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A Comparison of Truncated and
Time-Weighted Plackett–Luce Models

for Probabilistic Forecasting of Formula One
Results

Daniel A. Henderson∗ and Liam J. Kirrane†

Abstract. We compare several variants of the Plackett–Luce model, a commonly-
used model for permutations, in terms of their ability to accurately forecast For-
mula One motor racing results. A Bayesian approach to forecasting is adopted
and a Gibbs sampler for sampling from the posterior distributions of the model
parameters is described. Prediction of the results from the 2010 to 2013 Formula
One seasons highlights clear strengths and weaknesses of the various models. We
demonstrate by example that down weighting past results can improve forecasts,
and that some of the models we consider are competitive with the forecasts implied
by bookmakers odds.
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1 Introduction

Formula One is the premier class of motor racing that comes under the governance
of the Fédération Internationale de l’Automobile (FIA). Since its inception in 1950,
the FIA Formula One World Championship has grown into a multi-billion pound in-
dustry, underpinned by lucrative television rights and sponsorship deals, with a global
audience in the hundreds of millions each year; Smith (2013) provides a comprehensive
historical account. Despite its popularity, published statistical analyses of Formula One
results are relatively rare; three relatively recent, relevant examples are Eichenberger
and Stadelmann (2009), Phillips (2014) and Bell et al. (2016). Eichenberger and Stadel-
mann (2009) fit a linear regression model to results from 1950 to 2006 with finishing
position as the response variable and with driver effects and car–year effects, as well as
other covariates such as the weather and race distance. Phillips (2014) uses race points
as the response variable (standardised to the scale in use between 1991 and 2002, and
with hypothetical fractional points awarded to drivers who fail to score points) in a
nonlinear regression model with individual driver effects, team effects and competition
effects (which capture the competitiveness of racing). The model is fitted to results from
1950 to 2013. The results in Phillips (2014) are comprehensively compared to subjective
driver rankings and the historical context of the results is discussed. Bell et al. (2016)
also take a historical perspective as they aim to rank the best Formula One drivers of all
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time. They adopt a Bayesian approach with (standardised and normalised) race points
as the response variable in a multilevel model which also accounts for team effects; they
find the team effects to be more important than driver effects. Bell et al. (2016) also
provide a discussion of the comparison of their modelling approach and their results
to those of Phillips (2014) and Eichenberger and Stadelmann (2009). All three papers
focus primarily on quantifying driver performance over several eras. Our motivation is
different; we take a more forward looking perspective and focus on forecasting future
results.

The finishing order of the drivers in a Formula One race is of paramount importance
since drivers score points in each race corresponding only to their finishing position. As
such, the result of a race can be viewed as a permutation of the set of drivers in the
race, and so we focus on models for permutations; see Marden (1995) for an overview. In
particular, we focus on the Plackett–Luce model (Plackett, 1975; Luce, 1959), a popu-
lar model for permutations. The Plackett–Luce model specifies the probability that the
winner of the race beats all rivals, multiplied by the probability that the second placed
driver beats all remaining rivals conditional on being beaten by the winner, and so on
until we have the probability that the second from last placed driver beats the last placed
driver. Directly modelling the results as permutations allows a probabilistic interpre-
tation of the results which provides a natural framework for forecasting future results.
We adopt a Bayesian approach to prediction as it provides a natural mechanism for
updating predictions as new data become available and it can fully account for parame-
ter uncertainty when forming predictions. This quantification of parameter uncertainty
may be particularly useful when making predictions based on only a small number of
past results. Bayesian inference for the Plackett–Luce model has been considered by
several authors including Guiver and Snelson (2009) and Caron and Doucet (2012). See
also Glickman and Hennessy (2015) for an application to the Bayesian analysis of rank
ordered data in multi-competitor sports. Frequentist (maximum likelihood) inference for
the parameters of the Plackett–Luce model has also been well-studied; Hunter (2004)
provides a thorough review of the field together with some novel algorithms.

In this paper we compare the basic Plackett–Luce model with three variants of the
basic model in terms of their ability to forecast the results from the 2010–2013 Formula
One seasons. These four seasons were chosen for analysis because the same points scoring
system was in place during this period. Race results in the form of a full finishing order
of all the drivers who competed in each race were downloaded from www.formula1.com

in June 2014. The data comprise 77 races involving 42 drivers. The first variant of
the basic Plackett–Luce model that we consider is a truncated Plackett–Luce model, in
which only the finishing positions of the top-r drivers in the race are used; all drivers not
finishing in the top-r places are grouped together. The motivation for this model comes
from the fact that for forecasting purposes the results in the top-r places are usually of
primary interest, and we might not want some spurious poor results for some drivers
to impact on our forecasts for their likely performance in future races. Furthermore,
because the points system in 2010–2013 gave zero points to all drivers finishing lower
than 10th place, there might be a case for supposing that, for the top drivers at least,
the effort expended for the lower places is probably less than that for the top places.

www.formula1.com
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Censoring the observations by pooling these lower placed drivers together may be better
at forecasting the winner or other high placed finishing positions.

The second variant of the basic model that we consider is a reverse Plackett–Luce
model. In the reverse Plackett–Luce model we simply model the reverse finishing order
of the drivers via the basic Plackett–Luce model. In other words, we propose a model
for the probability that the last placed driver is beaten by all rivals, multiplied by the
probability that the second from last placed driver is beaten by all remaining rivals
conditional on beating the last placed driver, and so on. Graves et al. (2003) proposed
such a model in the context of modelling National Association for Stock Car Auto Racing
(NASCAR) results and argued that it overcomes some of the drawbacks of the Plackett–
Luce model such as being strongly influenced by poor results and therefore penalising
the good drivers too harshly for the occasional lowly finish. Such lowly finishes for
the good drivers, Graves et al. (2003) argue, are commonplace in motor racing due to
reliability issues with the cars which are beyond the driver’s control, crashes and so on.
Graves et al. (2003) called the reverse Plackett–Luce model the attrition model, because
it focuses on the process of drivers dropping out, with the best drivers the ones who
are able to ‘survive’ the longest in the race. The results in Graves et al. (2003) suggest,
unequivocally, that the reverse Plackett–Luce (‘attrition’) model is far superior to the
Plackett–Luce model when analysing the full finishing order of drivers in NASCAR
races over several seasons. Due to the similarity of F1 and NASCAR it is likely that
the results of Graves et al. (2003) will transfer to F1. However, it is of interest to see
whether the attrition model is better at forecasting aspects of the race results other
than the full finishing order.

For the purposes of forecasting it seems natural to assume that results become
less important the further in the past that they are. With that in mind, the third
variant that we consider is a time-weighted version of both the attrition and Plackett–
Luce models in which past data is down-weighted when making forecasts for future
races. We adopt a Bayesian approach to inference and forecasting, with our forecasts
based on the sequential prior predictive distributions of the relevant quantities. In order
to implement time-weighting, we utilise power prior distributions (Ibrahim and Chen,
2000) in a similar manner to the power-weighted densities method of McCarthy and
Jensen (2016). This allows us to easily update our forecasts as new data become available
through minimal changes to the basic models and an efficient computational scheme.
Specifically, we utilise the latent variable formulation of the Plackett–Luce model as
discussed in Caron and Doucet (2012) and modify the Gibbs sampler of Caron and
Doucet (2012) to accommodate both the time-weighted and truncated versions of the
Plackett–Luce model.

For modelling/forecasting purposes we attribute the result of a race solely to the
drivers who competed in the race; no team/car or other information is taken into ac-
count. This allows us to focus on relatively simple models which are easy to use and for
which computation is efficient. It also allows us to update our forecasts easily as new
data becomes available. We acknowledge that in analysing the results of a race what we
are really analysing is the combination of the driver’s ability and other factors such as
the team/car performance. Previous attempts to additionally model team performance
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and other factors can be found in Eichenberger and Stadelmann (2009), Phillips (2014)
and Bell et al. (2016).

The paper is structured as follows. The Plackett–Luce model and its variants are
described in Section 2. Section 3 describes our approach to forecasting, discusses a time-
weighted version of the Plackett–Luce model, and outlines an efficient Gibbs sampling
algorithm for the time-weighted (truncated) Plackett–Luce model. Results are presented
in Section 4 and the paper concludes, in Section 5, with a summary.

2 Models

2.1 Basic notation

Suppose we have data on n races involving K drivers represented by the set K =
{1, 2, . . . ,K}. Suppose that ni ≤ K drivers are involved in race i with the set of
these ni drivers being denoted Ki. The finishing order of the ith race is denoted
Xi = (Xi1, Xi2, . . . , Xini). This is a permutation of the elements in Ki, such that
Xi1 is the driver who finished first, Xi2 is the driver who finished second, and so on.

2.2 The Plackett–Luce model

Let λk > 0 be a parameter representing the potential performance of driver k ∈ K.
In what follows we will refer to λk as the “ability” of driver k, but, as discussed in
Section 1, these parameters do not necessarily reflect a driver’s true ability but rather
an amalgam of all factors which affect the driver’s potential performance in future races.
A commonly used model for the finishing positions of the drivers in race i specifies this
joint probability through a product of marginal and conditional probabilities,

p(xi|λ,Ki) =

ni−1∏
j=1

λxij∑ni

m=j λxim

, (1)

where λ = {λk}k∈K is the collection of all driver abilities. In the remainder of the paper
we drop the explicit conditioning on the set of drivers Ki for economy of notation. Here,
λk is proportional to the probability that driver k wins a race. This model is commonly
called the Plackett–Luce model (Plackett, 1975; Luce, 1959) though it has been sug-
gested independently by several other authors, such as Harville (1973). The model is
composed of the probability that xi1 beats all rivals, multiplied by the probability that
xi2 beats all remaining rivals conditional on being beaten by xi1, and so on until we have
the probability that xini came last, given that all the other drivers were ranked higher.

Clearly, the likelihood of the ability parameters under the Plackett–Luce model (1)
is unaltered if we re-scale λ. As such, the data only provides information about the
relative standard of the drivers, not their absolute standard. Some implications of this
non-identifiability are addressed later in Section 3.2.

It is well-known (Diaconis, 1988; Marden, 1995) that the Plackett–Luce model can
also be represented as the marginal probability
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p(xi|λ) =
∫

p(xi|Zi, )p(Zi|λ)dZi, (2)

where Zi = {Zij ; j ∈ Ki} are exponentially distributed latent variables, one for each
driver in race i,

Zij |λj ∼ Exp(λj), i = 1, 2, . . . , n, j ∈ Ki,

and
p(xi|Zi) ≡ Pr(Xi = xi|Zi) = Pr(Zixi1 < Zixi2 < · · · < Zixini

) (3)

is the rank likelihood (Pettitt, 1982). In other words, the kth ranked driver is the one with
the kth smallest value of their latent variable. One interpretation of the latent variables
Zi is as the unobserved finishing times of the ni drivers; the individual with the fastest
time wins, and so on. This latent variable representation gives a generative model which
can be used to simulate realisations from the Plackett–Luce model. This representation
corresponds to a Thurstonian order-statistics model with Gumbel (extreme-value) latent
variables (Yellott, 1977).

2.3 Partial rankings: the truncated Plackett–Luce model

As discussed in Section 1, we could argue that there is less information in the lower
rankings; good drivers can have mechanical failures beyond their control, for example,
or their effort may decrease when the chance of a points finish is out of their reach. The
specification of the Plackett–Luce model (1) through conditional probabilities makes it
simple to analyse partial rankings. For race i, taking only the results down to rith place
where 1 ≤ ri ≤ ni we define

p(xi|λ, ri) ≡ p(xi1, . . . , xiri |λ) =
r∗i∏
j=1

λxij∑ni

m=j λxim

, (4)

where r∗i = min(ri, ni − 1). Drivers who participate in the race but who do not finish
in the top ri are all treated equally, as not finishing in the top ri.

We note that the vase models of Silverberg (1980), of which Benter (1994) is a special
case, account for variable effort for the lower places. The truncated Plackett–Luce model
can be seen as a special case of Benter’s model in which there is no information in the
rankings after position ri.

2.4 The reverse Plackett–Luce model or attrition model

In the reverse Plackett–Luce model, as in the Plackett–Luce model, let Zi = {Zij ; j ∈
Ki} be exponentially distributed latent variables, one for each driver in race i, such that

Zij |λj ∼ Exp(λj), i = 1, 2, . . . , n, j ∈ Ki.

The data are connected to these latent variables through the rank likelihood

p(xi|Zi) ≡ Pr(Xi = xi|Zi) = Pr(Zixini
< Zixini−1

< · · · < Zixi1). (5)
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Under this generative model, the kth ranked driver is the one with the kth largest value
of their latent variable. This model is alluded to in several places in Marden (1995),
as the “backwards Plackett” model, for example. The Zi can be interpreted as the
“failure” times of the ni drivers in the ith race, with the winner being the individual
that fails last or, in other words, lasts the longest. Based on this interpretation, Graves
et al. (2003) call this model the attrition model as it represents the attrition that is
common in motor racing, in that cars fail due to mechanical problems that are beyond
a driver’s control; a poor driver is unlikely to win a race, but a good driver can very
easily come last. As such the attrition model naturally deals with some of the issues
that the truncated Plackett–Luce model of (4) was designed to address.

Note that the marginal likelihood under the attrition model can be obtained by
simply reversing the data for each race in the basic Plackett–Luce model, that is, by
replacing Xi by the reverse finishing order. Therefore, the attrition model can be fitted
using the same methodology as for the (truncated) Plackett–Luce model and so in
Section 3 we focus on describing computation for the truncated Plackett–Luce model.
Under the attrition model, however, the driver “ability” parameters have a different
interpretation. Now λk is proportional to the probability that driver k finishes last. The
driver with the smallest λk value indicates the “least worst” driver.

The factorisation of the marginal finishing order under the attrition model does not
lend itself to a simple truncated version as did the Plackett–Luce model. Deriving the
marginal probability p(xi1, . . . , xiri |λ) would involve summing out the random variables
Xiri+1 to Xini from the joint probability given by (1) but with reversed data. This
brute force summation is possible but extremely computationally intensive. For these
computational reasons, and the fact that the attrition model naturally deals with the
occasional poor result, we have not pursued a truncated attrition model here.

3 Bayesian predictive inference and forecasting

Our main aim is to use the models described in the previous section to forecast the
results of future races based on observed results. We let Dt = {x1,x2, . . . ,xt} denote
the results of the first t races, and set D ≡ Dn to be the whole set of results. We adopt
a Bayesian approach and, for a particular model M = m with parameters λ, we base
forecasts for the outcome of the next race xt on the predictive distribution

p(xt|Dt−1,m) =

∫
p(xt|λ,m)p(λ|Dt−1,m)dλ, (6)

where we assume that race outcomes are conditionally independent given the parame-
ters, so that p(xt|Dt−1,λ,m) = p(xt|λ,m). In (6), p(λ|Dt−1,m) ∝ p(λ|m)p(Dt−1|λ,m)
is the current conditional density of λ given by Bayes’ Theorem, p(λ|m) is the initial
prior density of λ and

p(Dt−1|λ,m) =

t−1∏
i=1

p(xi|λ,m) (7)

is the current likelihood of λ, as specified by the (truncated) Plackett–Luce model (4).



D. A. Henderson and L. J. Kirrane 341

3.1 Time-weighted forecasts

For the purposes of forecasting it seems reasonable to assume that race results become
less important the further in the past they are. Essentially, we are questioning the
exchangeability of the data caused by changes in driver abilities λ over time or by un-
modelled covariates (such as changes to the driver’s car, changes in his team personnel,
the positive effects of several good results, or the negative effects of a few bad results).

Rather than explicitly modelling changes in λ over time through a state-space model
for example, an alternative pragmatic approach, which can be seen as a preliminary step
to a more sophisticated modelling approach such as that in Glickman and Hennessy
(2015), is to represent the non-exchangeability of the data through the likelihood func-
tion rather than the prior. We do so by down-weighting information from past results
more heavily as time progresses. McCarthy and Jensen (2016) give details of such an
approach in a general time series context. They show that simple models with so-called
power-weighted densities can be competitive with more sophisticated state-space models
for forecasting financial time series. Our time-weighted modification of the (truncated)
Plackett–Luce model assumes that at time τ the likelihood contribution of race i, which
took place at time τi, is

p(xi|λ,m)ψ(τ−τi). (8)

Here ψ(·) is a non-decreasing function such that 0 ≤ ψ(x) ≤ 1 for x ≥ 0, implying
that a result from the distant past is weighted no more heavily than a recent result. We
assume that ψ(0) = 1, and that the functional form of ψ depends on a single parameter
ξ, but leave discussion of the precise form of ψ(·) till Section 3.3.

The time-weighted likelihood at time τ ≥ τt−1, based on results up to and including
those of race t− 1, is then simply

p(Dt−1|λ,m, τ t−1, τ, ξ) =

t−1∏
i=1

p(xi|λ,m)ψ(τi), (9)

where τ t−1 = (τ1, . . . , τt−1) denotes the dates of the t− 1 races. Clearly taking ψ(τi) =
1 for all i gives the original likelihood from (7), that is, p(Dt−1|λ,m, τ t−1, τ, ξ) =
p(Dt−1|λ,m).

Equation (9) does not correspond to a generative model for the Plackett–Luce models
described in Section 2. We can, however, view this time-weighted likelihood as form-
ing the basis of a power prior distribution (Ibrahim and Chen, 2000) p(λ|Dt−1,m,
τ t−1, τ, ξ), which is obtained, via Bayes’ Theorem, as p(λ|Dt−1,m, τ t−1, τ, ξ) ∝
p(λ|m)p(Dt−1|λ,m, τ t−1, τ, ξ) where p(λ|m) represents the initial beliefs about the pa-
rameters. This is simply a form of power prior distribution in which ψ(τ − τi) quantifies
the uncertainly in the historical data Dt−1 and therefore down-weights this historical
data when forming the prior distribution; see Ibrahim and Chen (2000) for a review of
power priors in terms of regression models.

Forecasts about the next race xt at time τt are based on the predictive distribution

p(xt|Dt−1,m, τ t−1, τt, ξ) =

∫
p(xt|λ,m)p(λ|Dt−1,m, τ t−1, τt, ξ)dλ. (10)
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The only modification from (6) is that the current conditional distribution of the ability
parameters is based on the time-weighted data. It turns out that the time-weighted
conditional distributions p(λ|Dt−1,m, τ t−1, τ, ξ) for the (truncated/reverse) Plackett–
Luce models are relatively easy to sample from by using Gibbs sampling; details are
provided in Section 3.2.

3.2 Bayesian computation for the time-weighted Plackett–Luce
model

Likelihood

At time τ , the weighted likelihood contribution of the ith race under the truncated
Plackett–Luce model (4) is

p(xi|λ, ri)ψ(τ−τi) =

⎧⎨
⎩

r∗i∏
j=1

λxij(∑ni

m=j λxim

)
⎫⎬
⎭

ψ(τ−τi)

=

r∗i∏
j=1

λ
ψ(τ−τi)
xij(∑ni

m=j λxim

)ψ(τ−τi)
. (11)

The time-weighted likelihood based on the first t − 1 races Dt−1 = {x1,x2, . . . ,xt−1}
can be written

p(Dt−1|λ, rt−1, τ t−1, τ, ξ)=
t−1∏
i=1

p(xi|λ, ri)ψ(τ−τi) =
∏
k∈K

λwk

k

t−1∏
i=1

r∗i∏
j=1

⎛
⎝ ni∑

m=j

λxim

⎞
⎠

−ψ(τ−τi)

,

(12)

where rt−1 = (r1, . . . , rt−1) and wk =
∑t−1

i=1

∑r∗i
j=1 I(xij = k)ψ(τ − τi) is the (time-

weighted) number of races in which the kth driver competes and finishes in the top
r∗i positions. Here I(x) denotes an indicator function which equals 1 if x is true and
equals 0 otherwise. Clearly, taking ψ(τ − τi) = 1 for all i gives the likelihood under
the truncated Plackett–Luce model. Also, taking ri = ni (and thus r∗i = ni − 1) for all
i, gives the likelihood under the Plackett–Luce model. Reversing the data and taking
ri = ni gives the attrition model. The model described above could be fitted by using
a modification of the MM algorithm of Hunter (2004) to maximise the likelihood. We
will, however, adopt a Bayesian approach to inference and prediction.

Prior specification

Beliefs about the relative abilities of the drivers are expressed through independent
gamma prior distributions, λk ∼ Gamma(ak, b) for k ∈ K, with ak, b > 0. The scale
parameter b can be set equal to 1, without loss of generality, due to the scale invariance
of λ. The choice of ak allows flexibility in specifying beliefs about the abilities of the
drivers. Taking ak = a for all k ∈ K leads to an exchangeable prior specification in which
we believe that some drivers are better than others but we have no beliefs about who
the stronger and the weaker drivers are. This specification has the attractive property
that each possible permutation of finishing orders in the first race, and therefore each
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possible result of this first race, is equally likely a priori. In other words this prior

induces a uniform distribution on the set of permutations σ(K1). With the exchangeable

specification λk ∼ Gamma(a, 1) for k ∈ K, the prior probability that driver i beats

driver j has a Beta(a, a) distribution under the Plackett–Luce and reverse-Plackett–Luce

models. Taking a = 1 clearly leads to uniform U(0, 1) beliefs about these head-to-head

probabilities, which has some appeal in the absence of specific prior information.

Posterior computation

In order to make predictions within the Bayesian paradigm we need the conditional

(power prior) distribution p(λ|Dt−1, rt−1, τ t−1, τ, ξ) ∝ p(λ)p(Dt−1|λ, rt−1, τ t−1, τ, ξ),

which is not available in closed form. In the special case of the Plackett–Luce model

(ψ(τ − τi) = 1 and ri = ni for all i) Caron and Doucet (2012) showed that by intro-

ducing some carefully chosen latent variables an efficient Gibbs sampler can be con-

structed for sampling from the joint distribution of parameters and latent variables

given the data. We modify their approach to accommodate time-weighting and trun-

cation, and propose the Gibbs sampler of Algorithm 1. Full details are provided in

the Supplementary material (Henderson and Kirrane, 2017).

Algorithm 1 Gibbs sampler for time-weighted truncated Plackett–Luce model

1. Initialise λ(0) arbitrarily.
2. For iteration � = 1, 2, . . .

(a) for i = 1, . . . , t− 1 and for j = 1, . . . , r∗i , sample

Y
(�)
ij |Dt−1,λ

(�−1), rt−1, τ t−1, τ, ξ ∼ Gamma

⎛
⎝ψ(τ − τi),

ni∑
m=j

λ(�−1)
xim

⎞
⎠ ;

(b) for k ∈ K sample

λ
(�)
k |Dt−1,Y

(�)
t−1, rt−1, τ t−1, τ, ξ ∼ Gamma

⎛
⎝ak + wk, b+

t−1∑
i=1

r∗i∑
j=1

δijkY
(�)
ij

⎞
⎠ ,

where wk =
∑t−1

i=1

∑r∗i
j=1 I(xij = k)ψ(τ−τi) and δijk = I(k ∈ {xij , . . . , xini});

(c) (Optional) sample Λ(�) ∼ Gamma
(∑

j∈K aj , b
)
and for k ∈ K set

λ
�(�)
k =

λ
(�)
k∑

j∈K λ
(�)
j

Λ(�).

Then for k ∈ K set λ
(�)
k = λ

�(�)
k .



344 Truncated and Time-Weighted Plackett–Luce Models

Algorithm 1 entails a trivial modification of the Gibbs sampler for the Plackett–Luce
model given in Caron and Doucet (2012) and their algorithm can be seen as a special
case of Algorithm 1 when ψ(τ − τi) = 1 and ri = ni for all i.

Identifiability issues

As discussed in Section 2.2, the likelihood (12) is invariant under scalar multiplication of
λ and hence the combined ability level of all the drivers, Λ =

∑
j∈K λj is not likelihood

identifiable. As pointed out in Caron and Doucet (2012), this non-identifiability can
cause the Markov chain defined in Steps (a) and (b) of Algorithm 1 to mix poorly, since
Λ is essentially unconstrained by the data. The rescaling step (2(c)) in Algorithm 1
improves the mixing of the Markov chain; see Caron and Doucet (2012) for full details.

We note that this non-identifiability does not cause any inferential problems, how-
ever, and no artificial parameter constraints are needed. Due to the invariance of the like-
lihood (12) under scalar multiplication of λ the average ability of the drivers, η = Λ/K,
is also not likelihood identifiable, and so p(η|D) = p(η). Therefore (our beliefs about)
the average ability of the drivers η will not change over time with the inclusion of more
data. In other words, this non-identifiability provides a natural mechanism for looking
at differences over time, without having to artificially standardise our inferences.

3.3 Specification of the time-weighting function

So far we have assumed that the weight function ψ(·) is completely specified through
a parameter ξ, although we have not explicitly discussed choices. There is considerable
flexibility in the choice of weighting function; McCarthy and Jensen (2016) give some
general guidelines and Dixon and Coles (1997) briefly discuss some possibilities in the
context of modelling football scores. We assume that time is measured discretely in
days, denoted x, and use a geometric weighting function,

ψ(x) = ξx, 0 ≤ ξ ≤ 1, (13)

in which after 1 day we assign a weight of ξ to a race result, after two days this result
is assigned a weight of ξ2 and so on. Taking ξ = 1 gives the standard (non-time-
weighted) models and, as ξ decreases, past results are down-weighted more heavily.
We can choose a specific value of ξ by considering the number of days it takes the
results to be weighted half of present results. Alternatively, rather than specifying a
single specific value, we could use the data to inform our choice. For example, we can
fit several models for a range of values of ξ to Dt−1 and then choose to base predictions
for race t on the value of ξ which minimises an appropriate loss function based on
the previous predictions from the various models. This and other strategies have been
investigated and the results are reported in the Supplementary material. We find that
an approach based on sequentially choosing the value of ξ which maximises the log prior
predictive probability (see Section 4.4) to work well. We note that this is essentially the
method proposed in McCarthy and Jensen (2016) based on maximising the one step
ahead predictive likelihood.
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4 Results

In this section we compare the predictive performance of the various models described
so far. In particular we compare the models on their ability to accurately forecast the
outcomes of future races as results become available throughout the course of the 2010
to 2013 F1 seasons. We focus on five aspects of performance: predicting (i) the race
winner, (ii) the top three finishers in a race (those with a “podium” finish), (iii) the top
10 finishers in a race (those with a “points” finish), (iv) the season champion, and (iv)
the full finishing order for a race. Whilst all these aspects are of interest to motor racing
fans, the first four probabilities may be useful for betting purposes as bookmakers and
betting exchanges typically offer markets on these outcomes. The probability of the
observed finishing order has no real relevance for betting purposes, but it provides an
overall measure of the suitability/performance of the various models.

4.1 Modelling choices and computational details

For the purposes of illustration we present results for seven models. In each model we
took the prior parameter ak = a = 1 for all k ∈ K. A sensitivity analysis reported
in the Supplementary material suggests that the predictions are not particularly sen-
sitive to this choice. The seven models are the standard Plackett–Luce model (PL),
the attrition (reverse Plackett–Luce) model (a), truncated Plackett–Luce models with
truncation at ri = 6, ri = 10 and ri = 14, for all i (models PL.t6, PL.t10 and PL.t14

respectively) and time-weighted versions of both the Plackett–Luce model and the re-
verse Plackett–Luce (attrition) model with ξ chosen sequentially to maximise the log
prior predictive probability (models PL.tw and a.tw, respectively). Further details on
the choice of ξ are provided in the Supplementary material. The set of models is denoted
M = {a, a.tw, PL, PL.tw, PL.t6, PL.t10, PL.t14}.

After each race, each model was fitted by running the appropriate Gibbs sampler
for N = 10000 iterations after a burn-in of 100 iterations. This level of burn-in was
more than adequate; the Markov chains appear to converge very quickly to station-
arity, and appear to mix well. We emphasise that no tuning or adaptation is neces-
sary with these Gibbs samplers and so it is easy to fit the models efficiently as new
data become available. The models are coded in R; code and data are available from
http://www.mas.ncl.ac.uk/~ndah6/F1/.

4.2 Forecasting the winner, the podium finishers and the points
finishers

For a given race, bookmakers and betting exchanges typically offer markets on who
is going to win (finish first), finish on the podium (a top 3 finish) and finish in a
point position (a top 10 finish), amongst many others. Therefore we initially focus on
forecasting these aspects of the data. The models can be used to estimate the probability
that driver j finishes in the top q places in race t, for each participating driver j ∈ Kt,
based on data up to but not including race t, Dt−1. Clearly this probability is 0 for all
drivers who do not compete in race t. We use Monte Carlo simulations from the models

http://www.mas.ncl.ac.uk/~ndah6/F1/
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Figure 1: Estimates of the probability of winning (p̂
[M,1]
jt , left column), finishing on the

podium (p̂
[M,3]
jt , middle column) and finishing in a points position (p̂

[M,10]
jt , right column)

for Sebastian Vettel (upper row) and Jenson Button (lower row) for each race of the
2010–2013 Formula One seasons based on the various models M ∈ M.

to estimate these probabilities due to the lack of analytic expressions for most of them.
Essentially, for each model M , we play out the next race, race t, N times and estimate
the probability that driver j finishes in the top q places by the proportion of simulated

races in which driver j finishes in the top q places, which we denote p̂
[M,q]
jt . Algorithms

for simulating race outcomes under the Plackett–Luce model and the reverse Plackett–
Luce model use the exponential latent variable formulation, as described in Section 2,
and are described in the Supplementary material. Precise details of how we estimate
the predictive probabilities are also given in the Supplementary material.

Figure 1 displays estimates of the probabilities of winning, finishing in a podium po-
sition and finishing in a points position, under the seven models in M, for two drivers
who competed in all F1 races during the period 2010–2013. The upper row of plots
in Figure 1 gives these probabilities for Sebastian Vettel, the German driver who won
the World Drivers’ Championship each year from 2010 to 2013. The lower row of plots
in Figure 1 gives these probabilities for the British former World Champion Jenson
Button. The left-hand column of plots in Figure 1 show the probabilities of winning
each race. Note that closed-form estimates of the probability of winning can be cal-
culated for the various versions of the Plackett–Luce model. These closed-form prob-
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abilities are practically indistinguishable from the sample-based estimates, suggesting
that the sample-based estimates are adequate for our purposes. Details are given in
the Supplementary material.

From Figure 1 we can clearly see that the predictive probabilities change substan-
tially over time, adapting to new data as it becomes available. For example, looking at
the probability of Vettel winning (upper left plot in Figure 1) the probabilities under
the time-weighted attrition model are broadly similar to those under the standard at-
trition model; they are, however, more reactive to the results. For Button, the attrition
model and the time-weighted attrition model give fairly similar estimates for the win
and top 3 probabilities up to early 2013, then the time-weighted estimates drop off much
more steeply. This indicates that the time-weighted model reacts more swiftly than the
non-time-weighted model to Button’s lower level of achievement in 2013.

The probabilities follow similar patterns over time under the various models, but
there are considerable differences in the actual probabilities under the different mod-
els, especially between the attrition models and the Plackett–Luce models. In order to
assess which model gives the most accurate forecasts we next examine the predictive
performance of the models.

Predictive assessment

A logarithmic scoring rule (Bernardo and Smith, 1994) can be used to assess the quality

of the forecast probabilities p̂
[M,q]
jt ; we “score” an amount S(p, i) = log(pi) if i occurs

and our forecast probabilities are given in the vector p. In the binary case (for example,
driver j does/does not finish in the top q) the logarithmic scoring rule is a strictly proper
local scoring rule; see Gneiting and Raftery (2007) for a review of proper scoring rules
for prediction. Specifically, if a successful outcome (a top q finish) for driver j in race t

is indicated by o
[q]
jt (xt) = I (j ∈ {xt1, . . . , xtq}), then the score for the prediction p̂

[M,q]
jt

is
S(p̂

[M,q]
jt , o

[q]
jt (xt)) = o

[q]
jt (xt) log p̂

[M,q]
jt + {1− o

[q]
jt (xt)} log

(
1− p̂

[M,q]
jt

)
.

We combine the scores for each driver in the tth race to give a combined score for our
predictive probabilities of

S
[M,q]
t =

∑
j∈Kt

S(p̂
[M,q]
jt , o

[q]
jt (xt)).

Scores under the different models can be compared, with the model with the largest
score giving the best predictions for this facet of the data. We track the scores and
cumulative sum of the scores over races; the sum of the scores over races 1 to t,

S[M,q](t) =
∑t

i=1 S
[M,q]
t gives an overall measure of the quality of the forecasts for

model M ∈ M.

Figure 2 displays several comparisons of the seven models in terms of log scores.
The extreme outliers in the log scores for the winner probabilities correspond to the
unfancied Venezuelan driver, Pastor Maldonado, winning the Spanish Grand Prix in
May 2012. At the time of writing (November 2016), this is Maldonado’s only Grand
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Figure 2: Comparison of log scores for forecasts of the winner (left column), the top
3 places (middle column) and the top 10 places (right columns). The upper row gives
boxplots of the log scores under the different models combined over the years 2010–2013.
The middle row gives the cumulative score for each model minus that for the Plackett–
Luce model over the years 2010–2013. The lower row gives the cumulative score for the
time weighted reverse Plackett–Luce model minus that for the reverse Plackett–Luce
model.

Prix victory. This low probability event hits the log score under the attrition models
hard, as can be seen by the dip in relative log score in early 2012 in the middle left plot
in Figure 2.

Taken as a whole, the plots of Figure 2 suggest that the attrition models clearly out-
perform the Plackett–Luce models at forecasting each set of probabilities. Truncation of
the Plackett–Luce model generally improves forecasts, with the more severe truncation
giving more accurate forecasts for the winner and top 3 probabilities, but truncation
at ri = 6 not performing well for the top 10 forecasts. For top 10 forecasts, truncation
at ri = 10 performs the best of the Plackett–Luce models, not surprisingly; truncation
at ri = 6 clearly throws away too much information. The effect of down-weighting past
results is not so clear cut. For the attrition model there is practically no difference for
predicting the winner, but time-weighting does have a positive impact when predicting
the top 3 and top 10 finishers. Note that the predictions under the time-weighted at-
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trition model are the same as those under the attrition model with no time-weighting
up to near the end of the 2011 season. This is because the optimal ξ up to that point is
ξ = 1. The strategy we have implemented for choosing ξ for the Plackett–Luce model
leads to worse forecasts than when no time-weighting is implemented; other strategies
are discussed in the Supplementary material.

Comparison of observed and expected values of selected statistics

We can informally assess the goodness of fit of the models by comparing the observed
number of wins, podium finishes and points finishes for each of the drivers with what we
would expect under the different models. The expected number of top q finishes for driver
j over the course of the four seasons from 2010 to 2013 is simply the sum of the predictive

probabilities for a top q finish,
∑n

t=1 p̂
[M,q]
jt . These values are reported in Table 1 for

a selection of ten prominent/notable drivers. The results in Table 1 demonstrate that
the observed and expected values match up well for the attrition model, and time-
weighted attrition model but match up less well for the various Plackett–Luce models.
In particular, the Plackett–Luce model massively underestimates the number of wins for
Sebastian Vettel. The attrition models also underestimate Vettel’s wins, but to a much
lesser extent. Vettel clearly exceeded expectations in the four year period 2010–2013.
Overall these results suggest that the attrition models provide a good fit to these data
and are superior to the Plackett–Luce models.

4.3 Predicting the championship winner

One of the main outcomes of interest throughout the course of a season is the identity of
the eventual winner of the Driver’s Championship. Drivers score points corresponding to
their finishing position in each race with the driver accumulating the most points at the
end of the season being declared the winner. Table 2 gives the points system that was
in place throughout the 2010–2013 seasons. After race t− 1 we estimate the probability
that driver j wins that season’s Drivers’ Championship as follows. For � = 1, . . . , N we

simulate race results x
(�)
t ,x

(�)
t+1, . . . ,x

(�)
t∗ for the rest of the season (here t∗ denotes the

last race of the season) from the current prior predictive distribution. We then convert
simulated race results into points, based on Table 2, and add these simulated points for

the rest of the season d
(�)
j to the driver’s actual current points total after race t − 1,

djt−1. This gives N sampled values d
(�)
jt−1 = djt−1+d

(�)
j from the predictive distribution

of the driver’s final points total for the season. For each � = 1, 2, . . . , N , the driver with
the most predicted points is the simulated champion. We estimate the probability that

driver j is the season champion, p
[M,C]
jt−1 , by the proportion of simulated seasons in which

driver j had the highest predicted points total, that is

p̂
[M,C]
jt−1 =

1

N

N∑
�=1

I

(
d
(�)
jt−1 = max

k∈K
(d

(�)
kt−1)

)
.

Figure 3 plots these probabilities for eventual four-time champion Sebastian Vettel
over the course of the 2010 to 2013 seasons. For the sake of clarity, the probabilities under
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Model Statistic Vettel Alonso Hamilton Button Webber Rosberg Räikkönen Maldonado Massa Schumacher
Observed Wins 34 11 11 8 7 3 2 1 0 0

Podiums 53 42 27 25 32 9 15 1 8 1
Top 10s 68 69 62 61 65 55 33 7 58 31

a Wins 23.34 13.17 10.16 9.54 11.16 1.73 2.05 0.04 2.35 0.34
Podiums 45.13 36.48 32.19 30.99 33.47 10.69 8.71 0.15 12.67 2.98
Top 10s 69.14 67.30 65.84 65.40 65.83 53.80 27.41 8.58 55.50 31.91

a.tw Wins 23.38 13.24 9.20 8.80 9.81 2.13 3.34 0.06 2.55 0.36
Podiums 44.37 36.00 29.75 28.34 30.22 11.56 11.08 0.44 12.80 3.01
Top 10s 68.14 66.12 63.49 62.47 63.22 51.73 27.42 11.32 52.94 30.01

PL Wins 7.61 8.26 5.05 5.59 6.72 4.67 3.85 1.04 4.83 2.01
Podiums 21.69 23.49 15.01 16.55 19.54 13.94 10.90 3.30 14.49 6.32
Top 10s 58.13 61.14 47.70 51.09 55.92 45.71 28.43 13.73 47.05 23.70

PL.tw Wins 8.23 7.20 4.83 5.15 6.35 4.22 3.54 1.26 4.48 1.86
Podiums 22.80 20.65 14.37 15.33 18.41 12.71 10.11 4.01 13.47 5.74
Top 10s 57.17 56.10 45.10 47.61 52.18 42.15 26.96 16.38 43.77 21.41

PL.t6 Wins 13.24 9.65 8.74 7.80 8.83 4.46 3.09 0.43 4.49 1.83
Podiums 35.50 28.11 25.83 23.48 26.00 14.07 9.44 1.42 14.16 5.89
Top 10s 71.84 70.14 69.44 67.28 68.04 56.04 30.25 8.68 56.63 29.03

PL.t10 Wins 10.84 9.22 7.35 7.47 8.96 4.68 3.51 0.41 4.70 2.23
Podiums 30.05 26.59 21.83 22.14 25.83 14.48 10.40 1.35 14.59 7.07
Top 10s 68.57 67.56 64.11 64.43 67.31 53.13 30.22 7.21 53.62 30.15

PL.t14 Wins 8.79 8.89 6.21 6.69 8.41 4.84 3.61 0.72 4.45 2.30
Podiums 24.93 25.26 18.51 19.80 24.19 14.70 10.43 2.34 13.56 7.21
Top 10s 63.11 64.89 57.07 58.94 63.78 50.31 29.00 11.10 47.76 28.31

Table 1: Observed and expected statistics under the models in M for selected drivers.



D. A. Henderson and L. J. Kirrane 351

Finishing position 1 2 3 4 5 6 7 8 9 10 ≥ 11
Points 25 18 15 12 10 8 6 4 2 1 0

Table 2: Formula One points system for the seasons 2010–2013.

Figure 3: Upper plot: Estimated probability of Sebastian Vettel winning that season’s
Drivers’ Championship prior to each race of the 2010–2013 F1 seasons under three
models (a, a.tw and PL.t6). Lower plot: difference in cumulative probability of Vettel
winning the Drivers’ Championship relative to the attrition model. Also displayed at
the foot of each plot is Vettel’s finishing position for each race.

only three models are compared: the attrition model (a), the time-weighted attrition
model (a.tw), and the Plackett–Luce model truncated at 6th position (PL.t6). We
chose PL.t6 as it was the best of the (truncated) Plackett–Luce models at predicting
the winner and the top three places (see Figure 2). Being able to accurately predict
these high placings is important for predicting the Championship winner as the high
placings contribute the most points to a driver’s total. Also displayed in Figure 3 is
Vettel’s finishing position for each race. The probabilities under all three models are
fairly similar. The main difference between the models lies early in a season where the
truncated model typically assigns a lower probability to Vettel being champion than the
attrition models. A notable exception is for the 2013 season where the time-weighted
attrition model gives the lowest probabilities out of these three models. In 2011 and 2013
there was little doubt from fairly early in the season as to Vettel’s eventual success, with
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practical certainty towards the end of the season that he would be victorious. In contrast,
the 2012 season was closely fought, with the lead in the Drivers’ Championship changing
hands seven times; see Smith (2013) for a detailed account. The 2012 Championship
winner was still uncertain going into the last race, the Brazilian Grand Prix; Vettel
lead the Championship race on 273 points, with Alonso, his closest rival, second on 260
points. At that point all three models made Vettel the favourite to win the title with
a probability of around 0.85. Vettel only managed a 6th place finish in the Brazilian
Grand Prix, but with Alonso finishing 2nd, it meant that Vettel won the title by only 3
points. The 2010 season was perhaps even closer with several drivers capable of winning
the championship going into the last race, the Abu Dhabi Grand Prix. Fernando Alonso
lead the points race with 246, the Australian Mark Webber (Vettel’s team mate) was
second on 238 points, and Vettel lay third, 15 points adrift of Alonso on 231 points.
At this point, all three models had Vettel around a 7–8% chance of being champion,
with Alonso approximately 70% and Webber around 20–23%. Vettel won the race —
with Alonso finishing 7th and Webber 8th — to win his first World Championship and
become the then youngest-ever F1 World Champion.

Bookmakers’ odds can be considered a gold-standard in terms of forecasting the
outcomes of sporting events. It is therefore interesting to compare the forecasts under
the various Plackett–Luce type models with odds given by bookmakers. We note that
this may be an unfair comparison since bookmakers can use all available information
to inform their odds, such as qualifying grid position, reports from testing, and so on,
whereas the models discussed here only use the finishing positions from races starting
with the 2010 season, and simple exchangeable prior beliefs about driver abilities. Book-
makers odds against an outcome occurring of a : b convert to an implied probability
of the outcome occurring of p = b/(a + b), and typically include an in-built edge; for
disjoint events, the bookmakers implied probabilities typically add up to 1 + x, with
x > 0, where 100x% is their expected profit. Odds from one particular bookmaker (Sky
BET) were obtained for the 2013 Drivers’ Championship winner. The data from Sky
BET consist of a time series of odds against each driver winning the Championship.
Figure 4 plots the (unscaled) implied probabilities calculated from these odds for three
drivers: eventual 2013 Champion Sebastian Vettel, runner up Fernando Alonso from
Spain, and the Finnish driver Kimi Räikkönen, who won the first Grand Prix of the
2013 season, and in addition finished second in three of the first five races. Also included

in Figure 4 are estimated championship probabilities p̂
[M,C]
jt−1 under the attrition model

and the Plackett–Luce model. Informally, if the ratio of our model-based probability
to the unscaled implied bookmakers probability is greater than 1 then it represents a
potential betting opportunity in that if our model-based probabilities are more accurate
than the bookmakers probabilities then our expected gain will be positive in the long

run. Clearly, the probabilities p̂
[M,C]
jt−1 under the attrition model for Sebastian Vettel

being champion are greater (and, from mid-March to July 2013, much greater) than
the bookmaker’s probabilities, suggesting several attractive betting opportunities. If we
were to base predictions on the Plackett–Luce model, which has become somewhat of
a standard model for data on permutations, then a bet on Vettel winning would not
have looked particularly attractive for most of the season. It is also reassuring to see
that at no point during the season would either Alonso or Räikkönen have presented an
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Figure 4: Estimated probability of winning the 2013 Drivers’ Championship over time
for Sebastian Vettel (upper left), Fernando Alonso (upper right) and Kimi Räikkönen
(lower left), based on the attrition model, on the Plackett–Luce model and on unscaled
implied probabilities from a bookmaker. The lower right plot shows estimated posterior
densities for the driver ability parameters for the three drivers after the last race of the
2013 season under the time-weighted attrition model.

attractive betting opportunity under the attrition model. Figure 4 illustrates that de-
spite its apparent simplicity, the attrition model (and its time-weighted variants) can be
competitive with possibly more sophisticated systems and expert judgements employed
by bookmakers. For completeness, Figure 4 also includes estimated posterior densities
of the driver ability parameters for Vettel, Alonso and Räikkönen based on all the races
from the 2010 to 2013 seasons. These posteriors are based on the time-weighted attri-
tion model with ξ = 0.9970 which is the optimal value based on maximising the log
marginal likelihood. The plot clearly shows Vettel’s dominance over these other two
drivers during this period; recall that under the attrition model smaller values of the
parameter are better.

4.4 Full finishing order

So far we have concentrated on assessing the models in terms of their predictive per-
formance on aspects of the data that are of interest to the typical motor racing fan or
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bettor, such as who is going to win or finish on the podium. It is also of interest for
statistical reasons to compare the models on their ability to forecast the whole finishing
order for each race. From (10), the predictive probability of the exact finishing order
of the tth race xt, based on the data so far Dt−1, under the time-weighted truncated
Plackett–Luce model, can be estimated consistently by the sample average

p̂(xt|Dt−1, rt−1, τ t−1, τt, ξ) =
1

N

N∑
�=1

nt−1∏
j=1

λ
(�)
xtj∑nt

m=j λ
(�)
xtm

,

where λ(�), for � = 1, 2, . . . , N , are sampled from p(λ|Dt−1, rt−1, τ t−1, τt, ξ).

The sum of the log transformed prior predictive probabilities, for example,

log p(Dt|τ t−1, ξ) =

t∑
i=1

log p(xi|Di−1, τ i−1, ξ)

gives an estimate of the log marginal likelihood, or model evidence, based on the data
up to race t. (Note that if greater accuracy is required, Chib’s method (Chib, 1995) can
be used to estimate the log marginal likelihood under the non-time-weighted models. An
alternative method such as the power posterior method of Friel and Pettitt (2008) may
be required for the time-weighted versions). The upper left panel of Figure 5 displays
the log prior predictive probabilities under the seven models computed immediately
before each race of the 2010 to 2013 Formula One seasons. Clearly, the attrition models
outperform the Plackett–Luce models, and (unsurprisingly) the truncated variants of
the Plackett–Luce model are not as good as the untruncated model at predicting the full
finishing order. Based on the upper left panel of Figure 5, the time-weighted versions
of both the attrition model and the Plackett–Luce model look to be marginally better
than their non-time-weighted counterparts.

Bayes factors (Kass and Raftery, 1995) are commonly used for choosing between
models and the log marginal likelihood for each model minus that for the Plackett–Luce
model gives the log Bayes factor for that model relative to the Plackett–Luce model.
These log Bayes factors relative to the Plackett–Luce model are displayed in the upper
right panel of Figure 5. Kass and Raftery (1995) provide guidelines for interpreting the
log Bayes factor of model A relative to model B in terms of the strength of evidence
against model B; a log Bayes factor of 5 or more constitutes very strong evidence
against model B. This strength of evidence against the Plackett–Luce model is achieved
by the attrition models after only a few races, and over time the strength of evidence
grows. The differences between the time-weighted attrition model and the attrition
model are less evident from the upper right plot, and so in the lower left plot we
plot the log Bayes factor for the time weighted attrition model against the attrition
model. Kass and Raftery’s guidelines are also indicated by the horizontal lines. We
see that there is no preference early on, but by late 2011 the time-weighted attrition
model is deemed superior and by mid 2012 the evidence against the attrition model
(in favour of the time-weighted version) is very strong, and generally, apart from a
slight dip in 2013, gets stronger. The prior predictive probabilities can also be used
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Figure 5: Comparison of models in terms of (i) log prior predictive probabilities (upper
left), (ii) log Bayes factors relative to the Plackett–Luce model (upper right), (iii) the
log Bayes factor of the time-weighted attrition model relative to the attrition model
(lower left), and (iv) prior model probabilities (lower right), prior to each race of the
2010–2013 F1 seasons. The horizontal lines on the lower left plot represent the strengths
of evidence suggested by Kass and Raftery (1995).

to compute prior model probabilities. For example, if we assume a priori that the
various models have equal probability, then the initial prior model probabilities are
p(M = m) = |M|−1 for m ∈ M. The probability of model m ∈ M immediately before
race t is p(M = m|Dt−1) ∝ p(M = m)p(Dt−1|M = m). These prior probabilities for
each model computed immediately prior to each race of the 2010 to 2013 Formula One
seasons are shown in the lower right panel of Figure 5. The plot shows that, until late
in the 2011 season, the time-weighted attrition model is no different from the attrition
model; this is because the optimal ξ up to this point is ξ = 1. The plot also shows that
from late 2011 the time-weighted attrition model is the most likely model out of the ones
considered, and by mid 2012 it has a probability close to 1. Bayesian model selection
theory (Bernardo and Smith, 1994) would lead us to base inferences on the model which
has the maximum probability. For most of the period under study this was the time-
weighted attrition model. We stress, however, that this reflects the model’s ability to
predict the whole finishing order, which may not be of primary interest to most F1 fans
or bettors. The log marginal likelihood is simply a log scoring rule and it may be that
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the log scores of Section 4.2 may be more suitable for choosing an appropriate model,
depending on which features of the data we are most interested in forecasting; see Dawid
and Musio (2014) for discussion.

It is very common to use a composite forecast resulting from a weighted combination
of the forecasts from various models. In the Bayesian paradigm, the weights are usually
provided by the posterior model probabilities, which are our “prior” model probabilities
(see Hoeting et al. (1999) for a review of Bayesian model averaging), but they need not
be. For computational reasons, however, it may be preferable to choose a single model on
which to base forecasts. If we were forced to pick a single model to recommend, then on
the basis of this analysis of the 2010–2013 data and our initial exchangeable prior beliefs
it would be the time-weighted attrition model with ξ chosen sequentially to maximise
the log prior predictive probability; over the course of the four years it is preferred
in terms of nearly all the aspects of the data that we have looked at. We note that
the standard (non-time-weighted) attrition model performs admirably at forecasting all
aspects of the data that we have considered, and, due to its computational simplicity,
it may also be worthy of recommendation.

5 Summary

We have described and implemented time-weighted versions of several variants of the
Plackett–Luce model for permutations and applied these models in a case study in-
volving probabilistic forecasting of Formula One motor racing results. The results in
Section 4 confirm the findings of Graves et al. (2003), that the attrition model (re-
verse Plackett–Luce model) is generally to be preferred to the Plackett–Luce model
for modelling motor racing results. Some improvement in forecasts over the standard
Plackett–Luce model for features of interest to motor racing fans and bettors (for exam-
ple the race winner, podium finishers, points finishers and Championship winner) can be
gained if the Plackett–Luce model is truncated at results down to rth place. Naturally,
the truncated model is poorer than the untruncated model at predicting the full finish-
ing order, and even with truncation, the Plackett–Luce model is inferior to the attrition
model. We have also demonstrated that down weighting past results can improve fore-
casts under the attrition model. The dataset that we have looked at here only consists
of four years worth of results and it may be that time-weighted forecasts will have a
greater impact when the data covers a longer time period, because non-stationarity is
more likely to be an issue.

Supplementary Material

Supplementary Material for “A comparison of truncated and time-weighted
Plackett–Luce models for probabilistic forecasting of Formula One results”
(DOI: 10.1214/17-BA1048SUPP; .pdf). The Supplementary material contains further
details on the Gibbs sampling algorithm of Section 3, details of predictive simulations,
an analysis of sensitivity of predictions to prior assumptions and an investigation into
optimal choices of the time weighting parameter.

https://doi.org/10.1214/17-BA1048SUPP
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