneously. In contrast, DEXSeq only
tests for the exon relative usage. With regarding to the relative usage, the FNB model
exhibited a dramatically better performance than DEXSeq when the model assumption
is satisfied. It performed similarly to DEXSeq when the assumption is violated, and it
seems to be slightly better if the violation is not so strong (all ROC and FDR curves
can be found in supplementary materials (Zhao et al., 2017)). Additionally, tests for the
overall relative usage are always more powerful than the tests for a single exon usage.

In simulation studies we did not compare FNB to Cuffdiff, because we directly
generated read count data from R package and it’s technically challenging to compare
to Cuffdiff which has its own pipeline that takes raw sequencing reads. However, we
illustrated the advantage of FNB over Cuffdiff in the real data analysis.

5 Real data analysis

In this section we applied our FNB model on a real dataset (Brooks et al., 2010). The
experiment investigated the effect of siRNA knock-down of pasilla, a gene that is known
to bind to mRNA in the spliceosome, which is thought to be involved in the regulation
of splicing. The dataset is available in DEXSeq package, which contains 3 biological
replicates of the knockdown as well as 4 biological replicates for the untreated control.
BDGP5.gtf was used as the reference transcriptome annotation.

5.1 Gene expression analysis

To test the differential gene expression, we used Algorithm 1B with the same priors as
in the simulation studies. For each gene, we estimated prior 7 /7y to be 0.15 using the
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Simulation set-up DEXSeq FNB
exon probability exon exon overall exon
per gene parameters scenario usage usage usage expression

3 Same I 75.4 76.3 79.8 70.4
3 Same I 79.4 81 88.7 72.9
3 beta(8,2) I 80.6 81.8 86.1 75.3
3 beta(8,2) II 87.5 87.5 93.6 79.1
3 beta(1,1) I 85.1 85.2 89.5 78
3 beta(1,1) I 88.6 88.3 94.9 81.1
6 Same I 72.4 74.6 76.6 65
6 Same II 73.6 76.7 82.7 66.9
6 Same 111 72 74.4 87.1 68.7
6 beta(8,2) I 78.8 79.1 85.3 69.3
6 beta(8,2) I 82.8 82.6 89.3 72.8
6 beta(8,2) 11 79.4 79 91.7 4.7
6 beta(1,1) I 84.6 84.8 89.3 74.3
6 beta(1,1) I 85.5 84.9 93.3 76.2
6 beta(1,1) 111 83.9 83.6 95.5 80.4

Table 3: AUC for the analysis of exon relative usage by the FNB model and DEXSeq.
The FNB model also provides the analysis for the exon expression and overall relative
usage.

qualue package (Storey and Tibshirani, 2003). When the FDR was controlled at 5%, we
compared the number of DE genes selected from the FNB model to that identified in
DESeq, edgeR and baySeq. Figure 4 shows a good overlap among the set of DE genes
selected by the four methods.

5.2 Exon analysis

In the data set, 70% genes have less than 6 exons and 90% genes have less than 11 exons.
We applied the FNB model to the pasilla data for the exon analysis. We normalized
the count data using the default method in DEXSeq and deleted exons with the total
sample counts < 5. We used Algorithm 2 for the statistical inference with ag = by = 1
and ey = fo = hg = 0.1 (r’s on the gene-level were assumed to be the same between
conditions based on the goodness-of-fit statistics). With a burn-in of 4000 iterations, an
additional 6000 iterations were used for inference.

The model simultaneously provided test results for exon expression, relative usage
for each exon, and the overall relative usage within a gene. We compared our results
to DEXSeq (Anders et al., 2012) for the relative usage of each exon. In DEXSeq, the
relative usage for a particular exon is tested through testing the interaction between
that exon (defined as “this” and “others”; see Section 2.5) and condition in a generalized
linear model. This test is the same as comparing Q5" and Q7" (i = 1,--- , E) in the FNB
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Figure 4: Overlap among the set of DE genes found by four methods. The number at
the bottom right is the number of genes not selected by any of the four methods.

FNB DEXSeq FNB DEXSeq

42394 41824

Figure 5: Overlap among the set of DE exons found by the two methods for under-used
(left) and over-used exons (right) in the pasilla data. The number at the bottom right
is the number of exons not selected by FNB and DEXSeq.

model as both methods compare whether the fraction of the gene’s reads that fall into
the exon differs significantly between conditions.

Figure 5 shows a very good overlap between the two methods. The FNB model iden-
tified 520 (=~ 1%) significantly under-used exons (i.e., @5’ < Q{*; k = 1 for the controls)
while DEXSeq identified 77. When the FDR was controlled at 2.5%. About 90% of
those exons identified by DEXSeq were also selected by FNB. A similar conclusion was
obtained for the over-used exons (i.e., Q5 > Q).
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Figure 6: Overlap among the set of DE transcripts (top) and DE genes (bottom) found
by the two methods for under-expressed (left) and over-expressed genes/transcripts
(right).

It is important to note that the comparison to DEXSeq is just to show that the FNB
model provided reasonable results for the real data analysis. However, the important
feature of the FNB model is its ability to test multiple hypotheses. For example, the
FNB model shows that 2.4% gene have large differences in the overall usage between
two conditions (median Adist larger than 20). Another example of the FNB model used
to evaluate composite hypotheses was presented in the transcript analysis.

5.3 Transcript analysis

Algorithm 3 was used for the inference with the same priors as in the exon analysis.
With a burn-in of 4000 iterations, an additional 6000 iterations were used for inference.
Posterior distributions of uzt” and p} (k= 1,2) were used to test differential transcript
and gene expression, respectively, as discussed in Section 3.3. Then we compared DE
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Figure 7: log, fold changes are on the x-axis fold-change and log;,-transformed adjusted
p-values are on the y-axis.The red points indicate DE transcripts that display both large-
magnitude fold-changes as well as high statistical significance. The dashed green-line
shows the adjusted p-value cutoff. The vertical dashed blue lines shows 2-fold changes.

transcripts and genes identified by the FNB model to that selected by Cuffdiff (Trapnell
et al., 2013) (see details of the parameter setting in Cuffdiff in supplementary materials
(Zhao et al., 2017)). The comparisons were based on all transcripts/genes that were
testable by Cuffdiff (the status in the output file showed “OK”). As shown in Figure
6, there is a good overlap among the set of DE transcripts/genes selected by the FNB
model and Cuffdiff, and the FNB model identified more DE transcripts and genes.

It is important to note that Cuffdiff relies on a two-step method for inference (i.e.,
impute transcript counts + estimate expression), while the FNB model performs the
two steps simultaneously. Figure 7 plots the statistical significance versus estimated
transcript fold-changes for both methods. It seems that Cuffdiff missed out majority of
transcripts with a large magnitude of fold change.

One appealing feature of the FNB model is its flexibility to test various hypotheses.
It not only allows us to test the relative usage for a particular transcript, but also allows
a test for the overall usage for a particular gene (see Section 3.3). Combined with the
test for gene expression, we can categorize each gene into one of the four groups: (1)
Non-DE gene and transcript usage, (2) DE gene and Non-DE transcript usage, (3) Non-
DE gene and DE transcript usage, or (4) DE gene and transcript usage (Shi and Jiang
(2013) considered (3) and (4) as a single group). Figure 8 depicts a representative gene
for each of the four groups.

5.4 Goodness of fit of the FNB model

In the exon analysis, we compared the LPML and WAIC statistics for our FNB model,
a Poisson model, and a NB model, in which each exon has its own dispersion and
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Figure 8: Plot of four possible scenarios for the analysis of gene expression and relative
transcript usage. The transcripts with differential relative usage are indicated by the red
lines. The difference in the overall relative usage is indicated by Adist, with a large value
suggesting a large difference; PostPr= P(u} > ui)(pd vs pi), and a value of PostPr
close to 0 or 1 suggests an under- or over-expressed gene.

probability parameter (call it an IndNB model). In the Poisson model, the Gamma-
Poisson conjugacy was used to update the rate parameter of the poisson distribution
for each exon. In the IndNB model, Algorithm 1A was used to estimate r® and p§, by
treating each exon as a single gene. In the transcript analysis, we compared the FNB
model to a Poisson model based on the fit on the exon-level observed data. In the Poisson
model, a multinomial distribution was used to impute the latent transcript counts as
described in Turro et al. (2011). In this comparison, we did not evaluate an IndNB model
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|LMPL)| WAIC
Analysis Model Non-est Mean  Non-est Mean
Ezon FNB 0 28 0 51
IndNB 0 28 0 56
Poisson 91 50 82 108
Transcript FNB 1097 275 1054 469
Poisson 4518 626 4380 754

Table 4: Goodness-of-fit statistics for the exon analysis in pasilla data. Non-est denotes
the number of non-estimable exons having the worst fit (the fit statistic is Infinity).
Mean is the averaged |[LMPL| or WAIC among estimable exons. The best model should
have the smallest |ILMPL| and WAIC. The non-estimable exons (1097/1054) in the FNB
model are a subset of the non-estimable exons (4518/4380) in the Poisson model.

(i.e., transcripts have different NB distributions), because the transcript imputation and
parameter estimation can not be performed simultaneously under such model.

Table 4 shows that the FNB model dramatically improved the fit of the data com-
pared to the Poisson model, and the fit statistics are similar between FNB and IndNB
model. Compared to the IndNB model, the FNB model is much more appealing, in that
1) greatly simplifies the estimation for (overall) relative usage, and 2) allows straight-
forward imputation of the unobserved transcript counts.

6 Discussions

We have developed a family of NB models that addressed the downstream analysis
tasks for count-based RNA-Seq data. To our best knowledge, this is the only method
which integrates the gene, exon and transcript analysis under an unified NB modelling
framework. The computational algorithms are very simple because of the available con-
jugate forms in our FNB model. It easily incorporates the uncertainty of assigning reads
to transcripts using the Gamma-Poisson mixture formulation of the NB distribution.
Furthermore, it greatly simplifies the estimation of the relative exon/transcript usage,
by reducing a complex problem of estimating the relative usage in a NB model to a
simple problem of estimating of the proportion of latent counts from a multinomial
distribution.

Our simulation studies showed that our FNB model is very robust to the violation
of the model assumption. In real data analysis, we compared the FNB model to 1) DE-
Seq, edgeR and baySeq for the gene expression analysis, 2) DEXSeq for the exon usage
analysis, and 3) Cuffdiff for the differential transcript analysis. We have demonstrated
that the FNB model provided a good fit to the real data. It also allows us to test var-
ious hypotheses of interest at the same time, including the exon/transcript expression,
exon/transcript relative usage and overall relative usage.

Our method is relatively computationally intensive, but has been implemented to
take advantage of parallel processing. It took approximately 3 hours for the transcript
and exon analysis in the pasilla dataset, running on a quad-core Intel Xeon 2.10 GHz
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8 GB RAM x64 computer. Frequentist approaches, such as DESeq, edgeR, baySeq,
or DEXSeq, took just a couple of minutes. However, these methods only test a single
hypothesis, while the FNB model is able to test multiple hypotheses simultaneously and
provides a more comprehensive analysis than the previous mentioned methods.

In the transcript analysis, the FNB model relies on the M matrix to impute the count
data in transcripts. In this work the M matrix was created using DEXSeq. Additionally,
this M matrix can be obtained using other software, such as rSeq (Salzman et al., 2011;
Shi and Jiang, 2013) and MMSEQ (Turro et al., 2011). In MMSEQ), the insert size from
paired-end data can be considered to construct the M matrix.

7 Data and software

The R code and data are available from http://www-personal.umich.edu/ zhaolili/
FNBSeq/.

Supplementary Material

Supplementary Materials for “Bayesian Analysis of RNA-Seq Data Using a Family of
Negative Binomial Models” (DOI: 10.1214/17-BA1055SUPP; .pdf).
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